JPS58163183A - Fuel cell generating system - Google Patents

Fuel cell generating system

Info

Publication number
JPS58163183A
JPS58163183A JP57047935A JP4793582A JPS58163183A JP S58163183 A JPS58163183 A JP S58163183A JP 57047935 A JP57047935 A JP 57047935A JP 4793582 A JP4793582 A JP 4793582A JP S58163183 A JPS58163183 A JP S58163183A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
flow rate
surplus gas
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57047935A
Other languages
Japanese (ja)
Other versions
JPS6318307B2 (en
Inventor
Akira Sasaki
明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57047935A priority Critical patent/JPS58163183A/en
Publication of JPS58163183A publication Critical patent/JPS58163183A/en
Publication of JPS6318307B2 publication Critical patent/JPS6318307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To perform temperature control of a fuel reformer by providing a branch and a regulating valve at the exit of a fuel chamber in a fuel cell to branch a portion of excessive gas. CONSTITUTION:Excessive gas flow discharged from a fuel chamber 4 is detected by a flow meter 8. Furthermore, reformed gas flow to be fed from a fuel reformer 1 to the fuel chamber 4 is detected by a flow meter 16 while D.C. current output from a fuel cell 3 is detected by a current meter 17. The detected level is inputted to a flow corrector 20 to perform the flow correcting operation and outputs to an excessive gas flow regulator 19 and a ratio setter 12. Then on the basis of the corrected flow signal of the excessive gas outputted from said corrector 20, the excessive gas flow to be fed through said regulator 19 to a burner 2 is controlled while partially branching to the system 15 through a three-way valve 14. The target level of said regulator 19 is provided as the output from a temperature controller 21 for the fuel reformer 1 on the basis of the temperature signal from a temperature detector 18.

Description

【発明の詳細な説明】 この発明は、燃料電池発電システム、特に燃料電池の燃
料室から排出される余剰ガスを燃料改質装置のバーナで
燃焼させるシステムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell power generation system, and particularly to a system in which surplus gas discharged from a fuel chamber of a fuel cell is burned in a burner of a fuel reformer.

従来この種の装置として第1図に示すものがあった。図
において(1)は燃料改質装置、(2)は燃料改質装置
(1)に組込まれたバーナ、(3)は燃料電池、(4)
は燃料電池(3)の燃料室、(5)は燃料改質装置(1
)で製造した水素濃度の高いガス(改質ガス)を燃料室
(4)に供給する系統、(6)は燃料室(4)から排出
される余剰ガスをバーナ(2)に供給する系統、(7)
は燃焼用空気をバーナ(2)に供給する系統、(8)は
余剰ガスの流量計、(9)は空気の流量計、α0は空気
の流量調節弁、(lυは空気の流jtlA]節器、@は
比率設定器である。
A conventional device of this type is shown in FIG. In the figure, (1) is a fuel reformer, (2) is a burner built into the fuel reformer (1), (3) is a fuel cell, and (4) is a fuel reformer.
is the fuel chamber of the fuel cell (3), and (5) is the fuel reformer (1).
) is a system that supplies gas with a high hydrogen concentration (reformed gas) produced in the fuel chamber (4), (6) is a system that supplies surplus gas discharged from the fuel chamber (4) to the burner (2), (7)
is the system that supplies combustion air to the burner (2), (8) is the surplus gas flow meter, (9) is the air flow meter, α0 is the air flow rate control valve, (lυ is the air flow jtlA] node The @ is the ratio setting device.

次に動作について説明する。燃料改質装置! (1)で
天然ガスなどの原料と純水(スチームの形で利用)から
製造した水素濃度の高い燃料ガス(改質ガス)を、燃料
γU池(3)の燃料室(4)に供給する。燃料電池(3
)は発電時、上記改質ガス中の氷菓成分のみを消費する
。さらに燃料゛ゼ池(3)の最適な運転状態を維持する
には、決定した燃料利用率(例えば70%)のもとに、
上記改質ガスを出力電流値に応じて必要とされる理論量
より過剰に供給しなければならない。したがって、燃料
室(4)から排出される未反応水素および他の可燃性ガ
ス(余剰ガス)を、上記燃料改質装置(1)に組込まれ
たバーナ(2)で燃焼させ改質反応(800°C前後の
融媒を用いた吸熱反応)に利用する。このとき上記余剰
ガス流量を流量計(8)で検出し、燃焼に必要な空気燃
料比を比率設定1   器Q諺で演算し、空気流量調節
器αυに目標値として与える。空気流量調節器0υは、
上記目標値に対して空気流量を流量計(9)で検出し調
節弁Q1で制御する。
Next, the operation will be explained. Fuel reformer! The fuel gas (reformed gas) with high hydrogen concentration produced from raw materials such as natural gas and pure water (used in the form of steam) in (1) is supplied to the fuel chamber (4) of the fuel γU pond (3). . Fuel cell (3
) consumes only the frozen confectionery component in the reformed gas during power generation. Furthermore, in order to maintain the optimal operating condition of the fuel reservoir (3), based on the determined fuel utilization rate (for example, 70%),
The reformed gas must be supplied in excess of the theoretical amount required depending on the output current value. Therefore, the unreacted hydrogen and other combustible gas (surplus gas) discharged from the fuel chamber (4) are combusted by the burner (2) incorporated in the fuel reformer (1), resulting in a reforming reaction (800 It is used for endothermic reactions (using a melting medium around °C). At this time, the flow rate of the surplus gas is detected by the flow meter (8), and the air-fuel ratio required for combustion is calculated using a ratio setting device Q proverb, and is given as a target value to the air flow rate regulator αυ. The air flow regulator 0υ is
The air flow rate is detected by a flow meter (9) with respect to the above target value and controlled by a control valve Q1.

従来の燃料電池発電システムは以上のように構成されて
いるので、燃料電池から排出される余剰ガスはすべて燃
料改質装置に組込まれたバーナで燃焼させなければなら
ず、負荷変動時例えば負荷急減時、余剰ガス流量および
発熱量が増加し、燃料改質装置(特に改質器)の温度制
御が困難になるなどの欠点があった。また、余剰ガス成
分濃度は、燃料電池へ供給される改質ガス流量値および
燃料電池の出力電流値に応じて時々刻々変化する”ので
、正確な流量検出およびバーナで完全燃焼させるための
最適な空気燃料比の設定が困難であるなどの欠点があっ
た。
Conventional fuel cell power generation systems are configured as described above, so all excess gas discharged from the fuel cell must be combusted in the burner built into the fuel reformer. At the same time, the surplus gas flow rate and calorific value increase, making it difficult to control the temperature of the fuel reformer (particularly the reformer). In addition, the concentration of surplus gas components changes from moment to moment depending on the flow rate of the reformed gas supplied to the fuel cell and the output current value of the fuel cell. There were drawbacks such as difficulty in setting the air-fuel ratio.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、燃料室出口側の余剰ガス系統lこ
8方調節弁などを設けろことにより、余剰ガスの一部を
分岐させ、負荷変動時、例えば負荷急減時、余剰ガス流
量及び発熱量が増加し、燃料改質装置の温度制御が困難
になる欠点を解消しようとするものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by installing an 8-way control valve in the surplus gas system on the fuel chamber outlet side, a part of the surplus gas is branched off. This is intended to solve the problem that when the load fluctuates, for example when the load suddenly decreases, the surplus gas flow rate and calorific value increase, making it difficult to control the temperature of the fuel reformer.

又燃料室へ供給される改質ガス流量値および燃料電池の
直流出力電流値を検出して余剰ガス流量値を補正する演
算装置を追加するならば、余剰ガスの流量制御およびバ
ーナで完全燃焼させるための最適な空気燃料比の設定が
できる燃料電池発電システムを提供することを目的とし
ている。
Also, if a calculation device is added that detects the reformed gas flow rate value supplied to the fuel chamber and the DC output current value of the fuel cell and corrects the surplus gas flow rate value, it is possible to control the flow rate of the surplus gas and completely burn it with the burner. The purpose of this project is to provide a fuel cell power generation system that can set the optimal air-fuel ratio for the following reasons.

以下、この発明の一実施例を図について説明する。第2
図において(1)〜(6)は従来装置と同様である。(
至)は燃料電池(3)に接続された負荷、(141は余
剰ガス系統(6)に設けられた8方調節弁、(ト)は余
剰ガスを上記s方調節弁α4により分岐する系統、α・
は改質ガスの流量計、σ旧よ燃料電池(3)の直流出力
電流を検出する電流計、に)は燃料改質装置(1)の改
質器部分に組込まれた温度検出器、αりは余剰ガスの流
量調節器、に)は余剰ガス流量値を改質ガス流量値およ
び直流出力電流値で補正するための補正器、■υは燃料
改質装置(1)の温度調節器である。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, (1) to (6) are the same as the conventional device. (
(to) is a load connected to the fuel cell (3), (141 is an 8-way control valve provided in the surplus gas system (6), (g) is a system in which surplus gas is branched by the above-mentioned S-way control valve α4, α・
is the reformed gas flow meter, σ is the ammeter that detects the DC output current of the fuel cell (3), and is the temperature sensor built into the reformer part of the fuel reformer (1), α 1) is the excess gas flow rate regulator, 2) is the corrector for correcting the surplus gas flow rate value with the reformed gas flow rate value and the DC output current value, and ■υ is the temperature regulator of the fuel reformer (1). be.

次Iこ動作について説明する。燃料室(4)から排出さ
れる余剰ガス流量値を流量計(8)で検出する。さらに
燃料改質装+!i (1)から燃料室(4)に供給され
る改質ガス流量値を流量計OQで検出し、燃料電池(3
〕の直流電流出力値を電流計qηで検出する。上記8検
出値を流量補正器(イ)に入力しここで流量補正演算を
行ない、余剰ガス流量調節器Qlおよび比率設定器(6
)に出力する。流量補正器(イ)では、電流計αηで検
出した電流値より理論的tこ計算される消費水素量を、
流量計(IIで検出した改質ガス流量(成分濃度は既知
である)中の水素量より差引いて、余剰ガスの成分濃度
を求め、流量計(8〉で検出した余剰ガス流量値の密度
補正演算を行ないさらに燃焼に必要な理論空気量を求め
る。余剰ガス流量計(8)は余剰ガスの予想される平均
密度で選定すればよい。
Next, the operation will be explained. A flow meter (8) detects the flow rate value of surplus gas discharged from the fuel chamber (4). More fuel reforming +! The flow rate value of the reformed gas supplied from i (1) to the fuel chamber (4) is detected by the flow meter OQ, and
) is detected with an ammeter qη. The above 8 detected values are input to the flow rate corrector (A), where the flow rate correction calculation is performed, and the surplus gas flow rate regulator Ql and the ratio setter (6) are input.
). The flow rate corrector (a) calculates the amount of hydrogen consumed, which is theoretically calculated from the current value detected by the ammeter αη, as follows:
Subtract it from the amount of hydrogen in the reformed gas flow rate (component concentration is known) detected by the flowmeter (II) to find the component concentration of the surplus gas, and then density-correct the surplus gas flow rate value detected by the flowmeter (8>). Calculation is performed to determine the theoretical amount of air required for combustion.The surplus gas flow meter (8) may be selected based on the expected average density of the surplus gas.

次に上記流量補正器(ホ)より出力される余剰ガスの補
正済流量信号をもとに、余剰ガス流量調節器σ呻により
バーナ(2)に供給する余剰ガス流量を8方調節弁σ養
で系統(イ)に一部分岐しながら制御する。余剰ガス流
量調節器o9の目標値は、温度検出器(ト)からの温度
信号をもとEr−燃料改質装置(1)の温度、J節器3
乃まりの出力として与えられる。また、燃焼に必要な空
気燃料比を比率設定器(6)で空気流量調節器θυに与
え、調節弁OQで空気流量を制御するのは従来装置と同
様である。
Next, based on the corrected flow rate signal of the surplus gas output from the flow rate corrector (E), the surplus gas flow rate to be supplied to the burner (2) is adjusted by the 8-way control valve σ by the surplus gas flow rate regulator σ. control while partially branching into system (a). The target value of the surplus gas flow rate regulator o9 is determined based on the temperature signal from the temperature detector (g), the temperature of Er - the temperature of the fuel reformer (1), and the J moderator 3.
It is given as the output of Nomari. Further, as in the conventional device, the ratio setter (6) applies the air-fuel ratio necessary for combustion to the air flow rate regulator θυ, and the control valve OQ controls the air flow rate.

なお、上記実施例では余剰ガス系統(6)に8方調節弁
α◆を設けたものを示したが、余剰ガス系統(6)を分
岐する系統CIGに2方調節弁を設けても同様の効果を
奏する。第8図は系統に)(こ2方調節弁磐を設けたも
ので、その他の構成および動作は第2図と同様である。
In addition, in the above embodiment, the surplus gas system (6) is provided with an 8-way control valve α◆, but the same result can be obtained even if a 2-way control valve is provided in the system CIG that branches off the surplus gas system (6). be effective. In FIG. 8, a two-way control valve is provided in the system, and the other configurations and operations are the same as those in FIG. 2.

以上のように、この発明によれば、燃料電池の燃料室の
出口側に分岐路および調節弁を設けることにより、余剰
ガスの一部を分岐させ、燃料改質装置の温度制御を行う
ことができる。又、改質ガス流量および直流電流出力よ
り余剰ガス流量を密度補正し、バーナに対する最適な空
気燃料比を設定できる流量補正器を設けるならば、負荷
変動時の燃料改質装置の温度制御精度を向上でき、また
バーナの完全燃焼を実現できる効果がある。
As described above, according to the present invention, by providing the branch passage and the control valve on the outlet side of the fuel chamber of the fuel cell, it is possible to branch part of the surplus gas and control the temperature of the fuel reformer. can. In addition, if a flow rate corrector is installed that can density-compensate the surplus gas flow rate based on the reformed gas flow rate and DC current output and set the optimal air-fuel ratio for the burner, the temperature control accuracy of the fuel reformer during load fluctuations can be improved. It also has the effect of achieving complete combustion in the burner.

14、図面の簡単な説明 第1図は従来の燃料電池発電システムの燃料側の系統図
、第2図はこの発明の一実施例による燃料電池発電シス
テムの燃料側の系統図、第8図はこの発明の他の実施例
を示す燃料電池発電システムの燃料側の系統図である。
14. Brief description of the drawings FIG. 1 is a fuel-side system diagram of a conventional fuel cell power generation system, FIG. 2 is a fuel-side system diagram of a fuel cell power generation system according to an embodiment of the present invention, and FIG. FIG. 3 is a system diagram on the fuel side of a fuel cell power generation system showing another embodiment of the present invention.

、 (1)・・・燃料改質装置、(2)・・・バーナ、(3
)・・・燃料電池、(4)・・・燃料室、(5)・・・
改質ガス系統、(6)・・・余剰ガス系統、(7)・・
・燃焼用空気系統、(8)・・・余剰ガス流量計、(9
)・・・空気流量計、θ0・・空気流量調節弁、01)
・・・空気流量調節器、(6)・・・比率設定器、榊・
・・負荷、U4)・・・8方調節弁、(ト)・・・余剰
ガス分岐系統、aO・・・改質ガス流量計、@・・・直
流電流計、(ト)・・・温度検出器、Qト・・余剰ガス
流量調節器、(イ)・・・流量補正器、■や・・・温度
調節器、に)・・2方調節弁 なお、図中、同一符号は同一、又は相当部分を示す。
, (1)... Fuel reformer, (2)... Burner, (3
)...Fuel cell, (4)...Fuel chamber, (5)...
Reformed gas system, (6)...surplus gas system, (7)...
・Combustion air system, (8)...surplus gas flow meter, (9
)...Air flow meter, θ0...Air flow control valve, 01)
...Air flow rate regulator, (6)...Ratio setting device, Sakaki・
... Load, U4) ... 8-way control valve, (G) ... Surplus gas branch system, aO ... Reformed gas flow meter, @ ... DC ammeter, (G) ... Temperature Detector; or a corresponding portion.

代理人  葛 野 信 −Agent Nobu Kuzuno -

Claims (3)

【特許請求の範囲】[Claims] (1)燃料電池の燃料室から排出される余剰ガスを燃料
改質装置のバーナで燃焼させ加熱源として利用する燃料
電池発電システムにおいて、燃料室の出口側に分岐路お
よび調節弁を設けることにより、余剰ガスの一部を分岐
させバーナの燃焼制御を行うようにしたことを特徴とす
る燃料電池発電システム。
(1) In a fuel cell power generation system in which surplus gas discharged from the fuel chamber of a fuel cell is combusted in a burner of a fuel reformer and used as a heating source, by providing a branch passage and a control valve on the outlet side of the fuel chamber. , a fuel cell power generation system characterized in that part of the surplus gas is branched to control burner combustion.
(2)燃料改質装置から燃料電池の燃料室に供給する燃
料流量値および燃料電池の直流出力電流値を検出して、
バーナに供給する余剰ガス流量値を補正演算する流量補
正器を設は燃料改質装置の設定温度に対し上記分岐路お
よび調節弁を用いて余剰ガスの流量制御を行うようにし
たことを特徴とする特許請求の範囲第1項記載の燃料電
池発電システム。
(2) Detecting the fuel flow rate value supplied from the fuel reformer to the fuel chamber of the fuel cell and the DC output current value of the fuel cell,
A flow rate corrector for correcting the surplus gas flow rate value supplied to the burner is installed, and the flow rate of the surplus gas is controlled using the branch passage and the control valve according to the set temperature of the fuel reformer. A fuel cell power generation system according to claim 1.
(3)燃料改質装置から燃料電池の燃料室に供給する燃
料流量値および燃料電池の直流出力゛電流値を検出して
、バーナに供給する余剰ガス流量値を補正演算する流量
補正器を設け、バーナで完全燃焼させるための最適な空
気燃料比を設定するようにしたことを特徴とする特許請
求の範囲第1項記載の燃料電池発電システム。
(3) A flow rate corrector is installed that detects the fuel flow rate value supplied from the fuel reformer to the fuel chamber of the fuel cell and the DC output/current value of the fuel cell, and corrects and calculates the surplus gas flow rate value supplied to the burner. 2. The fuel cell power generation system according to claim 1, wherein an optimum air-fuel ratio is set for complete combustion in the burner.
JP57047935A 1982-03-23 1982-03-23 Fuel cell generating system Granted JPS58163183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047935A JPS58163183A (en) 1982-03-23 1982-03-23 Fuel cell generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047935A JPS58163183A (en) 1982-03-23 1982-03-23 Fuel cell generating system

Publications (2)

Publication Number Publication Date
JPS58163183A true JPS58163183A (en) 1983-09-27
JPS6318307B2 JPS6318307B2 (en) 1988-04-18

Family

ID=12789226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047935A Granted JPS58163183A (en) 1982-03-23 1982-03-23 Fuel cell generating system

Country Status (1)

Country Link
JP (1) JPS58163183A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927469A (en) * 1982-08-06 1984-02-13 Tokyo Electric Power Co Inc:The Fuel cell unit
JPS61101751A (en) * 1984-10-25 1986-05-20 Toshiba Corp Solar pond
JPS61227375A (en) * 1985-03-30 1986-10-09 Toshiba Corp Fuel cell power generation system
JPS6276161A (en) * 1985-09-30 1987-04-08 Toshiba Corp Fuel cell power generation system
JPS63184266A (en) * 1987-01-27 1988-07-29 Toshiba Corp Starting method for molten carbonate fuel cell
JPH01225065A (en) * 1988-03-04 1989-09-07 Ishikawajima Harima Heavy Ind Co Ltd Catalyst combustor protective device for fuel cell power generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105551A (en) * 1975-02-12 1976-09-18 United Technologies Corp
JPS5381923A (en) * 1976-12-27 1978-07-19 United Technologies Corp Fuel control system for fuel battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105551A (en) * 1975-02-12 1976-09-18 United Technologies Corp
JPS5381923A (en) * 1976-12-27 1978-07-19 United Technologies Corp Fuel control system for fuel battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927469A (en) * 1982-08-06 1984-02-13 Tokyo Electric Power Co Inc:The Fuel cell unit
JPS61101751A (en) * 1984-10-25 1986-05-20 Toshiba Corp Solar pond
JPS61227375A (en) * 1985-03-30 1986-10-09 Toshiba Corp Fuel cell power generation system
JPS6276161A (en) * 1985-09-30 1987-04-08 Toshiba Corp Fuel cell power generation system
JPS63184266A (en) * 1987-01-27 1988-07-29 Toshiba Corp Starting method for molten carbonate fuel cell
JPH01225065A (en) * 1988-03-04 1989-09-07 Ishikawajima Harima Heavy Ind Co Ltd Catalyst combustor protective device for fuel cell power generator

Also Published As

Publication number Publication date
JPS6318307B2 (en) 1988-04-18

Similar Documents

Publication Publication Date Title
US5009967A (en) Fuel cell power plant fuel control
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
JPS62186472A (en) Fuel system controller for fuel cell power generation plant
JPS58163183A (en) Fuel cell generating system
JP2001165431A (en) Apparatus for controlling air-fuel ratio of reformer for fuel cell
JPS58128673A (en) Control of fuel cell power generating plant
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JP2840000B2 (en) Fuel cell system and control method thereof
JPS6224910B2 (en)
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JP2002158019A (en) Fuel cell electricity generating device
JPS6348774A (en) Combustion gas controller of fuel reformer
JPH0349185B2 (en)
JPS63236269A (en) Control method for fuel cell
JPH0556628B2 (en)
JPH03266367A (en) Fuel system control unit of fuel cell system
JPH0389466A (en) Feed gas flow control device for fuel cell
JPS58133784A (en) Control system of fuel cell power generating plant
JPH01253167A (en) Fuel cell power generator
JPS6297268A (en) Controller for fuel cell power generating plant
JPS58133771A (en) Control system of fuel cell power generating plant
JPS63292575A (en) Fuel cell power generating system
JPS63119164A (en) Fuel cell generating system
JPH02213056A (en) Fuel cell power generating plant
JPS62241266A (en) Fuel cell power generating system