JPS58162544A - Purification of ethers - Google Patents

Purification of ethers

Info

Publication number
JPS58162544A
JPS58162544A JP4391782A JP4391782A JPS58162544A JP S58162544 A JPS58162544 A JP S58162544A JP 4391782 A JP4391782 A JP 4391782A JP 4391782 A JP4391782 A JP 4391782A JP S58162544 A JPS58162544 A JP S58162544A
Authority
JP
Japan
Prior art keywords
products
ethers
crude product
reaction product
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4391782A
Other languages
Japanese (ja)
Other versions
JPS647977B2 (en
Inventor
Kiyoshi Kokoma
小駒 清
Masaki Houkiyou
宝鏡 正基
Yoshio Sone
曾根 敬男
Hideo Asao
浅生 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Petrochemical Ind Co Ltd
Original Assignee
Nisso Petrochemical Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Petrochemical Ind Co Ltd filed Critical Nisso Petrochemical Ind Co Ltd
Priority to JP4391782A priority Critical patent/JPS58162544A/en
Priority to DE19833309637 priority patent/DE3309637A1/en
Publication of JPS58162544A publication Critical patent/JPS58162544A/en
Publication of JPS647977B2 publication Critical patent/JPS647977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/44Separation; Purification; Stabilisation; Use of additives by treatments giving rise to a chemical modification

Abstract

PURPOSE:To obtain a glycol dimethyl ether industrially advatnageously, by reacting a specific ether compound with ethylene oxide to give a crude reaction product, bringing the crude reaction product into contact with water so that coexisting inpurities are hydrolyzed, reacting the by-products with a methylating agent. CONSTITUTION:A compound shown by the formula (n is integer of 0-10) is reacted with ethylene oxide to give a crude reaction product containing a very small amount of by-products, which is brought into contact with water so that acetals comprising mainly the by-products are hydrolyzed into glycol monomethyl ethers, etc. The by-products are methylated with a methylating agent, especially a methyl monohalide and an alkali metal, its hydroxide, oxide or hydride, so that mono polyethylene glycol dimethyl ethers useful as a polar solvent containing no active hydrogen, etc. are obtained in high purity in high yield by converting the by-products into the desired compound by a simple operation without separating the by-products unseparable by a physical means such as distillation, etc. from the crude reaction product.

Description

【発明の詳細な説明】 訂しくけ、ジメチルエーテル、モノ−又はジー以上のポ
リエチレングリコールジメチルエーテル類とエチレンオ
キシドを反応させた粗生成物(以F。
DETAILED DESCRIPTION OF THE INVENTION A crude product obtained by reacting dimethyl ether, mono- or polyethylene glycol dimethyl ethers with ethylene oxide (hereinafter referred to as F).

粗生成物と略す。)の精製方法に関する。Abbreviated as crude product. ).

活性水素を有しない極性溶剤、金属もしくは非金属ハイ
ドライドの溶解剤、酸性ガス吸収側、あるいは各種触媒
の一成分として近来益々有用となっているモノ又はポリ
エチレングリコールジメチルエーテルの製造は従来クィ
リアムソン法及びその改良法、グリコールエーテルホル
マールの水添分解法により製造されてきた。しかしなが
ら、これら従来法4=あっては、反応自体が複雑であっ
たり、大量の副生物が生じたりして工業的には適当でな
かった。最近、より合理的な方法としてジメチルエーテ
ル又はモノ又はポリエチレングリコールジメチルエーテ
ル類にエチレンオキシドを触媒の存在下直接挿入する方
法が提案されている(特開昭53 − 34709号公
報、同56− 8338号公報、同56− 16413
1号公報、同56− 166136号公報、同56−1
66137号公報参照)。これらの直接挿入法では一段
の反応で前述のグコールジメチルエーテル類を生成させ
ることか出来、しかも従来のウィリアムソン法を用いた
場合に化学量論的(二手ずるハロゲン化アルカリの如き
、大量の副生物が生成しない等の利点があるが、一方で
2−メチルジオキソランの如A環状アセタール、メチル
七)(又はポリ)グリコールエーテルアセクールの如き
鎖状アセタールあるいはモノ(又はポリ)エチレングリ
コールモノメチルエーテルの如き水酸基含有化合物等の
副生成物が僅かながら生成することがさけられず、これ
らの副生物の処理が問題として存在した。これら副生物
を単に蒸留操作C二よって分離しようとすると、実用上
不用能な稈度の極端に高段数の精留塔を用いる必要があ
り、しかもこのような精留を行えば目的物を歩留りよく
回収出来ない。
The production of mono- or polyethylene glycol dimethyl ether, which has recently become increasingly useful as a polar solvent without active hydrogen, a dissolving agent for metal or non-metallic hydrides, an acid gas absorber, or a component of various catalysts, has conventionally been carried out using the Quilliamson method and its modifications. It has been produced by the hydrogenolysis method of glycol ether formal. However, these conventional methods 4 are not suitable for industrial use because the reaction itself is complicated and a large amount of by-products are produced. Recently, a method of directly inserting ethylene oxide into dimethyl ether or mono- or polyethylene glycol dimethyl ether in the presence of a catalyst has been proposed as a more rational method (JP-A-53-34709, JP-A-56-8338, JP-A-Sho 56-8338). 56- 16413
Publication No. 1, Publication No. 56-166136, Publication No. 56-1
(See Publication No. 66137). These direct insertion methods can produce the above-mentioned glycol dimethyl ethers in a single reaction, and when using the conventional Williamson method, they can be produced at a stoichiometric (two-handed method) without producing a large amount of by-products such as alkali halides. On the other hand, A cyclic acetals such as 2-methyldioxolane, chain acetals such as methyl hexa(or poly)glycol ether acecool, or mono(or poly)ethylene glycol monomethyl ether have the advantage of not producing any living organisms. The production of small amounts of by-products such as hydroxyl group-containing compounds has been a problem, and the treatment of these by-products has been a problem. If these by-products were to be separated simply by distillation operation C2, it would be necessary to use a rectification column with an extremely high number of plates and a culm that was practically unnecessary. It cannot be recovered well.

又、酸性ガス吸収剤として有用な例えば、ペンタエチレ
ングリコールジメチルエーテルの如きポリエチレングリ
コールジメチルエーテル類とポリエチレングリコールモ
ノメチルエーテル類とを精留により分離しようとしても
実質的に不可能に近く、両者の混合物を上記目的に使用
すれば、ガス吸収剤としての寿命が著しく短くなるとい
う欠点があった。
Furthermore, it is virtually impossible to separate polyethylene glycol dimethyl ethers such as pentaethylene glycol dimethyl ether, which are useful as acidic gas absorbents, from polyethylene glycol monomethyl ethers by rectification, and a mixture of the two cannot be used for the above purpose. If used for this purpose, it has the disadvantage that its life as a gas absorbent will be significantly shortened.

他の分離法例えば抽出、吸着等の公知の物理的操作も実
用上不可能C二近く、またたとえ行えたとしても、極め
て複雑であった。
Other separation methods, such as known physical operations such as extraction and adsorption, are nearly impossible in practice, and even if they were possible, they were extremely complicated.

以上の如き理EI+から、本発明者らは該粗生成物から
、僅か(=含まれる上記副生物をなくし、モノ又はポリ
エチレングリコールエーテル類を簡便でかつ実用性のあ
る方法(二て精製するべく鋭意検討した結果、 山 僅か(二混入する副生物の大部分を占める前述のア
セタール類を粗生成物から分離することなく、粗生成物
中で水と接触すれば容易にグリコールモノメチルエーテ
ル類あるいはグリコール9(二分解すること、 (ii)  生成した前記グリコールジメチルエーテル
類あるいはグリコール類を目的とする生成物であるグリ
コールジメチルエーテル類から分離することなく、メチ
ル化剤にてメチル化すれば、グリコールジメチルエーテ
ル類の溶媒効果の寄与により、高選択的にかつ速やか(
ニゲリコールジメチルエーテル類に変化させうろこと、 而)従って、粗生成物中(=存在する副生物の大部分を
粗生成物から分離することなく本発明の目的とするモノ
又はポリエチレングリコールジメチルエーテルに変換出
来ること、 を見出し本発明に到達した。すなわち本発明は、ド紀一
般式〔I〕(二て示されるエーテル化合物類とr”H,
0(−CH,CH,0)−、CHa   −CI](こ
こにnは0又は1〜10の自然数を示す。)エチレン゛
オキシドを反応させた粗生成物を水と接触させ共存する
不純物を加水分解し、次いでメチル化剤と反応させるこ
とを特徴とするエーテル類の精製方法である。
Based on the above-mentioned theory EI+, the present inventors have determined that a simple and practical method (second method) for purifying mono- or polyethylene glycol ethers by eliminating a small amount of the above-mentioned by-products contained in the crude product. As a result of intensive studies, we found that the aforementioned acetals, which account for most of the by-products, are not separated from the crude product, and if they come into contact with water in the crude product, they can easily be converted into glycol monomethyl ethers or glycols. (ii) If the produced glycol dimethyl ethers or glycols are methylated with a methylating agent without separating them from the desired product glycol dimethyl ethers, the glycol dimethyl ethers can be converted into glycol dimethyl ethers. Due to the contribution of the solvent effect, it is highly selective and rapid (
Therefore, most of the by-products present in the crude product can be converted into mono- or polyethylene glycol dimethyl ether, which is the object of the present invention, without separating it from the crude product. The present invention has been achieved by discovering the following.That is, the present invention is based on the following general formula [I] (with ether compounds represented by r"H,
0(-CH,CH,0)-, CHa-CI] (where n represents 0 or a natural number from 1 to 10) The crude product obtained by reacting ethylene oxide is brought into contact with water to remove coexisting impurities. This is a method for purifying ethers, which is characterized by hydrolysis and then reaction with a methylating agent.

本発明の目的たる精製に用いる粗生成物は、前述一般式
CDにて示される化合物類とエチレンオキシドの反応生
成物であり、その製造方法じついての限定はないが当然
のことながら、前記アセタール類が0.1〜10重量%
程度含む粗生成物に本発明の精製方法を適用すべきであ
る。かような粗生成物は前述の公知文献に記載されL触
媒のq在下の反応後(二得られることが多い。
The crude product used for purification, which is the object of the present invention, is a reaction product of the compounds represented by the above-mentioned general formula CD and ethylene oxide, and although there is no particular limitation on the manufacturing method, it is understood that the above-mentioned acetals is 0.1 to 10% by weight
The purification method of the present invention should be applied to crude products containing a certain degree. Such crude products are described in the above-mentioned publications and are often obtained after reaction in the presence of L catalyst.

粗生成物を水と接触させる(二当り、使用する水の量は
分解すべきアセタール類C二灯して当モル以上必要であ
り、3倍モル以上が好ましい。しかし、操作上の問題、
接触後の分離等を考慮すれば加倍モル以下が好ましい。
The crude product is brought into contact with water (the amount of water used should be at least 3 times the mole of the acetal C to be decomposed, preferably 3 times the mole or more. However, there are operational problems,
Considering separation after contact, etc., it is preferable that the amount is less than or equal to multiplied molar.

水との接触温度は特に制限はないが、あまり高すぎると
目的生成物であるグリコールジメチルエーテル類の分解
が促進されることがあり好ましくなく通常室温以f−,
100℃以下の温度が好ましい。水との接触方法は従来
公知の如何なる方法でもよく、又連続方式、又は回分方
式でもよい。いずれの方法にあっても、アセタール類と
水との反応から生ずるアルデヒドを系外に除去すること
が好ましい。系内に多量に存在するエーテル類とアルデ
ヒドが再び反応し、アセタールが生成したり、アルデヒ
ド自身による岨反応を防止するためである。水との接触
の際、アセタール類の加水分解反応を促進させるために
、公知の触媒を使用することは何らさしつかえなく、例
え+i、1M酸、硫酸、  9ン酸、1−トルエンスル
ホン酸等の酸性化合物を例示出来る。
There is no particular restriction on the contact temperature with water, but if it is too high, the decomposition of the target product glycol dimethyl ethers may be accelerated, which is undesirable.
Temperatures below 100°C are preferred. The method of contacting with water may be any conventionally known method, and may be a continuous method or a batch method. In either method, it is preferable to remove aldehyde generated from the reaction between acetals and water from the system. This is to prevent the ethers present in large amounts in the system from reacting again with the aldehyde to generate acetal, or to prevent the aldehyde from reacting by itself. In order to accelerate the hydrolysis reaction of acetals upon contact with water, there is no problem in using known catalysts, such as +i, 1M acid, sulfuric acid, 9-acid, 1-toluenesulfonic acid, etc. Examples include acidic compounds.

以上の如き条件を使用すれば、該加水分解反応は速やか
(二進行し、通常1時間以内1:殆ど完了し、前記粗生
成物中の副生物の殆どは、モノ(又は)ポリエチレング
リコールモノメチルエーテルと少量のモノ(又は)ポリ
エチレングリコールとなる。
If the above-mentioned conditions are used, the hydrolysis reaction will proceed quickly (usually within 1 hour) and will be almost completed, and most of the by-products in the crude product will be converted into mono(or) polyethylene glycol monomethyl ether. and a small amount of mono(or) polyethylene glycol.

次に、上記副生物をモノ(又は)ポリエチレングリコー
ルジメチルエーテルに変換する方法については特(=限
定はなく、上記副生物の末端水酸基をメトキシ基(:変
換しうるメチル化剤を用いればよい。メチル化剤として
は、例えば、モノクロロメタン、モノブロモメタン等の
ハロゲン化メタン、ジメチル硫酸、ジアゾメタン、オル
トギ酸メチル、亜硝酸メチル、亜硫酸ジメチル、炭酸ジ
メチル、オルトリン酸トリメチルおよびオルトケイ酸ジ
メチル等を例示出来るが、前述の加水分解反応終了時に
粗生成物と共存する過剰の水除去、メチル化剤の取扱い
等を考慮すれば、粗生成物と共存する過剰の水を必ずし
も除去することなく、アルカリ性化合物とモノクロロメ
タン又はモノブロモメタンを用いてメチル化することが
好ましI、N。粗生成物の大部分を占める本発明方法の
目的化合物モノ(又は)ポリエチレングリコールジ、メ
チルエ チルがこの好ましいメチル化剤によるメチル化
反応にあって、極めて好ましい溶媒効果を示すことも本
発明方法の特徴としてあげることが出来る。
Next, the method for converting the above by-product into mono(or) polyethylene glycol dimethyl ether is not particularly limited, and a methylating agent capable of converting the terminal hydroxyl group of the above-mentioned by-product into a methoxy group may be used. Examples of the curing agent include halogenated methane such as monochloromethane and monobromomethane, dimethyl sulfate, diazomethane, methyl orthoformate, methyl nitrite, dimethyl sulfite, dimethyl carbonate, trimethyl orthophosphate, and dimethyl orthosilicate. Considering the removal of excess water coexisting with the crude product at the end of the hydrolysis reaction mentioned above, the handling of the methylating agent, etc., it is possible to remove the alkaline compound and monochrome without necessarily removing the excess water coexisting with the crude product. Preference is given to methylating with lomethane or monobromomethane I, N. The target compound of the process of the invention, mono(or) polyethylene glycol di, methyl ethyl, which accounts for the majority of the crude product, is methylated with this preferred methylating agent. Another feature of the method of the present invention is that it exhibits an extremely favorable solvent effect in the methylation reaction.

前述のアルカリ性化合物としては、ナトリウム、カリウ
ム、リチウム等のアルカリ金1111体、それらの水素
化物、水酸化物、酸化物等を鳥げることが出来る。これ
・らは1w又は2種以上の混合物とし水分解後の粗生成
物中に存在する副生物の水酸基末端数に対し、当量以上
必要であり、好ましくは2倍当量以上であり、10倍当
量以下でに今である。
Examples of the above-mentioned alkaline compounds include alkali metals such as sodium, potassium, and lithium, and their hydrides, hydroxides, and oxides. These are 1w or a mixture of two or more types, and the amount is required to be at least equivalent to the number of terminal hydroxyl groups of the by-products present in the crude product after water decomposition, preferably at least 2 times equivalent, and 10 times equivalent. Below is now.

10倍当量を超える使用量では、未反応のメチル化剤の
分離、回収が面側であり好ましくない。反応温度は特に
制限はなく、室温の如き比較的低温でも充分速く進行す
るので、100℃未満で充分である。この末端メチル化
反応は連続方式でも回分方式でもよく、これらを組み合
せたような如何なる方法も使用出来る。メチル化剤とし
てノ10ゲン化メチルを使用する場合の末端メチル化反
応の一例を述べると、反応器中に前述の加水分解後の粗
生成物及び前述のアルカリ化合物を入れ、攪拌下にハロ
ゲン化メチルを一度(二又は少量ずつ連続的あるいは間
けり的に加えメチル化反応を行う。反応時間は混入して
いる末端C二水酸基をもつ副生物量C=よって変化する
が通常本発明に示す粗生成物にあっては加分〜2時間位
で完了する。
If the amount used exceeds 10 equivalents, unreacted methylating agent will be separated and recovered on the side, which is not preferable. There is no particular restriction on the reaction temperature, and since the reaction proceeds sufficiently quickly even at a relatively low temperature such as room temperature, a temperature of less than 100°C is sufficient. This terminal methylation reaction may be carried out in a continuous manner or in a batch manner, or any combination of these methods may be used. An example of the terminal methylation reaction when using methyl 10genide as a methylating agent is as follows: The above-mentioned crude product after hydrolysis and the above-mentioned alkali compound are placed in a reactor, and the halogenation reaction is carried out under stirring. The methylation reaction is carried out by adding methyl once (two times or in small amounts) continuously or intermittently.The reaction time varies depending on the amount of by-products with a terminal C dihydroxyl group mixed therein, but usually the crude oil shown in the present invention is In the case of products, the process is completed in about 2 hours.

以上述べた如く、本発明方法によれば、もとの粗生成物
中に存在した副生物の殆どは目的化合物であるモノ又は
ポリエチレングリコールジメチルエーテルとなり他に除
去困難な副生物は実質的(二存在しない。
As described above, according to the method of the present invention, most of the by-products present in the original crude product become mono- or polyethylene glycol dimethyl ether, which is the target compound, and other by-products that are difficult to remove are substantially do not.

前述の如く、アルカリ化合物を添加した如き場合にあっ
ては、未反応の該化合物及びメチル化反応から生じた塩
類を1過、分液等公知の方法で分離すればよい。このあ
と該粗生成物を蒸留すること(;よって夫々の目的化合
物を単独あるいは混合物の形で製品化すればよい。
As mentioned above, in the case where an alkali compound is added, the unreacted compound and the salts generated from the methylation reaction may be separated by a known method such as filtration or liquid separation. Thereafter, the crude product is distilled (thereby, each target compound may be produced individually or in the form of a mixture).

本発明方法を用いれば、蒸留、抽出あるいは吸着等の物
理的手段によっては実質的(二分離不可能であった不純
物を極めて簡単な操作(二よって殆どすべて目的化合物
類に変換することが出来、従って目的化合物類の純度を
及び収率な高めることが出来るという2つの目的が一挙
に達成可能となり工業的に極めて有利・である。
By using the method of the present invention, impurities that could not be separated into two by physical means such as distillation, extraction, or adsorption can be converted into the target compounds with an extremely simple operation. Therefore, the two objectives of increasing the purity and yield of target compounds can be achieved at once, which is extremely advantageous industrially.

なお、以下(=於て部と表示されるものは、特に明記の
ない限り重量部を示す。
In addition, the following (= parts) indicate parts by weight unless otherwise specified.

実施例1 特開昭56−164131号公報実施例1に1載されに 高方法にて三フッ化ホウ素/水吊触媒を用いジメチルエ
ーテル/エチレンオキシドモル比を17′1として反応
させたところ、得られた粗生成物に含まれる主としてア
セタール類からなる不純物類は35重量鴨であった。攪
拌機、冷却管をそなえた反応器に前記粗生成物200部
および水15部を仕込み、700mHgの減圧下3時間
還流を行った。生成したアセトアルデヒドは冷却管を通
して系外に除去させた。
Example 1 The reaction described in Example 1 of JP-A-56-164131 was carried out using a boron trifluoride/water-suspended catalyst at a dimethyl ether/ethylene oxide molar ratio of 17'1, and the following reaction was obtained. The impurities mainly consisting of acetals contained in the crude product were 35% by weight. 200 parts of the crude product and 15 parts of water were charged into a reactor equipped with a stirrer and a cooling tube, and refluxed for 3 hours under reduced pressure of 700 mHg. The generated acetaldehyde was removed from the system through a cooling pipe.

ついで、該加水分解液212部(=ジイソプロピルエー
テル加部を加えて公知の共沸法にて脱水を行った後、ジ
イソプロピルエーテルを蒸留除去した反応液に水酸化ナ
トリウム6部を加え50〜90℃の温度範囲にて攪拌下
に塩化メチル7.6部を添加、反応させた。反応終了後
の液をr過し、混合物をガスクロマトグラフィーで分析
したところ、前述の不純物類及びモノ、ポリエチレング
リコールモノメチルエーテル類は実質的に存在せず、ジ
メチルエーテル類の純度は99.5%以上であった。こ
のものを公知の方法で精留し、モノ、ジ、及びトリエチ
レングリコールジメチルエーテルを夫々99.0%以上
の回収率、99.8%以上の純度で得ることが出来た。
Next, 212 parts of the hydrolyzed solution (=1 part of diisopropyl ether) was added and dehydrated by a known azeotropic method. Diisopropyl ether was distilled off. 6 parts of sodium hydroxide was added to the reaction solution and the mixture was heated at 50 to 90°C. 7.6 parts of methyl chloride was added and reacted with stirring in a temperature range of Monomethyl ethers were substantially absent, and the purity of dimethyl ethers was 99.5% or higher.This was rectified by a known method to obtain 99.0% of each of mono-, di-, and triethylene glycol dimethyl ethers. % or more recovery rate and purity of 99.8% or more.

又残ったテトラエチレングリコールジメチルエーテル類
は99%以上の純度であった。
The remaining tetraethylene glycol dimethyl ether had a purity of 99% or more.

実施例2 特開昭56−166137号公報実施例1(二記載され
き 塵方法にて、ドデカタングストケイ酸を触媒とし賢ン て用い、ジメチルエーテル/エチレンオキシドモル比1
/1で反応させたところ、得られた主としてアセタール
類からなる不純物が粗生成物中(二4,8重量%含まれ
ていた。
Example 2 Using the method described in JP-A-56-166137 Example 1 (2), dodecatungstosilicic acid was used as a catalyst, and the molar ratio of dimethyl ether/ethylene oxide was 1.
When the reaction was carried out at 1/1, impurities mainly consisting of acetals were contained in the crude product (24.8% by weight).

この粗生成物200部、水11部及び触媒として濃塩酸
5部を実施例1に示されると同様の方法にて同様の反応
器C二人れ、700■Hgの圧力下、1時間還流を行っ
た。生成したアセトアルデヒドは冷却器を通して系外に
捕集した。
200 parts of this crude product, 11 parts of water, and 5 parts of concentrated hydrochloric acid as a catalyst were placed in two similar reactors C in the same manner as shown in Example 1, and refluxed for 1 hour under a pressure of 700 μHg. went. The generated acetaldehyde was collected outside the system through a cooler.

ついで、実施例1と同様の方法で脱水し、さらCニジイ
ソプロピルエーテルを蒸留除去した反応液6二水酸化ナ
トリウム8.2部及びジメチル硫酸13部を加えて加熱
反応させた。この反応液をt1過後、ガスクロマトグラ
フィーで分粧したところ、前記の不純物及びモノ又はポ
リエチレングリコールモノメチルエーテル類は殆どジメ
チルエーテル類に変換されていた。この一部をとって蒸
留テストを行った所、モノ、ジ、及びトリエチレングリ
コールジメチルエーテル類は99,8%以上の純度で得
ることが出来、残ったテトラ以上のエチレングリコール
ジメチルエーテル類の純度も99.0%以上であった。
Next, 8.2 parts of sodium dihydroxide and 13 parts of dimethyl sulfuric acid were added to the reaction solution 6, which was dehydrated in the same manner as in Example 1 and further removed by distillation of C diisopropyl ether, and reacted by heating. When this reaction solution was separated by gas chromatography after passing t1, it was found that most of the impurities and mono- or polyethylene glycol monomethyl ethers had been converted to dimethyl ethers. When we conducted a distillation test on a portion of this, we were able to obtain mono-, di-, and triethylene glycol dimethyl ethers with a purity of over 99.8%, and the purity of the remaining tetra or higher ethylene glycol dimethyl ethers was also 99.8%. It was .0% or more.

。 実施例3 特開昭56−166136号公報実施例1に記載され− 湊方法礪二てトリフロロメタンスルホン酸を触媒と5シ して用いジメチルエーテル/エチレンオキシドモル比1
/1で反応させたところ、得られた主としてアセタール
類からなる不純物が粗生成物中に4.0重量賜金まれて
いた。
. Example 3 The Minato method described in Example 1 of JP-A-56-166136 was carried out using trifluoromethanesulfonic acid as a catalyst and a dimethyl ether/ethylene oxide molar ratio of 1.
When the reaction was carried out at 1/1, 4.0 weight of impurities mainly consisting of acetals were present in the crude product.

この粗生成物200部、水13部を実施例1と同様の方
法にて加水分解を行った。次いでジイソプロピルエーテ
ルを用いて脱水し、このエーテルを蒸留除去した反応液
に塩化メチル8.3部、水酸化ナトリウム7部を加え、
実施例1記載の方法C二て処理したところ、前記の不純
物及びモノ又はポリエチレングリコールモノメチルエー
テル類は殆どジメチルエーテル類に変換され、グリコー
ルジメチルエーテル類の純度は99.5%以上であった
200 parts of this crude product and 13 parts of water were hydrolyzed in the same manner as in Example 1. Next, 8.3 parts of methyl chloride and 7 parts of sodium hydroxide were added to the reaction solution, which was dehydrated using diisopropyl ether and the ether was removed by distillation.
When treated using Method C described in Example 1, most of the impurities and mono- or polyethylene glycol monomethyl ethers were converted to dimethyl ethers, and the purity of the glycol dimethyl ethers was 99.5% or more.

実施例4 特開昭53−34709号公報例1記載の方法にて一 ジメチルエーテル/エチレンオキシドモル比5/1で、
触媒としてジメチルエーテルフッ化ホウ素を用いて反応
したところ、主としてアセタール類からなる不純物が3
.3重量鴨含まれる粗生成物が得られた。
Example 4 Using the method described in Example 1 of JP-A No. 53-34709, dimethyl ether/ethylene oxide molar ratio 5/1,
When the reaction was carried out using dimethyl ether boron fluoride as a catalyst, 3 impurities mainly consisting of acetals were
.. A crude product containing 3 weight ducks was obtained.

この粗生成物200部、水10部を用いて加水分解を、
次いで水綾〜リウム9.5部、臭化メチル9.0部を用
い、メチル化を奥イ実施例1記載の方法で行ったところ
、反応液(二はアセタール類及びモノ又はポリエチレン
グリコールモノメチルエーテル類は殆ど存在せず、グリ
コールジメチルエーテル類の純度は99.6%以上であ
った。
Hydrolysis using 200 parts of this crude product and 10 parts of water,
Next, methylation was carried out as described in Example 1 using 9.5 parts of Mizuaya-lium and 9.0 parts of methyl bromide. The purity of glycol dimethyl ethers was 99.6% or more.

実施例5 特開昭53−34709号公報例2記載の方汗にてエチ
レングリコールジメチルエーテル/エチレン亭 オキシドモル比4/11触媒としてジメチルエーテルフ
ッ化ホウ素を用い、反応を行ったところ、主としてアセ
タール類からなる不純物が3.OIff置鴨粗生成物に
含まれていた。この粗生成物200部を用い、実施例1
記載の方法口で、加水分解及びメチル化を行ったところ
、アセタール類、及びモノ又はボリエ、テレングリコー
ル七ツメチルエーテル類が殆ど含有されないグリコール
ジメチルエーテル類が得られ、その純度は99.2%以
上であった。
Example 5 A reaction was carried out using dimethyl ether boron fluoride as a catalyst at a molar ratio of ethylene glycol dimethyl ether/ethylene tei oxide of 4/11 using the method described in Example 2 of JP-A No. 53-34709. Impurities are 3. It was contained in the OIff Okigamo crude product. Using 200 parts of this crude product, Example 1
When hydrolysis and methylation were carried out using the method described above, glycol dimethyl ethers containing almost no acetals and mono-, bolier-, and terene glycol methyl ethers were obtained, and the purity thereof was 99.2% or more. there were.

実施例6.同7゜ 実施例1と同じジメチルエーテルとエチレンオキシドの
反応液を実施例1と同一方法で加水分解、脱水、及びイ
ソプロピルエーテル分離を行りた後の反応液200部を
下表(二示すような組合わせのメチル化剤及び条件で反
応させ、常法(′−よ一〕分析したところ、下表(二示
すような結果力$得られた。
Example 6. 7゜The same reaction solution of dimethyl ether and ethylene oxide as in Example 1 was subjected to hydrolysis, dehydration, and isopropyl ether separation in the same manner as in Example 1. 200 parts of the reaction solution was prepared as shown in the table below (2). When the reaction was carried out using the appropriate methylating agent and conditions and analyzed by a conventional method, the results shown in the table below were obtained.

手  続  補  正  書 1、事件の表示 昭和57年特許願第43917号 2、発明の名称 エーテル類の精製方法 3、補正をする者 事件との関係  壽許出願人 東京都中央区日本橋本町4丁目1番地 日曹油化工業株式会社 代表者 稲 次 悌 二 4、代理人 東京都千代田区大手町2丁目2査1号 日本薯達株式会社内 (7125)  ”t′I′xi冶゛)゛・′(15補
正の対象 明細書の特許請求の範囲及び発明の詳細な説明 6 補正の内容 (1)%許請求の範囲  別紙の通り。
Procedures Amendment 1, Indication of the case Patent Application No. 43917 of 1982 2, Name of the invention Method for purifying ethers 3, Person making the amendment Relationship with the case Jukiho applicant 4-chome, Nihonbashi Honmachi, Chuo-ku, Tokyo No. 1 Nisso Yuka Kogyo Co., Ltd. Representative: Takashi Inatsugu, 24, Agent: No. 1, 2-2 Otemachi, Chiyoda-ku, Tokyo, Nippon Shotatsu Co., Ltd. (7125)・'(15 Scope of Claims of the Specification Subject to Amendment and Detailed Explanation of the Invention 6 Contents of Amendment (1) Percentage of Claims As attached.

(2)明#l書第2頁最下行「グ」と「コール」の間に
「す」を挿入する。
(2) Insert "su" between "gu" and "call" on the bottom line of the second page of Ming #l.

(6)同第4頁第8行[コールjと「エーテル」の間に
「ジメチル」を挿入する。
(6) Page 4, line 8 [Insert "dimethyl" between call j and "ether."

(4)同第8頁第16行「以下で」を「以下」に訂j)
する。
(4) On page 8, line 16, “hereinafter” was revised to “hereinafter”)
do.

(5)同第12頁第4行「得られた」を特徴する特許請
求の範囲 1、 下記一般式〔1〕にて示されるエーテル化合物類
と OH,O((!H2CH2O←cl(3−CI 〕(こ
こKnは0又は1〜10の自然数を示す、)エチレンオ
キシドを反応させた粗生成物を水と接触させ共存する不
純物を加水分解し、次いでメチル化剤と反応させること
を%徴とするエーテル類の精製方法。
(5) Claim 1 characterized by the phrase "obtained" on page 12, line 4 of the same, ether compounds represented by the following general formula [1] and OH,O((!H2CH2O←cl(3- CI] (where Kn is 0 or a natural number from 1 to 10) The crude product obtained by reacting ethylene oxide is brought into contact with water to hydrolyze coexisting impurities, and then reacted with a methylating agent. A method for purifying ethers.

Claims (1)

【特許請求の範囲】 1 下記一般式[I)にて示されるエーテル化合物類と CH,O−(CH,CH,0+nC1(3−[: I 
](ここC二nは0又は1〜10の自然数を示す。)エ
チレンオキシドを反応させた粗生成物を水と接融させ共
存する不純物を加水分解し、次いでメチル化剤と反応さ
せることを特徴とするエーテル類の精製方法。 2 前記メチル化剤がモノハロゲン化メチル、及σアル
カリ金属、アルカリ金属水酸化物、アルカリ金属酸化物
又はアルカリ金属水素化物からなる群より選ばれる1種
又は2N以上の化合物である特許請求の範囲第1項記載
の精製方法。
[Claims] 1 Ether compounds represented by the following general formula [I] and CH,O-(CH,CH,0+nC1(3-[: I
] (Here, C2n represents 0 or a natural number from 1 to 10.) The crude product obtained by reacting ethylene oxide is fused with water to hydrolyze coexisting impurities, and then reacted with a methylating agent. A method for purifying ethers. 2. Claims in which the methylating agent is one type or 2N or more compound selected from the group consisting of methyl monohalide, σ alkali metal, alkali metal hydroxide, alkali metal oxide, or alkali metal hydride. The purification method according to item 1.
JP4391782A 1982-03-19 1982-03-19 Purification of ethers Granted JPS58162544A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4391782A JPS58162544A (en) 1982-03-19 1982-03-19 Purification of ethers
DE19833309637 DE3309637A1 (en) 1982-03-19 1983-03-17 Purification of ether compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4391782A JPS58162544A (en) 1982-03-19 1982-03-19 Purification of ethers

Publications (2)

Publication Number Publication Date
JPS58162544A true JPS58162544A (en) 1983-09-27
JPS647977B2 JPS647977B2 (en) 1989-02-10

Family

ID=12677059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4391782A Granted JPS58162544A (en) 1982-03-19 1982-03-19 Purification of ethers

Country Status (2)

Country Link
JP (1) JPS58162544A (en)
DE (1) DE3309637A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127352A (en) * 2006-11-22 2008-06-05 Nippon Shokubai Co Ltd Process for producing n-alkyl borazine
JP2009298774A (en) * 2008-05-16 2009-12-24 Nippon Shokubai Co Ltd Solvent for producing borazine compound, and method for producing borazine compound using the same
JP6010714B1 (en) * 2016-05-10 2016-10-19 株式会社Dnpファインケミカル Ink composition and ink jet recording method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127352A (en) * 2006-11-22 2008-06-05 Nippon Shokubai Co Ltd Process for producing n-alkyl borazine
JP2009298774A (en) * 2008-05-16 2009-12-24 Nippon Shokubai Co Ltd Solvent for producing borazine compound, and method for producing borazine compound using the same
JP6010714B1 (en) * 2016-05-10 2016-10-19 株式会社Dnpファインケミカル Ink composition and ink jet recording method using the same

Also Published As

Publication number Publication date
JPS647977B2 (en) 1989-02-10
DE3309637A1 (en) 1983-09-22

Similar Documents

Publication Publication Date Title
US3972949A (en) Process for preparing glycol dimethyl ethers
JPS6056141B2 (en) Method for producing alkylene glycol
KR101332460B1 (en) Method for producing fluorine-containing ether
EP0876320A1 (en) Process for the production of fluoromethylhexafluoroisopropylether
EP2066652B1 (en) Process for the preparation of alkylene carbonate
JPS58162544A (en) Purification of ethers
JPH04504862A (en) Production method of citral
JPS59204149A (en) Method for purifying hexafluoroacetone hydrate
JPS6123776B2 (en)
WO2003008366A1 (en) Processes for preparation of hexafluoroacetone and its hydrate
JP2008230981A (en) Method for producing highly pure fluorine-containing alkyl ether
US4404063A (en) Method for the separation of indole
EP0544790A1 (en) Aquathermolytic cleavage of ethers.
US4365090A (en) Process for production of acrylamide
US4642386A (en) Process for the preparation of pure hydrates of fluoral and of hexafluoroacetone from hemiacetals
JP5288153B2 (en) Sugar alcohol derivative and process for producing alkenyl group-containing sugar alcohol derivative
JPH07258138A (en) Method for purifying fluoromethyl-1,1,1,3,3,3-hexafluoroisopropylether
JPH0621086B2 (en) Process for producing 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxydiphenyl
CN108707073A (en) A kind of preparation method of the double ethyl esters of allylidene
JPH0796514B2 (en) Process for producing mono- and bis (hydroxyethyl) ethers of dihydroxybenzene
JPH062716B2 (en) Method for producing aromatic secondary amino compound
JPH0338538A (en) Preparation of biphenyl-4,4'-diol
JPH0560460B2 (en)
US3784612A (en) Method for the preparation of acetals and ketals of alpha-chlorinated aldehydes and ketones
RU2091066C1 (en) Method of 2-allylhydroxyethanol synthesis