JPS58162324A - Manufacture of fiber reinforced plastic molded product - Google Patents

Manufacture of fiber reinforced plastic molded product

Info

Publication number
JPS58162324A
JPS58162324A JP4701482A JP4701482A JPS58162324A JP S58162324 A JPS58162324 A JP S58162324A JP 4701482 A JP4701482 A JP 4701482A JP 4701482 A JP4701482 A JP 4701482A JP S58162324 A JPS58162324 A JP S58162324A
Authority
JP
Japan
Prior art keywords
core material
layer
molded product
gel coat
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4701482A
Other languages
Japanese (ja)
Other versions
JPS6249843B2 (en
Inventor
Toshihiko Maeda
敏彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Daihatsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Daihatsu Kogyo KK filed Critical Daihatsu Motor Co Ltd
Priority to JP4701482A priority Critical patent/JPS58162324A/en
Publication of JPS58162324A publication Critical patent/JPS58162324A/en
Publication of JPS6249843B2 publication Critical patent/JPS6249843B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • B29C70/865Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • B29C37/0028In-mould coating, e.g. by introducing the coating material into the mould after forming the article

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a molded product of high grade by a method wherein a gel coat layer and a mixture layer of hardened resin and reinforced fibers on said layer are formed on one of a pair of molds, then a core material and further a material of reinforced fiber layer are set and hardening resin is injected into the molds. CONSTITUTION:To take an example, a bottom force 21a for a left side panel 2 is sprayed with unsaturated polyester resin to form a gel coat layer 22, the upper part thereon is coated by the hand lay up method with glass fiber contained unsaturated polyester resin, and a core material 24 of machined hard polyurethane foam is put on it to be heated and precured. Then, the prefoam 25 sprayed with glass fibers and unsaturated polyester resin is set in the prefoam molds both forces 21a, 21b are closed, and unsaturated polyester resin is forced in from an injection hole and aftercured to obtain the molded product. This method causes no shrink, no offset, no crack and can elevate appearance.

Description

【発明の詳細な説明】 にFILPという)成形品の新規な麹法に関する。[Detailed description of the invention] This paper relates to a new koji method for molded products (called FILP).

さらに詳しくは、ゲルコート層および芯材を有するFR
F成形品をレジンインジェクション法(以下、単K R
/I法という)により製造する方法に関する。
More specifically, FR with a gel coat layer and a core material
The F molded product is processed using the resin injection method (hereinafter referred to as single KR).
/I method).

FRPは通常硬化性樹脂、触媒、各iii*加剤および
補強繊維を組合わせた木材から成形される強度の大きい
構造材料であり、比較的軽量でしかも多種多様な成形品
に成形することか可能であるから、自動車、船舶などか
ら浴槽、浄化槽、さらには平板、波板iいたる広い分驚
で、なかでも比較的形状の簡単なものに使用されている
FRP is a strong structural material molded from wood, usually a combination of curable resin, catalyst, additives, and reinforcing fibers, and is relatively lightweight and can be molded into a wide variety of molded products. Therefore, it is used in a wide variety of applications, from automobiles and ships to bathtubs, septic tanks, and even flat plates and corrugated plates, and among them, it is used in relatively simple shapes.

FR?成形の主な方法としてハンドレイアップ法、スプ
レーアップ法、VI法で代表される接触圧成形法があり
、これらの方法のうちハンドレイアップ法およびスプレ
ーアップ法は比較的大型のFRP成形品の製造に逸して
いるが、作業能率がわるくて成形サイクルか長いばかり
でなく、硬化性樹脂か硬化する際に生ずる大きな収縮の
ために成形品の平面が平滑にならず、成形品の表面に補
強繊維が浮き出して外観不良の原因となりっている。
FR? The main molding methods are the hand lay-up method, the spray-up method, and the contact pressure molding method represented by the VI method. This is a problem in manufacturing, but not only is the work efficiency slow and the molding cycle is long, but the flat surface of the molded product is not smooth due to the large shrinkage that occurs when the curable resin hardens, and the surface of the molded product has to be reinforced. The fibers stand out and cause a poor appearance.

他方、マツチドダイ法、11M0法、BMO法。On the other hand, the Matsushidodai method, the 11M0 method, and the BMO method.

などのプレス成形法はハンドレイアップ法、スプレーア
ップ法などの接触圧成形法にくらべて作業能率かよく生
麺性の高い成形方法であるが。
Press molding methods such as the above are more efficient and produce fresh noodles compared to contact pressure molding methods such as the hand lay-up method and the spray-up method.

接触圧成形法にくらべて設備費が高くつきまた成形でき
る製品の大きさに限界かあるぽかりでなく、硬化性樹脂
の硬化綺の収縮による成形品表向に補強繊維が浮き出る
という欠点が見受けられる。
Compared to the contact pressure molding method, the equipment costs are higher, and there is a limit to the size of the product that can be molded, and the disadvantage is that reinforcing fibers come out on the surface of the molded product due to shrinkage during curing of the curable resin. It will be done.

仁のようなFRP成形注形法かにあって、R/I法はそ
の他の接触圧成形法にくらべて生廟性が高く、また成形
品の両面とも外観が比較的よいという特徴があり、中程
度の量産に遥した成形法といえる。
Among the FRP molding and casting methods such as Jin, the R/I method is characterized by higher durability than other contact pressure molding methods, and the appearance of both sides of the molded product is relatively good. It can be said that this molding method is far more suitable for medium-sized mass production.

Vx法は一般に雌雄一対のFRP製などの成形型を用い
、あらかじめガラス繊維などの補強繊維のプリフォーム
を型内に入れ、型を閉じ、ついで適切な位置に設置され
た注入孔より不飽和ポリエステル樹脂などの硬化性樹脂
を圧入光てん後注入孔に栓をし、低温(たとえば常温〜
約50℃)で硬化成形する方法であ。す、基本的″ な
晟形工程は、(1)IJ!の掃除および離型処理(ゲル
コート層の形成も行なうばあいあり) 、(21プリフ
オームの充てん(芯材の充てんも含む)、(3)型閉め
、(4)クランプ、(5)硬化性樹脂の注入、(6)硬
化、())型開き、(8)脱型および(9)後処理(パ
リ加工、アフターキュアーなと)からなる。
The Vx method generally uses a pair of male and female molds made of FRP, etc. A reinforcing fiber preform such as glass fiber is placed in the mold in advance, the mold is closed, and unsaturated polyester is then injected through injection holes placed at appropriate positions. After press-fitting a hardening resin such as resin, plug the injection hole and heat it at a low temperature (for example, room temperature to
This is a method of curing and molding at a temperature of approximately 50°C. The basic molding process includes (1) IJ! cleaning and mold release treatment (in some cases gel coat layer formation is also performed), (filling of 21 preforms (including filling of core material), (3) ) Mold closing, (4) Clamping, (5) Curing resin injection, (6) Curing, ()) Mold opening, (8) Mold removal, and (9) Post-processing (Paris processing, after-cure, etc.) Become.

しかしかかるR/I法は比較的形状か簡単な成形品に限
って適用されているのが現状であり、形状が複雑でしか
も比較的大型の成形品で剛性か要求されるものに適用さ
れたことはなかった。
However, the R/I method is currently only applied to molded products with a relatively simple shape, and is only applied to molded products with a complex shape and relatively large size that require high rigidity. That never happened.

しかるに本発明者は、形状が複雑でしかも比較的大型の
ものとしてたとえば車体後部に荷台を有しかつこの荷台
を暑うリヤポデーを有する自−車の各槙車体部材をνR
P製とすべく検討し、これらを前述のごときiL/I法
によって成形することを試みた。
However, the present inventor has proposed that each vehicle body member of a vehicle, which has a complicated shape and is relatively large, for example, has a cargo platform at the rear of the vehicle body and a rear pod that heats the cargo platform, has a νR.
We considered making them made of P, and tried molding them using the iL/I method described above.

すなわち、第1図は前記自動車のボデーの斜視図であり
、(1)は鋼製のボデ一本体であるが、たとえばレフト
サイドパネル(舞、ライトサイドパネル(3)、リヤル
ーフI4)、バックドア(2)、フロントルーフ(6)
、サンルーフ(7)などの各部材のFIP化を試みた。
That is, FIG. 1 is a perspective view of the body of the automobile, and (1) shows the main body made of steel, for example, the left side panel (Mai, right side panel (3), rear roof I4), back door (2), front roof (6)
, we attempted to make each component such as the sunroof (7) FIP.

な# (8) :!fよび(1B)はウィンドオープニ
ングである。
# (8) :! f and (1B) are window openings.

以下、レフトサイドパネル(2)のF−BP化を例にと
って説明する。第2−はFRP製レフしザイドパネル(
2)を裏方向から見、た斜視図、s3図は裏方向から見
た斜視図、第4゛図は112〜3図の(蜀−(力線拡大
断面at、*saaは第4図の円((転)部の拡大図で
ある。図面において、儀騰はFRP鵬、Iはガラス繊維
などの補強繊維のプリフォームである。IIはレフトサ
イドパネル(勾の表に現わnる部分のrRPJII拳聾
の外側に設けられているゲルコート層である。軸は強度
、剛性が要求される部位に配設される芯材である。
Hereinafter, the conversion of the left side panel (2) to F-BP will be explained as an example. The second one is an FRP reflex panel (
2) is a perspective view seen from the back side, Fig. s3 is a perspective view seen from the back side, Fig. 4 is a perspective view of Figs. This is an enlarged view of the circle (turn) part. In the drawing, Yiteng is FRP Peng, I is the preform of reinforcing fiber such as glass fiber, and II is the left side panel (the part shown on the front side of the circle). This is a gel coat layer provided on the outside of the rRPJII fist.The shaft is a core material placed in areas where strength and rigidity are required.

しかし前記のごときゲルコート層および芯材を有するF
RF成形品をl/I法で製造するばあいにはつぎのどと
き関−が発生することが判明した。
However, F with the above-mentioned gel coat layer and core material
It has been found that when RF molded products are manufactured by the l/I method, the following problem occurs.

すなわち、芯材Hを挿入する部位では第5図に示される
ごとく芯材a4tJ1PRPjIIla*でサンドウィ
ッチされた構造となり、芯材Iの上下のy n plf
l (l1m) 、 (llb)が合して1つのFRP
層(116)になるが、芯材Iが存在する部分の1np
層(11m)と芯材a4が存在しない部分のFRP層(
lie)とが同一平面を形成する成形品をえようとして
も硬化後のyap@の表面に段 ′差(8)が生じる。
That is, at the part where the core material H is inserted, the structure is sandwiched between the core materials a4tJ1PRPjIIla* as shown in FIG. 5, and the upper and lower y n plf of the core material I
l (l1m) and (llb) together form one FRP
It becomes layer (116), but 1np of the part where core material I exists
layer (11m) and the FRP layer in the area where core material a4 does not exist (
Even if an attempt is made to obtain a molded product in which the yap@ and the yap form the same plane, a step (8) will occur on the surface of the yap@ after curing.

その原因は、R/I法による成形のばあいは下型にゲル
コートJIi1−を形成し、そのうえに補強繊維のプリ
フォーム(12m)、芯材6番および補強繊維のプリフ
ォーム(12k)を順次セットしたのち下型と上型を閉
じ、硬化性樹脂を注入して成形するのであるが、?RP
層(l1m)ではプリフォームか1脂であり、一方FR
P層(lie)ではプリフォームか2jll*であるか
ら、y RP II (lie)は1BP層(l1m)
より厚(設定されていることにある。・すなわち第6図
に示されるとと(FRP層(l1m)およびF RP 
7111(lle)の硬化収縮はそれぞれそnらの層の
中心面(15m)および(15*)を中心にして起るが
、FILP層(11m)よりFBF−(11・)が厚く
、それらの硬化収縮の中心面(15m)と中心面(15
・)とがずれているためである。設差(8)の大きさは
中心面(15@ )を基準にとると、式と X   (Te −Ta) g (aIIm) x −X − 1002 (式中、Xは1tBP@(JJ硬化収縮率、(襲)、!
1・、および!@はそれぞれ硬化収縮前の717層(1
1m)の犀さくam)#よびFILP鳩(lie)の厚
さく!all)である)で表わされる。
The reason for this is that in the case of molding using the R/I method, gel coat JIi1- is formed on the lower mold, and then reinforcing fiber preform (12 m), core material No. 6, and reinforcing fiber preform (12 k) are set in order. After that, the lower and upper molds are closed, hardening resin is injected, and the mold is formed. R.P.
In the layer (l1m), the preform is 1 fat, while the FR
Since the preform is 2jll* in the P layer (lie), y RP II (lie) is the 1BP layer (l1m)
The thicker (FRP layer (l1m) and FRP layer (l1m)
The curing shrinkage of 7111(lle) occurs around the center planes (15m) and (15*) of those layers, respectively, but the FBF-(11·) is thicker than the FILP layer (11m), and their Center plane of curing shrinkage (15 m) and center plane (15 m)
・) is out of alignment. The size of the gap (8) is based on the center plane (15@), and is calculated using the formula: Rate, (attack),!
1., and! @ represents 717 layers (1
1m) thick rhinoceros (am) # and FILP pigeon (lie)! all).

この段差(8)を少なくするためには717層(l1m
)の厚さくTa)とF RP @ (11*)の厚さく
T(1)との差をできるだけ小さく、好ましくはI!@
wg〒Cに設定すnばよいが、そうすると第7図に示さ
nるごと< F I P II (l1m)と(til
+)が合してFBF鳩(11喀)となる部位の成形品の
表向にヒケamが発生しやすくなる。
In order to reduce this step (8), 717 layers (l1m
) and the thickness T(1) of F RP @ (11*) should be as small as possible, preferably I! @
You only need to set wg〒C, but if you do that, as shown in Figure 7, < F I P II (l1m) and (til
Sink marks are likely to occur on the surface of the molded product in the area where the +) is combined to form the FBF pigeon (11).

これは2層のy it p@か合する部位では必然的に
補強繊維のプリオーム(12m)、(12b)が存在し
ない樹脂のリッチ、な部分が生じるが、そ5の部分には
補強繊維か存在しないので、補強、繊維で強、化された
部分が2〜3%しか硬化収雫しないのに対して5〜10
%も収縮するためである。表面−ヒケaeが発生した成
形品は外観が重要視される車体パネルなどとしては到底
使用できない。
This is because in the part where the two layers y it p @ meet, a resin-rich part is inevitably created where the reinforcing fibers (12m) and (12b) are not present, but in that 5 part, there are no reinforcing fibers. Because there is no such thing, only 2 to 3% of the reinforced and fiber-strengthened parts are cured, whereas 5 to 10
% also shrinks. A molded product with surface sink marks AE cannot be used as a vehicle body panel or the like where appearance is important.

ざら番こ樹脂のリッチな部分が生じると前記のごとく補
強繊維で強化さnた部分との硬化収縮率の差が大きいの
で、内部クラックが発生し、その部位の強屓が低下する
When a part rich in woven resin occurs, there is a large difference in curing shrinkage rate from the part reinforced with reinforcing fibers as described above, so internal cracks occur and the strength of that part decreases.

本発明者は、前記段差(8) tたはヒケa@タ発−生
を防止するた−めには188図に示さnるご、とく芯材
として芯材の上下の717層(ll&) #よび(ll
b)が合してF RP、層(IIg)となる部位にヒレ
部(14m)を有する芯材0を用いればよいことを見出
して、さき、吟出願した(特11i111856−15
97.61号参M)。しかしてかかるヒレ部(14m)
を有する芯材a4を用いるばあいは、ヒレs(14m)
がF RP@ (lie、) f)方WiJニ突出Lテ
ィるので、717層(l1m)の厚さくTa)をFIL
Fjll(lie)の犀さく〒@)に近づけてもヒケが
発生する惧れがなく・、したがってFBI’層(11m
)の厚さくTa)をF RP @ (lie)の厚さに
極力近づけることができ段差を極力小さくできる。しか
しながら、ヒレ部を有する芯材tt後加工によって製造
するのは困難であり、特別の型をつくって所定の形状に
成形することによって製造する必要があり、芯材の製造
コストが大中に上昇すという問題がある。またヒレ部を
有する芯材を用いるはあいにも段差を肉眼観察ではわか
らなII嘱程度にするには、717層(l1m)の厚さ
くTa)とFILF層(lle)の厚さくテC)を1 
) Ta/’f’s > 2/3 にする必要があるが、この条件を満足するように芯材の
位置決めを行なうのは困難である。
In order to prevent the above-mentioned step (8) or sink mark from occurring, the inventors have found that in order to prevent the occurrence of the above-mentioned step (8) or sink mark, as shown in FIG. #Yo(ll
We discovered that it is sufficient to use core material 0 having a fin (14 m) in the part where b) is combined to form the F RP layer (IIg), and recently filed an application (Patent No. 11i111856-15).
No. 97.61 M). However, the fin part (14m)
When using core material A4 with
F RP @ (lie,) f) side WiJ ni protruding L tee, so FIL Ta) with a thickness of 717 layers (l1m)
There is no risk of sink marks even if you get close to the rhinoceros of Fjll (lie). Therefore, the FBI' layer (11 m
) can be made as close as possible to the thickness of F RP @ (lie), and the step difference can be made as small as possible. However, it is difficult to manufacture the core material with fins by post-processing, and it is necessary to manufacture it by making a special mold and molding it into a predetermined shape, which increases the manufacturing cost of the core material. There is a problem that In addition, when using a core material with fins, in order to reduce the level difference to a level that cannot be seen with the naked eye, the thickness of the 717 layer (Ta) and the thickness of the FILF layer (lle) must be 717 (l1 m). 1
) Ta/'f's > 2/3, but it is difficult to position the core material so as to satisfy this condition.

つぎの閾−は、第9図(第4−の円(B)部の拡大図に
相当する)に示されるごとく成形品表面にコーナ一部な
ど複雑な形状を有する部分が存在するばあい、その部分
のゲルコート層にクラックが発生しやすく、外観品質が
損なわれることである。補強繊維のプリオーム(12m
)は長さが5、Q mm程度の短かいガラス繊維などを
バインダーにより結着したものであるので、曲率半径が
小さなコーナ一部位に合致した形状のものかえられがた
く、また型にこのプリフォームをセットする6スあいに
前記のごとく精良がよくないので適正な位置か、らずれ
、コーナ一部に樹脂のリッチな部分顛が生じることにな
るが、前述のごとく樹脂のリッチな部分(11up硬化
収M亭は補強繊維の存在する部分にくらべて大きいから
、該部分aηに内部クラックが発生し、この内部クラッ
クの発生に伴ってその部分のゲルコート層(2)にクラ
ックが発生するのである。
The next threshold is when there is a part with a complicated shape, such as a part of a corner, on the surface of the molded product, as shown in Figure 9 (corresponding to the enlarged view of the circle (B) in No. 4). Cracks are likely to occur in the gel coat layer in that area, impairing the appearance quality. Reinforcing fiber priome (12m
) is made by binding together short glass fibers, etc. with a length of about 5, Q mm, with a binder, so it is difficult to change the shape to match one corner part with a small radius of curvature, and it is difficult to change the shape to fit one corner part with a small radius of curvature. As mentioned above, the 6th place to set the reform is not very precise, so it will not be in the correct position or it will be misaligned, and a resin-rich part will occur in some corners. Since the 11up cured condensation M-tei is larger than the part where the reinforcing fibers are present, an internal crack will occur in this part aη, and with the occurrence of this internal crack, a crack will occur in the gel coat layer (2) in that part. be.

さらにゲルコートpm(至)のうえに補強繊維のプリフ
ォーム(12m) 、芯材a4 gよび補強繊維のプI
J 7オーム(12b)をこの順にセットし、硬化性樹
脂を注入、硬化するVI法Li1ては一般に芯材a◆の
位置決めか困難であり、所定位置より上下、左右にずれ
やすいことである。芯材Uが所定位置よりずれると樹脂
のリッチな部分が生じやすく、内部クラックが発生し、
機械的強度か低下することj(なる。また芯材14がポ
リウレタン発泡体などのばあいは加熱によりセル中から
炭酸ガスなどの気体か出て’INLF@との境界に集中
するが、芯材O◆のずれによりff1LP鋤(l1m)
の犀さが小さくなるとFRP層(l1m)が気体の圧力
に耐えきれず芯材Iから分離し、これか成形品表面の7
タレとなって祝われ、外観品質か損なわれるという8題
かめる。
Furthermore, on top of the gel coat PM (total), reinforcing fiber preform (12 m), core material A4g, and reinforcing fiber preform I
J 7 ohms (12b) are set in this order, curable resin is injected, and cured. In the VI method Li1, it is generally difficult to position the core material a◆, and it tends to shift vertically and horizontally from a predetermined position. If the core material U deviates from the specified position, resin-rich areas are likely to occur, causing internal cracks.
In addition, if the core material 14 is made of polyurethane foam, gases such as carbon dioxide will come out from the cells due to heating and concentrate at the boundary with the INLF@ core material. Due to the deviation of O◆, ff1LP plow (l1m)
When the size of the rhinoceros becomes smaller, the FRP layer (l1m) cannot withstand the gas pressure and separates from the core material I.
It is celebrated as a sauce, and the quality of the appearance is impaired.

しかるに本発明者は、ゲルコー)Jlmlおよび芯材を
有し、複雑な形状のFRF成形品をVI法により製造す
る峰の前述のごとき纏々のIll繍点を解決すべく鋭恩
研究を冨ねた結果、まったく新たなily’1法の開発
に成功した。
However, the present inventor has conducted intensive research in order to solve the above-mentioned problems in producing FRF molded products with complex shapes using the VI method. As a result, we succeeded in developing a completely new ily'1 method.

すなわち本発明は、ゲルコートlIIおよび芯材を有す
る?RF成形品をVIにより製造するに際して、成形型
の一万にゲルコート層を形成し、該ゲルコートMII(
JJうえに硬化性樹脂と補強繊維との混合物の層を形成
し、ついで芯材をセットしたのち補強繊維の層状物をセ
ットし、そののち成形型を閉じて硬化性樹脂を注入、硬
化甘し゛めることを特徴とするFRP成形品の製法に関
する。
That is, the present invention includes a gel coat III and a core material. When manufacturing RF molded products using VI, a gel coat layer is formed on the mold 10,000, and the gel coat MII (
A layer of a mixture of curable resin and reinforcing fibers is formed on top of the JJ, then a core material is set, followed by a layered material of reinforcing fibers, after which the mold is closed, the curable resin is injected, and the curable resin is cured. The present invention relates to a method for manufacturing FRP molded products, which is characterized by the following:

つぎに−面を参熱して本発明の方法を前述のレフトサイ
ドパネル(2)の成形に過用するばあ″いを例にとって
説明する。
Next, a case in which the method of the present invention is excessively used in molding the above-mentioned left side panel (2) will be explained with reference to the negative side.

第10図はレフトサイドパネル(2)を成形する状態を
示す断面図であり、(21&)および(21b)はそれ
ぞれR/I法用のFRP製などの成形型の下型オよび上
型である。
FIG. 10 is a sectional view showing the state in which the left side panel (2) is molded, and (21 &) and (21b) are the lower and upper molds, respectively, of a mold made of FRP for the R/I method. be.

本発明においては、まず下型(21m)にゲルコート用
の硬化性樹脂をスプレー重布し、乾燥してゲルコート層
(22)を形成する。
In the present invention, first, a curable resin for gel coat is sprayed onto the lower mold (21 m) and dried to form a gel coat layer (22).

ついでゲルコート層@上に硬化性樹脂と補強繊維の混合
物をハンドレイアップ法またはスプレーアップ法によっ
て塗布して該混合物の!IjIgaを形成し、そのう丈
に芯材儲を載置してセットしたのち、混合物の1#1(
2)を予備硬化せしめる。つぎに補強繊維のプリ7オー
ムーをセットしたのち、上型(21b)を合わせて閉じ
、硬化性樹脂を注入し、硬化ぜしめる。そののち型關き
、脱皺することにより第11囚に示されるごとき成形品
かえられる。第11図において、(2)は硬化性樹脂の
注入により形成されたFRPilである。
Next, a mixture of curable resin and reinforcing fibers is applied onto the gel coat layer by hand lay-up method or spray-up method. After forming IjIga and setting the core material on the length, 1#1 of the mixture (
2) is precured. Next, after setting the reinforcing fibers, the upper mold (21b) is closed, and a curable resin is injected and hardened. After that, it is shaped and wrinkled to make a molded product as shown in Figure 11. In FIG. 11, (2) is an FRPil formed by injecting a curable resin.

本発明においては、前述の弗5〜7図に示される方法の
ごときゲルトコ・−ト層上にプリフォームをセットし、
そのうえに芯材をセットし、さらにそのうえにプリフォ
ームをセットし、そののち硬化性樹脂を注入して一度に
硬化甘しめる方法と異なり、まずゲルコート層(至)上
に形成した硬化性樹脂と補強繊維の混合物の履口を予備
硬化したのち、プリフォーム(2)を有するFiLP層
(至)とともに硬化1て2す、混合物層(2)とFIL
PJllaIlとはそれぞれ独立に硬化し、混合物層@
の硬化収縮による厚さの変化はどの部位でもほぼ一定で
あるから成形品表面に段差またはLヶが兄生する惧れか
ない。そのため芯材(財)としてヒレ部を有する芯材を
用いる必要はとくになく、切削加工により形成した芯材
か使用可能となる。
In the present invention, a preform is set on a gel coat layer as shown in Figures 5 to 7 above,
Unlike the method of setting a core material on top of that, then setting a preform on top of that, and then injecting a curable resin and curing it all at once, the curable resin and reinforcing fibers are first formed on the gel coat layer. After pre-curing the shoelace of the mixture, the mixture layer (2) and the FIL are cured together with the FiLP layer (2) having the preform (2).
Each of PJllaIl is cured independently and the mixture layer @
Since the change in thickness due to curing shrinkage is almost constant in all parts, there is no risk that a step or an L will occur on the surface of the molded product. Therefore, there is no particular need to use a core material having a fin as the core material, and a core material formed by cutting can be used.

前述のご〆くヒレ部を有する芯材は特別の型をつくって
成形する必要があり、高価なものとなり、さらに成形品
を使用するぽあいIJF凰P@との惚看性をよくするた
め表面のス牛ン履を除去するためのサンディングや未反
応成分を完全硬化させるためのアフターキュアが必要で
あるか、切削加工による芯材は安価であり、さらにサン
デングやアフターキュアも不要である。
The core material with the final fins mentioned above needs to be molded using a special mold, which makes it expensive, and in order to improve the appeal with the Poi IJF 凰P@ which uses molded products. Sanding to remove surface dirt and after-curing to completely harden unreacted components are required, but cutting-processed core materials are inexpensive and do not require sanding or after-curing.

また本発明に2いてゲルコート履輪上に形成される混合
物層(至)は硬化性樹脂と補強繊維の均一な混合物から
なるFRP鳩であるから、弗9図に示されるごときコー
ナ一部位において樹脂リッチ部分が発生する慣れかなり
、シたがってその部位に3けるゲルコート層のクラック
の発生も防止される。
In addition, since the mixture layer formed on the gel coated shoe wheel according to the second aspect of the present invention is an FRP layer made of a homogeneous mixture of hardening resin and reinforcing fiber, one corner part as shown in Fig. 9 is made of resin. This prevents cracks in the gel coat layer from forming in rich areas to a certain extent.

さらに本発明においては、芯材(至)のセットは混合物
1filHのうえに載置することによって行なわれるか
ら、位置決めが容易であり、しかも芯材(財)をセット
したのち、混合物層(至)を予備硬化することによって
芯材@か固着されるから峡化性樹脂の注入、硬化時に芯
材124がずれる慣れかなく、芯材のズレによる樹脂リ
ッチ部分の発生およびそれに起因する内部クラックの発
生か防止され、またゲルコート層(2)と芯材@の間の
FRP層〔混合物層(至)〕の厚さを確保しやすいから
、成形品表面の7タレの発生が容易に防止される。
Furthermore, in the present invention, since the core material is set by placing it on top of 1filH of the mixture, positioning is easy, and after setting the core material, the mixture layer is By pre-curing, the core material 124 is fixed, so the core material 124 is injected, and during curing, the core material 124 is not accustomed to shift, and the shift of the core material causes a resin-rich part and the occurrence of internal cracks due to this. Moreover, since it is easy to ensure the thickness of the FRP layer (mixture layer) between the gel coat layer (2) and the core material, the occurrence of sagging on the surface of the molded product can be easily prevented.

以上のごとく、本発明によるときは複雑な形状を有し、
初期および経時品質が整求されるrRPlffl形品を
安価に信頼性よく製造できるので、きわめて有利である
As described above, according to the present invention, it has a complicated shape,
This is extremely advantageous because rRPlffl-shaped products with good initial and aging quality can be manufactured at low cost and with high reliability.

本発明に2いて、ゲルコー)JiiiCl、FiLP鳩
(至)などは従来のVI法におけるものがいずれも用い
らn; y−m p盾(至)の形成に用いる硬化性樹脂
としては、たとえば不飽和ポリエステル!Mjlill
In the present invention, none of the curable resins used in the conventional VI method are used, such as Gelco, JiiiCl, FiLP, etc. Saturated polyester! Mjlill
.

エポキシ樹脂、ウレタン−ポリエステル[1、エポキシ
−アクリレート樹脂、ジアリルフタレート−脂などかめ
げられ、とくに不飽和ポリエステル―脂か好ましく用い
られる。不飽和ポリエステル樹脂に8ける不飽和ポリエ
ステルとしてはエチレンゲルコール、プロピレングリコ
−・ルなどの多価アルコール成分と無水マレイン酸フマ
ル酸、これらと7タル峻の混合物などの多塩基酸成分と
を細蔦合したものなどかあげられ、架橋用七ツマ−とし
てはスチレンなどがあげられ、硬化剤としてはメチルエ
チルケトンパーオキサイド、ペン、ゾイルパーオキザイ
ド、シクロへ千すノンパーオキサづド、クメンハづドロ
パーオキサイドなどかあけられる。その他ナフテン酸コ
バルト、ナフテン峻マンガン、オクトエ酸バナジウム、
ナフテン酸銅などの促進剤を虐官用いてもよい。
Examples include epoxy resins, urethane-polyester resins, epoxy-acrylate resins, diallyl phthalate-fats, and unsaturated polyester-fats are particularly preferred. The unsaturated polyester in 8 of the unsaturated polyester resins includes a polyhydric alcohol component such as ethylene gelcol and propylene glycol, and a polybasic acid component such as maleic anhydride fumaric acid and a mixture of these and 7-talol. Examples of crosslinking agents include styrene, etc., and curing agents include methyl ethyl ketone peroxide, pen, zoyl peroxide, cyclophenylene nonperoxide, and cumene hydrogen peroxide. You can open something like that. Others: cobalt naphthenate, manganese naphthenate, vanadium octoate,
Accelerators such as copper naphthenate may also be used.

プリフォーム(ハ)に用いる補強繊維としてはガラス繊
維、炭素繊維、石綿、セラミックス1llk維、金属繊
維などの無機繊維や動−物繊維、合成繊維などの有機繊
維かあげられ、とくにガラス繊維が好ましい。これら補
強繊維はプリフォームの形態以外の各檀マット°、各種
クロスなどの形態で使用してもよい。
Examples of reinforcing fibers used in the preform (c) include inorganic fibers such as glass fiber, carbon fiber, asbestos, ceramic fiber, and metal fiber, and organic fibers such as animal fiber and synthetic fiber, with glass fiber being particularly preferred. . These reinforcing fibers may be used in forms other than preforms such as wooden mats and various cloths.

ゲルコート層口の形成に用いる硬化性樹脂としては、た
とえば不飽和ポリエステル樹脂が用イラれ、不飽和ポリ
エステルとしてはエチレングリコール、プロピレングリ
コールなどの多価アルコール成分と無水マレイン酸、フ
マル酸、これらとイクフタル酸との混合物などの多塩基
酸成分とを縮重合したものがあげられ、架橋用七ツマー
1硬化剤などはF RP@@用の不飽和ポリエステル樹
脂におけるものと同様なものが、用いられる。ゲルコー
トM*aの厚さは0.3〜0.6am程度が好ましく、
外観の美しい成形品がえられる。
As the curable resin used to form the gel coat layer, for example, an unsaturated polyester resin is used, and the unsaturated polyester includes polyhydric alcohol components such as ethylene glycol and propylene glycol, maleic anhydride, fumaric acid, and Ikuftal. Examples include those obtained by condensation polymerization with a polybasic acid component such as a mixture with an acid, and the same one as in the unsaturated polyester resin for FRP@@ can be used as the crosslinking 7-mer 1 curing agent. The thickness of the gel coat M*a is preferably about 0.3 to 0.6 am,
A molded product with a beautiful appearance can be obtained.

混合物層(2)に用いられる硬化性樹脂としては前記F
IP層(2)用のものと同様なものが用いられる。補強
繊維としてもプリフォーム(2)用のものと同様なもの
が用いられる。混合物1m(2)の厚さはF IL 7
7111@の厚さとも関連するものであるが、段差、ヒ
ケ、フクレなどの外観不良を充分に防止するためおよび
機械的強度を確保する観点からl am以上であるのが
好ましい。
As the curable resin used for the mixture layer (2), the above-mentioned F
Something similar to that for the IP layer (2) is used. The same reinforcing fibers as those for the preform (2) are also used. The thickness of 1 m (2) of the mixture is F IL 7
Although it is related to the thickness of 7111@, it is preferably lam or more in order to sufficiently prevent appearance defects such as steps, sink marks, and blisters, and to ensure mechanical strength.

芯材(財)としては通常樹脂発泡体か用いられ、樹脂発
泡体としてはたとえばポリウレタン発泡体、アクリル樹
脂発泡体などかあげられる。
A resin foam is usually used as the core material, and examples of the resin foam include polyurethane foam and acrylic resin foam.

前記においては、本発明の方法を車体後部に傭台を有し
かっこの何台を覆うリヤポデーを有する自動車における
レフトサイドバネ7J/ (2)の成形に通用するばあ
いを例にとって説明したが、本発明の方法は同様にライ
トサイドパネル(3)、!J+#−7141、ハックド
ア(5)、フロントルーフ(6)、サンルーフ(7)な
どの部材の成形にも通用できるものてあり、さらにその
他各櫨の自動車部品、浴槽などの日常生活用品、ボート
などのレジャー用品の成形などにも通用しうるものであ
る。
In the above, the method of the present invention has been explained by taking as an example a case where the method of the present invention is applicable to molding a left side spring 7J/(2) in an automobile having a rear podium that covers several brackets. The method of invention is similar to the light side panel (3),! J+#-7141, which can be used to mold parts such as hack doors (5), front roofs (6), and sunroofs (7), as well as other Hashiwa car parts, daily life items such as bathtubs, boats, etc. It can also be used for molding leisure goods.

つぎに実施例および比較例をあげて本発明の詳細な説明
する。
Next, the present invention will be explained in detail with reference to Examples and Comparative Examples.

実施例 第2〜35QK示される形状を有するレフトサイドパネ
ル(2)を製造した。
Examples 2 to 35 A left side panel (2) having the shape shown in QK was manufactured.

プリフォーム型にガラス繊#!(繊維径1o#。Glass fiber # in preform mold! (Fiber diameter 1o#.

m維長約50 mm )を不飽和ポリエステル樹脂(エ
チレングリコール、無水マレイン酸および無水フタル。
m fiber length approximately 50 mm) unsaturated polyester resin (ethylene glycol, maleic anhydride and phthalic anhydride).

酸からえられた不飽和ポリエステル100@(重量部、
以下同様)、スチレン30部、メチルエチルケトンパー
オキサイド1部からなるもの)とともに吹付けてガラス
繊維のプリフォーム(至)を作製した。
Unsaturated polyester obtained from acid 100@(parts by weight,
A glass fiber preform was prepared by spraying the glass fiber with a glass fiber preform (same below), 30 parts of styrene, and 1 part of methyl ethyl ketone peroxide).

FRP製の下W(21m)に不飽和ポリエステル樹脂(
エチレングリコール、無水マレイン酸およびイソフタル
酸からえられた不飽和ポリエステル100部、スチレン
30部、メチルエチルケトンパーオキサイド1部、ナフ
テン酸コバルト0.5部からなるもの)を反プレー!!
!奄しテ厚さ0.3mmのゲルコート層(2)を形成し
た。
FRP lower W (21m) unsaturated polyester resin (
(consisting of 100 parts of unsaturated polyester obtained from ethylene glycol, maleic anhydride and isophthalic acid, 30 parts of styrene, 1 part of methyl ethyl ketone peroxide, 0.5 part of cobalt naphthenate). !
! A gel coat layer (2) having a thickness of 0.3 mm was formed.

えらnたゲルコート層(2)のうえにガラス繊維、含有
!130111に量囁の不飽和ポリエステル樹脂をハン
ドレイアップ法により硬化後の厚さが11となるように
塗布し、そのうえに硬質ポリウレタンフォームを切削加
工して作製した芯材(至)を載置したのち前記混合物層
(2)を5000で20分間予備硬化した。
Contains glass fiber on top of the gel coat layer (2)! 130111 was coated with a small amount of unsaturated polyester resin using the hand lay-up method so that the thickness after curing was 11, and then a core material made by cutting hard polyurethane foam was placed on top of it. The mixture layer (2) was precured at 5000 for 20 minutes.

ついで前記プリフォーム(2)をセットし、下型(21
m)と上型(21b)を閉じ、注入孔より不飽和ポリエ
ステル樹脂(プリフォームの作製に用いたものと同じも
の)を(S kg/e−の注入圧で注入し、30分経過
後離型し、70°1OX3hrの条件でアフターキュア
ーしてFRP製レフトサイドパネル(2)をえた。
Next, the preform (2) is set and the lower mold (21
m) and the upper mold (21b) are closed, and unsaturated polyester resin (same as that used for making the preform) is injected through the injection hole at an injection pressure of (S kg/e-), and after 30 minutes, it is separated. It was molded and after-cured under the conditions of 70°1OX3hr to obtain an FRP left side panel (2).

えられた製品においてはヒケ、段差、クラックの発生は
まったく認められなかった。
No sink marks, steps, or cracks were observed in the resulting product.

比較例 ゲルコート層(至)のうえにプリフォーム(プリフォー
ム(2)と同様にして作製したもの)、芯材o4掌よび
プリフォーム(2)を仁の順にセットし、硬化性樹脂を
注入して硬化したほかは実施例と同様にしてレフトサイ
ドパネル(2)を作製した。
Comparative Example A preform (produced in the same manner as preform (2)), a core material O4, and a preform (2) were set on top of the gel coat layer (to) in this order, and a curable resin was injected. A left side panel (2) was produced in the same manner as in the example except that the left side panel (2) was cured.

えられた製品に2いては芯材(2)部分の表面に段差が
、コーナ一部のゲルコート層−にクランクの発生が認め
らnた。
In the obtained product 2, a step was observed on the surface of the core material (2), and a crank was observed on the gel coat layer at a part of the corner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は車体後部に荷台を有しかつこの荷台を敬うリヤ
ーボデーを有する自動車のボデーの斜視図、第2図およ
び第3図はy凰PI111レフトサイドパネルをそれぞ
れ表方向および裏方向から見た斜視図、s4図は第2〜
3図の(尊−(荀線拡大断面図、第S図はFBデ畷成形
品の表面に段差が生じた状態を示す部分断面II(第4
図の円(4)部の拡大図に相当)、第611は段差が生
じる原因を説明する説明図、s7EはFIP製成形品の
表面にヒケが生じた状態を示す部分断面図、第8図は芯
材としてLし都を有するものを用いたl凰P成形品の部
分断1iio、第9EはF B P@lこ樹脂リッチ部
分が生じた状1を示す部分断面図(114図の円(B)
部の拡大図に相当する)、第10図は本発明の方法によ
゛すFRF成形品を成形する状態を示す部分断面図、第
11図は本発明の方法に・よりえもれるIFRF成形品
を示す部分断面図である。 (図面の主要・符号) (21m) :下型 (企1b):上型 (2) ニゲルコート層 @ :混合物層 c141:芯材 @ ニブリフォーム @:IF′BP層゛ 第1図 第2図 第3図 一〆2 :第4図    ′ ゛ 第5図 オ6円 オフ図 〜  才8図 第1 1図 22  23
Figure 1 is a perspective view of the body of an automobile that has a loading platform at the rear of the vehicle body and a rear body that respects this loading platform, Figures 2 and 3 are views of the Y-O PI111 left side panel from the front and back sides, respectively. Perspective views and s4 figures are from 2nd to
Figure 3 is an enlarged sectional view along the line (Zen-(Xuan), and Figure S is a partial cross-section II (No. 4
(corresponding to an enlarged view of circle (4) in the figure), No. 611 is an explanatory diagram explaining the cause of the step, s7E is a partial cross-sectional view showing a state where sink marks have occurred on the surface of the FIP molded product, Fig. 8 9E is a partial cross-sectional view of a L-P molded product using L-shaped core material as the core material. (B)
Fig. 10 is a partial sectional view showing a state in which an FRF molded product is molded by the method of the present invention, and Fig. 11 is an IFRF molded product obtained by the method of the present invention. FIG. (Main figures and symbols in the drawing) (21m) : Lower mold (Plan 1b) : Upper mold (2) Nigel coat layer @ : Mixture layer c141 : Core material @ Nibri form @ : IF'BP layer (Fig. 1, Fig. 2) Figure 3-1 2: Figure 4 ′ Figure 5 O 6 yen off figure ~ Age 8 Figure 1 1 Figure 22 23

Claims (1)

【特許請求の範囲】[Claims] 1 ゲルコート層および芯材を有する繊維強化プラスチ
ックス成形品をレジンインジェクション法により製造す
るに際して、成形型の一方にゲルコート層を形成し、該
ゲルコート層のうえに硬化性樹脂と補強繊維との混合物
の脂を形成し、ついで芯材をセットしたのち補強繊維の
履状物をセットし、そののち成形型を閉じて硬化性樹脂
を注入、硬化せしめることを特徴とする繊維強化プラス
チックス成形品の製法。
1. When manufacturing a fiber-reinforced plastic molded product having a gel coat layer and a core material by the resin injection method, a gel coat layer is formed on one side of the mold, and a mixture of a curable resin and reinforcing fiber is applied on the gel coat layer. A method for producing a fiber-reinforced plastic molded product, which is characterized by forming fat, then setting a core material, setting reinforcing fiber footwear, then closing the mold, injecting a curable resin, and allowing it to harden. .
JP4701482A 1982-03-23 1982-03-23 Manufacture of fiber reinforced plastic molded product Granted JPS58162324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4701482A JPS58162324A (en) 1982-03-23 1982-03-23 Manufacture of fiber reinforced plastic molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4701482A JPS58162324A (en) 1982-03-23 1982-03-23 Manufacture of fiber reinforced plastic molded product

Publications (2)

Publication Number Publication Date
JPS58162324A true JPS58162324A (en) 1983-09-27
JPS6249843B2 JPS6249843B2 (en) 1987-10-21

Family

ID=12763309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4701482A Granted JPS58162324A (en) 1982-03-23 1982-03-23 Manufacture of fiber reinforced plastic molded product

Country Status (1)

Country Link
JP (1) JPS58162324A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215026A (en) * 1985-03-22 1986-09-24 Shin Kobe Electric Mach Co Ltd Manufacture of thermosetting resin molded article
EP0714743A1 (en) * 1994-11-29 1996-06-05 ECP Enichem Polimeri Netherlands B.V. Process for the production of gel-coated articles
JP2004506549A (en) * 2000-08-18 2004-03-04 スキナー,リー,マーチン Molding method
WO2006062038A1 (en) * 2004-12-06 2006-06-15 Toray Industries, Inc. Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
JP2006188050A (en) * 2004-12-06 2006-07-20 Toray Ind Inc Molding precursor, process for manufacturing fiber-reinforced resin molding, and fiber-reinforced resin molding
CN111572153A (en) * 2020-05-25 2020-08-25 安徽森泰木塑集团股份有限公司 Glass fiber reinforced polyester anti-slip floor and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215026A (en) * 1985-03-22 1986-09-24 Shin Kobe Electric Mach Co Ltd Manufacture of thermosetting resin molded article
EP0714743A1 (en) * 1994-11-29 1996-06-05 ECP Enichem Polimeri Netherlands B.V. Process for the production of gel-coated articles
JP2004506549A (en) * 2000-08-18 2004-03-04 スキナー,リー,マーチン Molding method
WO2006062038A1 (en) * 2004-12-06 2006-06-15 Toray Industries, Inc. Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
JP2006188050A (en) * 2004-12-06 2006-07-20 Toray Ind Inc Molding precursor, process for manufacturing fiber-reinforced resin molding, and fiber-reinforced resin molding
US8257823B2 (en) 2004-12-06 2012-09-04 Toray Industries, Inc. Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
US8491988B2 (en) 2004-12-06 2013-07-23 Toray Industries, Inc. Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
CN111572153A (en) * 2020-05-25 2020-08-25 安徽森泰木塑集团股份有限公司 Glass fiber reinforced polyester anti-slip floor and preparation method thereof
CN111572153B (en) * 2020-05-25 2023-03-03 安徽森泰木塑集团股份有限公司 Glass fiber reinforced polyester anti-skid floor and preparation method thereof

Also Published As

Publication number Publication date
JPS6249843B2 (en) 1987-10-21

Similar Documents

Publication Publication Date Title
US8992813B2 (en) Sheet molding compound with cores
US20130127092A1 (en) Moulded multilayer plastics component with continuously reinforced fibre plies and process for producing this component
US20070160822A1 (en) Process for improving cycle time in making molded thermoplastic composite sheets
US20050255311A1 (en) Hybrid composite product and system
US4781876A (en) Method of producing glass fiber mat reinforced plastic panels
JPS58162324A (en) Manufacture of fiber reinforced plastic molded product
CA2582807C (en) Method for the production of a molded part
EP0675791A1 (en) A layered article prepared by spraying a thermoset resin to form each layer
US20170305047A1 (en) Production of multishell composite-material components with reinforcement structure bonded thereto
KR101839743B1 (en) Roof of automobile using carbon fiber prepreg and foam core and manufacturing method thereof
AU2019226164B2 (en) Personal watercraft fabrication using thermoforming
KR101726164B1 (en) Method for manufacturing automotive interior material using natural fiber composites
US2758321A (en) Reinforced plastic construction and method of manufacture
JPS5859825A (en) Core member for fiber-reinforced plastic molded article
JP2887234B1 (en) Method for producing paper-laminated three-dimensionally shaped article reinforced by resin impregnation
JP2963070B2 (en) Manufacturing method of synthetic resin composite board
JPS6216815B2 (en)
JP3259361B2 (en) Molding method of FRP molded product
KR100795390B1 (en) Box type hollow structure made of frp with overlap construction for vehicle and manufacturing method thereof
JPS60219035A (en) Manufacture of fiber reinforced resin formed product with coating layer
JPS6249842B2 (en)
KR20040062816A (en) The method manufacture panel of phenolic resin F.R.P interior
JPH071607A (en) Manufacture of fiber-reinforced plastic blower blade
JPH04296539A (en) Core material for molding fiber-reinforced resin
JPH04214313A (en) Manufacture of laminated molding of frp structure