JPS58162142A - Transmitting system of digital signal - Google Patents

Transmitting system of digital signal

Info

Publication number
JPS58162142A
JPS58162142A JP4501382A JP4501382A JPS58162142A JP S58162142 A JPS58162142 A JP S58162142A JP 4501382 A JP4501382 A JP 4501382A JP 4501382 A JP4501382 A JP 4501382A JP S58162142 A JPS58162142 A JP S58162142A
Authority
JP
Japan
Prior art keywords
signal
signals
pcm
frame
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4501382A
Other languages
Japanese (ja)
Inventor
Misao Kato
三三男 加藤
Koji Matsushima
松島 宏司
Shiro Tsuji
史郎 辻
「しめ」木 泰治
Taiji Shimeki
Nobuyoshi Kihara
木原 信義
Yoshinori Amano
天野 善則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4501382A priority Critical patent/JPS58162142A/en
Publication of JPS58162142A publication Critical patent/JPS58162142A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/04Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse code modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

PURPOSE:To reduce the number of bits and to prevent the accumulation of transmission errors by grouping PCM signals and transmitting the PCM signals after converting the PCM signals other than the leading PCM signals into DELTAPCM signals. CONSTITUTION:One group (frame) is composed of plural PCM signals and a PCM encoder 2 converts the PCM signals into DELTAPCM signals regarding the leading PCM signal as an initial value. A mixer 3 mixes the leading PCM signal with other DELTAPCM signals to form the center part of the frame. An error detection/correction code in the frame and a frame synchronizing signal are added to the center part by an error correction code generating circuit 4 and a synchronizing signal generating circuit 5 respectively to constitute one frame shown by the figure. The framed digital signal series are transmitted and recorded in a recording medium through a digital transmission line.

Description

【発明の詳細な説明】 本発明は音響信号等のアナログ信号を標本化し、さらに
量子化することによって得られたディジタル信号を伝送
系で伝送するか、あるいは記録媒体に記録・再生する装
置におけるディジタル信号の伝送方式に関するもので、
特に伝送周波数を低くするとともに誤シの発生を抑えな
がら、かつ高品質なディジタル信号を伝送することを目
的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention transmits digital signals obtained by sampling analog signals such as acoustic signals and further quantizing them through a transmission system, or records and reproduces digital signals on a recording medium. It concerns the signal transmission method.
In particular, the purpose is to transmit high-quality digital signals while lowering the transmission frequency and suppressing the occurrence of errors.

従来、音響信号等のアナログ信号をム/Dコンバータ(
アナログ−ディジタル変換器)によって得たディジタル
信号(以下、PGM信号と呼ぶことにする)を、たとえ
ば磁気テープ等の記録媒体に記録再生する場合に、前記
PCMデータを複数個でグループ化し、さらに誤シ検出
訂正用の符号および同期信号を付加することによって第
1図のようなりレームを構成している。第1図において
5YNOは同期信号であシ、誤シ検出符号の一種である
O RCG (CycQic Redandancy 
CheckCode )を用いたフレーム構成例である
。同期信号および誤り検出訂正符号は、ディジタル信号
の伝送には必要な冗長信号であり、たとえば、誤り検出
訂正符号のビット数を多くすることにより誤り検出訂正
能力を強化することができる。
Conventionally, analog signals such as acoustic signals are converted to a mu/D converter (
When recording and reproducing a digital signal (hereinafter referred to as a PGM signal) obtained by an analog-to-digital converter on a recording medium such as a magnetic tape, the PCM data is grouped into multiple pieces and further By adding a code for detection and correction and a synchronization signal, a frame as shown in FIG. 1 is constructed. In Fig. 1, 5YNO is a synchronization signal, and ORCG (CycQic Redundancy) is a type of error detection code.
This is an example of a frame structure using CheckCode). The synchronization signal and the error detection and correction code are redundant signals necessary for the transmission of digital signals. For example, by increasing the number of bits of the error detection and correction code, the error detection and correction capability can be strengthened.

しかしながら、このような冗長信号の増加は、ディジタ
ル信号伝送の場合、信号周波数の上昇をまねき、伝送路
の周波数特性の影響や外米のノイズの影響を受けやすく
なり、結果的に伝送中の誤りの増加などの悪影響を与え
ることになる。また磁気テープ等の記録媒体に記録・再
生する場合には、記録周波数が高ぐなシ、その分課体上
での記録波長が短くなって媒体の周波数特性、ゴミ、傷
などによる信号欠落(ドロップアウト)などの影響を受
けやすくなる。以上の例は、同期信号や誤り検出訂正符
号などの冗長信号に関わる問題点であるが、最近のPC
M信号の伝送や記録・再生装置においてはアナログ信号
の高品質化をはかるためPCM信号の量子化ビット数を
増大させる傾向にあり、量子化ビット数が増大すれば上
記と同様に伝送周波数の増大、記録波長の短波長化につ
ながり上記のような問題が発生する。
However, in the case of digital signal transmission, this increase in redundant signals causes an increase in the signal frequency, making it more susceptible to the influence of the frequency characteristics of the transmission path and noise from abroad, resulting in errors during transmission. This will have negative effects such as an increase in Furthermore, when recording and reproducing on a recording medium such as a magnetic tape, the recording frequency must be high, and the recording wavelength on the recording medium must be short, resulting in signal loss due to the frequency characteristics of the medium, dust, scratches, etc. dropout). The above examples are problems related to redundant signals such as synchronization signals and error detection and correction codes, but recent PCs
In order to improve the quality of analog signals in M signal transmission and recording/playback equipment, there is a tendency to increase the number of quantization bits of PCM signals, and as the number of quantization bits increases, the transmission frequency increases as well. This leads to the shortening of the recording wavelength and causes the above-mentioned problems.

このような、データレートの増大を軽減するための技術
に帯域圧縮がある。帯域圧縮の技術には色々あるがよく
使用される方式に差分PCM方式(以下lPCM方式と
略記する)がある。dPGMPCM方式過去の信号のデ
ィジタルデータから次のディジタルデータを予測し、予
測値と現実のデータとの差(予測誤差)のみを量子化し
て伝送する方式であり、通常のPCM信号を伝送する場
合に比べて、ΔPCM方式の方が伝送に要する量子化ビ
ット数が少なくなる。あるいはPCM方式と同一のビッ
ト数を用いてより高品質の伝送が可能になる。ところが
ΔPGMPCM方式過去の信号から次の信号を予測する
ために過去の信号のレベルが復号時の決め手となる。す
なわち一旦誤りを発生すると次の予測データも誤りとな
り、誤シ伝播が無限に生ずることになる。
Bandwidth compression is a technique for reducing such an increase in data rate. There are various band compression techniques, but one that is often used is the differential PCM method (hereinafter abbreviated as the IPCM method). dPGMPCM method This method predicts the next digital data from the digital data of past signals, quantizes only the difference between the predicted value and the actual data (prediction error), and transmits it. In comparison, the ΔPCM method requires fewer quantization bits for transmission. Alternatively, higher quality transmission is possible using the same number of bits as the PCM method. However, in the ΔPGMPCM method, the level of the past signal becomes the determining factor during decoding in order to predict the next signal from the past signal. That is, once an error occurs, the next prediction data will also be an error, and error propagation will occur indefinitely.

本発明は、ΔPCM方式の伝送ビット数の低域という利
点を生かすと同時に、一方で誤り伝播を長い期間発生さ
せないようにし、また、ΔPGMPCM信号時の立上り
を早くしたものであり、PCM信号を初期値に用いたこ
とを特徴とするディジタル信号の伝送方式を提供するも
のである。
The present invention makes use of the advantage of the low transmission bit number of the ΔPCM method, while at the same time preventing error propagation from occurring over a long period of time, and also makes the rise of the ΔPGMPCM signal faster. The present invention provides a digital signal transmission method characterized in that it is used for values.

本発明の一実施例におけるフレーム構成を第2図に示す
。第2図ではPCM信号とΔPGMPCM信号一フレー
ム内に形成している。さらに、フレーム内のΔPGM信
号列はPCM信号を初期値として形成される。上記の構
成によれば、つねにフレームごとにΔPGMPCM信号
値がプリセットされることになり、誤り伝播はフレーム
単位内に収まることになる。さらにフレームごとにΔP
GMPCM信号値が設定されるので、復号時の立上シが
早い。さらに予測誤差のみの伝送を主体とするため、ビ
ット数の増加に対しても伝送周波数が低く、逆に同一の
伝送周波数では高品質のディジタル伝送が可能となる。
FIG. 2 shows a frame structure in one embodiment of the present invention. In FIG. 2, the PCM signal and ΔPGMPCM signal are formed within one frame. Furthermore, the ΔPGM signal sequence within the frame is formed using the PCM signal as an initial value. According to the above configuration, the ΔPGMPCM signal value is always preset for each frame, and error propagation is contained within each frame. Furthermore, ΔP for each frame
Since the GMPCM signal value is set, the startup time during decoding is quick. Furthermore, since only prediction errors are mainly transmitted, the transmission frequency is low even when the number of bits increases, and conversely, high-quality digital transmission is possible at the same transmission frequency.

第3図には本発明のディジタル信号伝送方式を適用した
ディジタル伝送装置の実施例を示す。1はPCM信号入
力端子、2はΔPGMエンコーダ、3ViP CM信号
とΔPCM信号とを後述のように合成するミキサであり
、4は誤り検出訂正符号を付加する誤り訂正符号発生回
路、5はフレームの同期をとるための同期信号発生回路
、6は変調回路で伝送系に応じて変調し、たとえばMF
M(Modified Frequency Modu
lation )などの変調回路で構成され、7は出力
端子で、第2図のようにフレーム構成されたディジタル
信号が出力され、その後ディジタル伝送系へ入力される
が、あるいは記録素子を介して磁気テープ等の記録媒体
に記録される。一方、8は入力端子で、ディジタル伝送
系からの信号が入力されるか、あるいは再生素子を介し
て記録媒体から再生された信号が入力される。9は前記
MFMなどの変調方式で変調された信号を復調する復調
回路、1oはフレームを識別するために付加された同期
信号を分離し、フレームの同期をとる同期信号分離回路
、11は誤り検出訂正符号を用いて信号の誤り訂正を行
なう誤り訂正回路、12は第2図のフレーム内のΔpa
M信号をPCM信号にデコードするΔPICMデコーダ
、13はPGM出力端子である。
FIG. 3 shows an embodiment of a digital transmission device to which the digital signal transmission system of the present invention is applied. 1 is a PCM signal input terminal, 2 is a ΔPGM encoder, a mixer that combines the 3ViP CM signal and ΔPCM signal as described below, 4 is an error correction code generation circuit that adds an error detection and correction code, and 5 is a frame synchronization 6 is a modulation circuit that modulates according to the transmission system, for example, MF
M (Modified Frequency Mod
ration), and 7 is an output terminal, from which a digital signal with a frame structure as shown in Fig. 2 is output, and is then input to a digital transmission system, or sent to a magnetic tape via a recording element. etc. are recorded on recording media. On the other hand, 8 is an input terminal into which a signal from a digital transmission system or a signal reproduced from a recording medium via a reproduction element is input. 9 is a demodulation circuit that demodulates a signal modulated by a modulation method such as MFM, 1o is a synchronization signal separation circuit that separates a synchronization signal added to identify frames and synchronizes the frames, and 11 is an error detection circuit. An error correction circuit that corrects errors in a signal using a correction code, 12 is a Δpa in the frame in FIG.
A ΔPICM decoder decodes the M signal into a PCM signal, and 13 is a PGM output terminal.

次に動作説明を行なう。音響信号等のアナログ信号がム
/DコンバータでPCM信号に変換されPCM信号入力
端子1に入力される。次にΔPGMエンコーダ2でPC
M信号を複数単位でΔPGMPCM信号し、ミキサ3で
第2図に示すフレームの中心部分を構成する。さらに誤
り訂正符号発生回路4でフレーム内の誤り検出訂正符号
(ORCG)を付加し、同期信号発生回路6ではフレー
ム同期をとるための同期信号(5YNC)を付加し、変
調回路6に入力される。変調方式としてはMFMがよく
知られた方式であり、磁気記録の分野では広く利用され
ている。そして出力端子子から第2図のようにフレーム
構成されたディジタル信号系列をディジタル伝送ライン
を介して伝送されるか、あるいは記録媒体に記録素子を
介して記録される。
Next, the operation will be explained. An analog signal such as an acoustic signal is converted into a PCM signal by a MU/D converter and inputted to a PCM signal input terminal 1. Next, use ΔPGM encoder 2 to
The M signal is converted into a ΔPGMPCM signal in units of multiple units, and the mixer 3 forms the central part of the frame shown in FIG. Furthermore, an error correction code generation circuit 4 adds an error detection and correction code (ORCG) within the frame, a synchronization signal generation circuit 6 adds a synchronization signal (5YNC) for frame synchronization, and the signals are input to a modulation circuit 6. . MFM is a well-known modulation method and is widely used in the field of magnetic recording. Then, a digital signal series having a frame structure as shown in FIG. 2 is transmitted from the output terminal via a digital transmission line or recorded on a recording medium via a recording element.

一方入力端子8に上記の伝送ラインからの変調信号や記
録媒体から再生素子を介して得られた変調信号が入力さ
れ、復調回路9に入力される。復調回路9では変調信号
からクロック再生を行ない、このクロックを入力として
復調を行なう。次に同期信号分離回路10で同期信号を
分離し、誤り訂正回路11において誤りのチェックを行
ない、誤りがあれば訂正を行なう。最後にΔPCMデコ
ーダ12でフレーム内のΔPCM信号はフレーム内の先
頭のPCM信号を初期値としてデコードされ、元のPC
M信号系列に復号され、PGM出力端子13に出力され
、さらにD/ムコンバータを介して元のアナログ信号に
変換されることになる。
On the other hand, a modulated signal from the above-mentioned transmission line and a modulated signal obtained from the recording medium via a reproducing element are inputted to the input terminal 8 and inputted to the demodulation circuit 9 . The demodulation circuit 9 performs clock recovery from the modulated signal, and uses this clock as input to perform demodulation. Next, the synchronization signal is separated in the synchronization signal separation circuit 10, and checked for errors in the error correction circuit 11. If there is an error, it is corrected. Finally, the ΔPCM signal in the frame is decoded by the ΔPCM decoder 12 using the first PCM signal in the frame as an initial value, and the original PC
The signal is decoded into an M signal series, output to the PGM output terminal 13, and further converted to the original analog signal via a D/M converter.

以上は、第2図のフレーム構成にもとづいて説明したが
、フレーム内のPCM信号、ΔPGMPCM信号−ム間
でインターリーブをかけることにより時系列的に連続す
るpaM信号の誤りを回避することもできる。
The above description has been made based on the frame structure shown in FIG. 2, but errors in the paM signal that are continuous in time can also be avoided by interleaving the PCM signal and the ΔPGMPCM signal within the frame.

なお、第2図に示したフレーム内の同期信号のビット数
および誤シ検出訂正符号のビット数は本発明の本旨にか
なえば制限しない。またPCM信号とΔPCM信号のビ
ット数および個数も同様に制限を加えない。
Note that the number of bits of the synchronization signal and the number of bits of the error detection and correction code within the frame shown in FIG. 2 are not limited as long as the gist of the present invention is met. Similarly, the number of bits and the number of PCM signals and ΔPCM signals are not limited.

上記の実施例からも明らかなように、本発明はグループ
内の先頭のデータをPCM信号とし、先頭のデータ以外
はΔPCM信号系列に変換して伝送することにより、予
測誤差の伝送の主体であるから伝送周波数が低く、逆に
同一の伝送周波数であれば量子化ビット数の大なるデー
タや、誤り検出・訂正に用いる冗長信号を多く付加でき
るなど伝送されるディジタル信号を高品質にでき、かつ
誤シ訂正能力を向上させることができる。また同時に各
グループの先頭のデータがPCM信号であることから伝
送中に誤りが発生しても復号時にそのグループ内のみに
とどまり、誤りが長期間伝搬されるということがなく、
信号時の立上りも早いという優れた特徴を有するもので
ある。したがって本発明によれば誤り訂正能力の高い高
品質なデータの伝送が可能であり、一方で伝送されるビ
ット数を減らすことが可能となり、伝送系の周波数特性
、外来ノイズなどの影響を少なくして誤りの少ない信号
再生を実現できる優れたディジタル信号伝送方式を提供
できるものである。
As is clear from the above embodiments, the present invention mainly transmits prediction errors by converting the first data in a group into a PCM signal and converting data other than the first data into a ΔPCM signal sequence and transmitting it. Therefore, the transmission frequency is low, and conversely, if the transmission frequency is the same, the transmitted digital signal can be of high quality, such as data with a large number of quantized bits and many redundant signals used for error detection and correction. Error correction ability can be improved. At the same time, since the first data of each group is a PCM signal, even if an error occurs during transmission, it will remain within that group during decoding, and the error will not be propagated for a long time.
It has the excellent feature that the signal rises quickly. Therefore, according to the present invention, it is possible to transmit high-quality data with high error correction ability, and at the same time, it is possible to reduce the number of transmitted bits, thereby reducing the influence of frequency characteristics of the transmission system, external noise, etc. Therefore, it is possible to provide an excellent digital signal transmission system that can realize signal reproduction with few errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のディジタル信号伝送方式におけるフレー
ム構成を示す図、第2図は本発明のディジタル信号伝送
方式の一実施例におけるフレーム構成を示す図、第3図
は本発明の一実施例に適したディジタル信号伝送装置の
一実施例を示す構成図である。 2・・・・・・ΔPGMエンコーダ、3・・・・・・ミ
キサ、4・・・・・・誤り訂正符号発生回路、6・・・
・・・同期信号発生回路、6・・・・・・変調回路、9
・・・・・・復調回路、1o・・・・・・同期信号分離
回路、11・・・・・・誤り訂正回路、12・・・・・
・ΔPOMデl−ダ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−城 憾 第1頁の続き 0発 明 者 氷原信義 門真市大字門真1006番地松下電 器産業株式会社内 0発 明 者 天野善則 門真市大字門真1006番地松下電 器産業株式会社内
FIG. 1 is a diagram showing a frame structure in a conventional digital signal transmission method, FIG. 2 is a diagram showing a frame structure in an embodiment of the digital signal transmission method of the present invention, and FIG. 3 is a diagram showing a frame structure in an embodiment of the present invention. 1 is a block diagram illustrating one embodiment of a suitable digital signal transmission device; FIG. 2...ΔPGM encoder, 3...Mixer, 4...Error correction code generation circuit, 6...
... Synchronization signal generation circuit, 6 ... Modulation circuit, 9
... Demodulation circuit, 1o ... Synchronization signal separation circuit, 11 ... Error correction circuit, 12 ...
・ΔPOM delder. Agent's name: Patent attorney Toshio Nakao and 1 other person - Continued from page 1 of Johane 0 Inventor: Nobuyoshi Hihara, Matsushita Electric Industrial Co., Ltd., 1006 Kadoma, Kadoma City, Japan 0 Author: Yoshinori Amano, 1006 Kadoma, Kadoma City Address Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] アナログ信号を標本化し、量子化することによって得ら
れたディジタル信号を複数個でグループ化し、グループ
内の先頭のデータを前記ディジタル信号を初期値となし
、残りのディジタル信号系列をそのディジタル信号系列
から作成される差分ディジタル信号系列に変換し、前記
ディジタル信号および差分ディジタル信号系列とでフレ
ームを構成し、さらに誤り検出訂正符号、フレームを識
別するための同期信号を付加して伝送することを特徴と
するディジタル信号伝送方式。
The digital signals obtained by sampling and quantizing the analog signals are grouped into multiple groups, the first data in the group is set to the digital signal as the initial value, and the remaining digital signal series is derived from the digital signal series. The digital signal and the differential digital signal sequence are converted into a generated differential digital signal sequence, a frame is formed from the digital signal and the differential digital signal sequence, and an error detection and correction code and a synchronization signal for identifying the frame are added and transmitted. A digital signal transmission method.
JP4501382A 1982-03-19 1982-03-19 Transmitting system of digital signal Pending JPS58162142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4501382A JPS58162142A (en) 1982-03-19 1982-03-19 Transmitting system of digital signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4501382A JPS58162142A (en) 1982-03-19 1982-03-19 Transmitting system of digital signal

Publications (1)

Publication Number Publication Date
JPS58162142A true JPS58162142A (en) 1983-09-26

Family

ID=12707470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4501382A Pending JPS58162142A (en) 1982-03-19 1982-03-19 Transmitting system of digital signal

Country Status (1)

Country Link
JP (1) JPS58162142A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985005517A1 (en) * 1984-05-11 1985-12-05 Sony Corporation Apparatus for transmitting digital signals
JPS61247139A (en) * 1985-04-25 1986-11-04 Canon Inc Method of data transmission
JPS61247138A (en) * 1985-04-25 1986-11-04 Canon Inc Method of data transmission
JPS6417594A (en) * 1987-07-11 1989-01-20 Futaba Denshi Kogyo Kk Remote controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985005517A1 (en) * 1984-05-11 1985-12-05 Sony Corporation Apparatus for transmitting digital signals
US4685115A (en) * 1984-05-11 1987-08-04 Sony Corporation Apparatus for transmitting digital signals
JPS61247139A (en) * 1985-04-25 1986-11-04 Canon Inc Method of data transmission
JPS61247138A (en) * 1985-04-25 1986-11-04 Canon Inc Method of data transmission
JPS6417594A (en) * 1987-07-11 1989-01-20 Futaba Denshi Kogyo Kk Remote controller
JPH0479197B2 (en) * 1987-07-11 1992-12-15 Futaba Denshi Kogyo Kk

Similar Documents

Publication Publication Date Title
US5070503A (en) Digital information transmitting and receiving system
US6055664A (en) Encoding device and decoding device suitable for dubbing
EP0234354B1 (en) Apparatus for decoding a digital signal
JPS58162142A (en) Transmitting system of digital signal
CA1210515A (en) Method of encoding a stream of data bits, device for carrying out the method, and device for decoding a stream of data bits
JPH0846526A (en) Coding method and coder decoder for digital signal and coding decoding method
JPS6168775A (en) Television signal digital recording and reproducing device
US5483388A (en) Information recording and reproducing apparatus forming plural kinds of error detection or correction codes
JP2505734B2 (en) Transmission data creation device
JP3321878B2 (en) Dubbing method of digital video signal
JPH07141798A (en) Method of copying digital data and video recorder
JP2621873B2 (en) Recording method of digital audio data
JPH02143735A (en) Voice multi-stage coding transmission system
JPS62190997A (en) Digital magnetic recording and reproducing device for composite color video signal
JP2979551B2 (en) Information data processing device
JPS6113719A (en) Data transmission method
JPS61245727A (en) Data transmitting method
JPS6113720A (en) Data transmission method
JP2903577B2 (en) Image data processing device
JPH0974358A (en) Method and device for compressing/expanding digital signal
JPH0730430A (en) Encoding device
JPS62252288A (en) Coding device
JPS6251534B2 (en)
JPH03248376A (en) Voice band division decoder
JPS62171290A (en) Data transmission system