JPS58162108A - Gaas monolithic amplifier - Google Patents

Gaas monolithic amplifier

Info

Publication number
JPS58162108A
JPS58162108A JP57045870A JP4587082A JPS58162108A JP S58162108 A JPS58162108 A JP S58162108A JP 57045870 A JP57045870 A JP 57045870A JP 4587082 A JP4587082 A JP 4587082A JP S58162108 A JPS58162108 A JP S58162108A
Authority
JP
Japan
Prior art keywords
fet
resistance value
resistance
operating point
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57045870A
Other languages
Japanese (ja)
Inventor
Sadahiko Sugiura
杉浦 禎彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57045870A priority Critical patent/JPS58162108A/en
Publication of JPS58162108A publication Critical patent/JPS58162108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To set a resistance value of a load against an AC signal, to a desired value, and also to make a resistance value against DC lower than its value against AC, by connecting in parallel an FET having each operating point in a current saturation area and a linear resistance area. CONSTITUTION:On a semi-insulating GaAs substrate 29, an amplifying FET 25 and loading FETs 26, 27 connected to a signal input terminal 21, a signal output terminal 22, a bias voltage supply terminal 23 and a ground terminal 24 are formed. The FET 26 operates so that the operating point is in a saturation area and voltage and current characteristics become 31, and on the other hand, the FET 27 operates so that the operating point is in a linear resistance area by prolonging the gate length, and the voltage and current characteristics become 32. Also, the loading FET 26 and 27 are connected in parallel so that a characteristic shown by a dotted line 33 is obtained by putting them together. In the linear resistance area, a resistance value can be set to a desired value easily by gate length, and also an AC resistance value in a saturation area is high, therefore, the AC resistance value in case of parallel connection becomes almost equal to a resistance value of the FET 27.

Description

【発明の詳細な説明】 本発明はGaAs (ガリウム砒素)モノリシ、タ増幅
器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a GaAs (gallium arsenide) monolithic amplifier.

GaAs PET(電界効果トランジスタ)はマイクロ
波領域でも動作する能動素子として各種通信装置等に使
用されている。近年ij GaAs FETの高速性、
高周波性を生かしたモノリシ、りIC(集積。
GaAs PET (field effect transistor) is used in various communication devices as an active element that operates even in the microwave region. In recent years, the high speed of ij GaAs FET,
Monolithic IC (integrated) that takes advantage of high frequency properties.

回路)の開発が進められている。development of circuits) is progressing.

第1図は従来のGaASモノリシ、り増幅器の構成パタ
ーン図、第2図はその等価回路図で、lは信号入力端子
、2は信号出力端子、3はバイアス電圧供給端子、4は
接地端子、5は増幅用PET、6は負荷用FET、斜線
部7 Fin形活性層、8は半絶縁性G B A S基
板である。
Figure 1 is a configuration pattern diagram of a conventional GaAS monolithic amplifier, and Figure 2 is its equivalent circuit diagram, where l is a signal input terminal, 2 is a signal output terminal, 3 is a bias voltage supply terminal, 4 is a ground terminal, 5 is an amplifying PET, 6 is a load FET, the shaded area 7 is a Fin-type active layer, and 8 is a semi-insulating GBA S substrate.

第3図は負荷用FF1Tの電圧電流特性を示す図で横軸
■が電圧、縦軸Iが電流とすると、負荷用FETはほぼ
11のような特性を示す、すなわち電圧■をOから徐々
に増加すると、はじめは低い抵抗値を示すが、点Nを過
ぎると電流が飽和し、高い抵抗値を示すようになる。活
性層中の電子の速度がある程度以上電界が強くなると飽
和するためである。負荷用PETの動作電圧が第3図■
、であり、動作点がPだとする。交流信号に対する抵抗
値は特性11の高抵抗部となる。一方直流に対する等測
的な抵抗値は第3爾の点線12で示される抵抗値となり
、交流抵抗に対して小さな値となる。
Figure 3 is a diagram showing the voltage-current characteristics of the load FF1T, where the horizontal axis ■ is the voltage and the vertical axis I is the current. When the current increases, the resistance value initially shows a low value, but after passing the point N, the current saturates and the resistance value starts to show a high value. This is because the velocity of electrons in the active layer becomes saturated when the electric field becomes stronger than a certain level. The operating voltage of PET for load is shown in Figure 3 ■
, and the operating point is P. The resistance value for the AC signal is a high resistance portion of characteristic 11. On the other hand, the isometric resistance value for direct current is the resistance value shown by the third dotted line 12, which is a smaller value than the alternating current resistance.

すなわち負荷としてFETを使用すると交流に対する抵
抗値と直流に対する抵抗値が異なり、必ず前者の方が大
きくなる。交流に対する抵抗値は高い方が利得が大きく
なり、直流に対する抵抗値は低い方が消費電力が小さく
なるためFBTを負荷として使用するのである。
That is, when an FET is used as a load, the resistance value for alternating current and the resistance value for direct current are different, and the former is always larger. The FBT is used as a load because the higher the resistance value for alternating current, the higher the gain, and the lower the resistance value for direct current, the lower the power consumption.

負荷用FETの交流抵抗値はGaAsの場合、きわめて
高く、場合によると負性抵抗を示すこともある。交流抵
抗値が商すぎると利得は大きくなるが、帯域が狭くなる
欠点がある。また負性抵抗を示すと動作点が不安定にな
ったり、発振したりする恐れがある。したがって交流抵
抗値は高ければ商いはと良いわけではなく、設計に依る
所望値に設定できることが重要である。しかしながらF
ETの飽和領域での抵抗値を再現性良く制御して製作す
ることは難かしく、従来の増幅器では所望の特性を得る
ことは事実上不可能であった。
The AC resistance value of the load FET is extremely high in the case of GaAs, and may exhibit negative resistance in some cases. If the AC resistance value is too high, the gain will be large, but the band will be narrowed. Furthermore, if negative resistance is exhibited, the operating point may become unstable or oscillation may occur. Therefore, the higher the AC resistance value, the better the performance, and it is important to be able to set it to a desired value depending on the design. However, F
It is difficult to manufacture an ET by controlling the resistance value in the saturation region with good reproducibility, and it has been virtually impossible to obtain desired characteristics with conventional amplifiers.

本発明の目的は交流信号に対する負荷FETの抵抗値を
所望の値に設定でき、しかも直流に対する抵抗値は交流
に対する抵抗値よりも必ず低くなる負荷FETを持った
G a A sモノリシック増幅器を提供することにあ
る。
An object of the present invention is to provide a GaAs monolithic amplifier having a load FET that can set the resistance value of the load FET to an AC signal to a desired value, and in which the resistance value to DC signals is always lower than the resistance value to AC signals. There is a particular thing.

本発明によれば電流飽和領域に動作点があるFETと線
形抵抗領域に動作点があるFETとの並列接続せしめた
回路を負荷として備えていることを特徴とするG aA
 sモノリシ、り増幅器が得られる。
According to the present invention, the G aA is characterized in that it is equipped with, as a load, a circuit in which an FET whose operating point is in a current saturation region and an FET whose operating point is in a linear resistance region are connected in parallel.
A monolithic amplifier is obtained.

第4図は本発明による(i aA sモノリシ、り増幅
器の構成パターン図、第5図はその等価回路図で21は
信号入力端子、22は信号出力端子、23はバイアス電
圧供給端子、24は接地端子、25は増幅用FET、2
6および27は負荷用FETで27のFETは動作点が
線形抵抗領域(未飽和領域)になるようにゲ゛−ト長を
長くしである。28はn形活性層、29は半絶縁性Ga
As基板である。
FIG. 4 is a configuration pattern diagram of an amplifier according to the present invention (ias monolithic), and FIG. 5 is an equivalent circuit diagram thereof, where 21 is a signal input terminal, 22 is a signal output terminal, 23 is a bias voltage supply terminal, and 24 is an equivalent circuit diagram. Ground terminal, 25 is amplification FET, 2
6 and 27 are load FETs, and the gate length of FET 27 is made long so that the operating point is in the linear resistance region (unsaturated region). 28 is an n-type active layer, 29 is a semi-insulating Ga
It is an As substrate.

第6図は本発明による負を1の電圧電流特性を説明する
だめの図で横軸Vは電圧、縦軸■は電流である。動作電
圧をVpとすると、負M PET 26は飽和領域に動
作点があるため電圧電流特性は31のようになる。一方
負荷F塾T27は線形抵抗領域に動作点があるだめ32
のようになる。本発明では両者が並列に接続されている
ため同一電圧に対して電流加算となり、総合では点線3
3に示す特性となる。前述したように飽和領域の交流抵
抗値はきわめて高く、これを制御するのは困難であるが
、線形抵抗領域では抵抗値ははぼゲート長に比例するた
め所望の値に設定することは容易である。
FIG. 6 is a diagram for explaining the voltage-current characteristic of negative 1 according to the present invention, in which the horizontal axis V represents voltage and the vertical axis {circle around (2)} represents current. If the operating voltage is Vp, the voltage-current characteristic of the negative M PET 26 is as shown in 31 since the operating point is in the saturation region. On the other hand, load F school T27 has an operating point in the linear resistance region, so 32
become that way. In the present invention, since both are connected in parallel, the current is added for the same voltage, and the total is 3 on the dotted line.
The characteristics are shown in 3. As mentioned above, the AC resistance value in the saturation region is extremely high and difficult to control, but in the linear resistance region, the resistance value is proportional to the gate length, so it is easy to set it to the desired value. be.

しかも飽和領域での交流抵抗値がきわめて高いため、並
列接続した場合の動作点Pでの交流抵抗値はほぼ線形抵
抗Ti’ETの抵抗値に等しくなる。
Furthermore, since the AC resistance value in the saturation region is extremely high, the AC resistance value at the operating point P when connected in parallel is approximately equal to the resistance value of the linear resistor Ti'ET.

第7図は本発明の他の実施例を示す構成パターン図で第
4図と同一素子には同一番号が付けられている。第7図
が桃4図と異なるのは負荷用FET26′および27′
にゲート電極が無いことである。
FIG. 7 is a structural pattern diagram showing another embodiment of the present invention, in which the same elements as in FIG. 4 are given the same numbers. The difference between Figure 7 and Figure 4 is the load FETs 26' and 27'.
There is no gate electrode.

したがって正確には26′および27’はFETてはな
く飽和特性を示す非線形抵抗となるが、前述の説明から
明らかなように負荷用Fli!Tではゲートとソースを
接続することにより非線形抵抗として使用しているので
、ゲート電極は無くても同様の動作が実現できる。ただ
しグー)111&が無いと特性が若干異なるので設計を
それに応じて変更する必要がある。
Therefore, to be precise, 26' and 27' are not FETs but nonlinear resistors exhibiting saturation characteristics, but as is clear from the above explanation, the load Fli! Since T uses the gate and source as a nonlinear resistor by connecting them, the same operation can be achieved even without the gate electrode. However, the characteristics will be slightly different without Goo) 111&, so the design needs to be changed accordingly.

第8図は本発明の他の実施例を示す構成パターン図で第
4図と同一素子には同一番号が付けられている。第8図
が第4図と異なるのは負荷用F′BT5− 27“のゲートがバイアス供給端子30に接続されてい
ることである。負荷用FET 27“のゲートバイアス
電圧を変化させると、線形抵抗領域の抵抗値が変る。し
たがって第8図の構成では増幅用1”ET25の交流負
荷抵抗を外部バイアス電圧により制御することが可能と
なる。
FIG. 8 is a structural pattern diagram showing another embodiment of the present invention, in which the same elements as in FIG. 4 are given the same numbers. The difference between FIG. 8 and FIG. 4 is that the gate of the load FET 5-27" is connected to the bias supply terminal 30. When the gate bias voltage of the load FET 27" is changed, the linear The resistance value in the resistance area changes. Therefore, in the configuration shown in FIG. 8, it is possible to control the AC load resistance of the amplifying 1" ET 25 by an external bias voltage.

以上図を用いて詳細に説明したように、本発明のG a
 A sモノリシック増幅器ではITを負荷とし、しか
も任意の交流抵抗値が得られるため集用に供して効果大
なるものがある。
As explained in detail using the figures above, the Ga of the present invention
As the As monolithic amplifier uses IT as a load and can obtain an arbitrary AC resistance value, it is highly effective for general use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の0aAsモノリシ、り増幅器の構成パタ
ーン図、第2図はその等価回路図で、1は信号入力端子
、2は信号出力端子、3はバイアス電圧供給端子、4は
接地端子、5は増幅用FET、6は負荷用FBTである
。第3図は負荷用PETの電圧電流特性を示す図で、1
1がその特性である。 第4図に本発明によるGaAsモノリシック増幅器の構
成パターン図、第5図はその等価回路図で、 6− 21は信号入力端子、22は信号出力端子、23に、バ
イアス電圧供給端子、24は接地端子、25は増幅用P
ET、26および27は負荷用FETである。第6図は
本発明による負荷の電圧電流特性を示す図で33がその
特性である。 第7図および第8図は本発明の他の実施例を示す図であ
り、26′および27′はグー)!極の無い負荷用FE
T、27”はバイアス供給端子30からゲートバイアス
電圧を供給しうるよ5にした負荷用FETである。 7− 第1図 3 P 第4.、図 擲、5図
Figure 1 is a configuration pattern diagram of a conventional 0aAs monolithic amplifier, and Figure 2 is its equivalent circuit diagram, where 1 is a signal input terminal, 2 is a signal output terminal, 3 is a bias voltage supply terminal, 4 is a ground terminal, 5 is an amplification FET, and 6 is a load FBT. Figure 3 is a diagram showing the voltage-current characteristics of load PET.
1 is its characteristic. Fig. 4 is a configuration pattern diagram of a GaAs monolithic amplifier according to the present invention, and Fig. 5 is its equivalent circuit diagram, in which 6-21 is a signal input terminal, 22 is a signal output terminal, 23 is a bias voltage supply terminal, and 24 is a grounding terminal. Terminal, 25 is P for amplification
ET, 26 and 27 are load FETs. FIG. 6 is a diagram showing the voltage-current characteristics of the load according to the present invention, and 33 is the characteristic. FIGS. 7 and 8 are diagrams showing other embodiments of the present invention, in which 26' and 27' are Goo!). FE for loads without poles
T, 27'' is a load FET which is set to 5 so that the gate bias voltage can be supplied from the bias supply terminal 30.

Claims (1)

【特許請求の範囲】[Claims] 電流飽和領域に動作点があるFETと線形抵抗領域に動
作点があるFETとを並列接続せしめた回路を負荷とし
て備えていることを特徴とするGaASモノリシ、り増
幅器。
A GaAS monolithic amplifier characterized in that it is equipped with, as a load, a circuit in which an FET whose operating point is in a current saturation region and an FET whose operating point is in a linear resistance region are connected in parallel.
JP57045870A 1982-03-23 1982-03-23 Gaas monolithic amplifier Pending JPS58162108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57045870A JPS58162108A (en) 1982-03-23 1982-03-23 Gaas monolithic amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045870A JPS58162108A (en) 1982-03-23 1982-03-23 Gaas monolithic amplifier

Publications (1)

Publication Number Publication Date
JPS58162108A true JPS58162108A (en) 1983-09-26

Family

ID=12731234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045870A Pending JPS58162108A (en) 1982-03-23 1982-03-23 Gaas monolithic amplifier

Country Status (1)

Country Link
JP (1) JPS58162108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072199A (en) * 1990-08-02 1991-12-10 The Boeing Company Broadband N-way active power splitter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102660A (en) * 1977-02-21 1978-09-07 Hitachi Ltd Push pull buffer circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102660A (en) * 1977-02-21 1978-09-07 Hitachi Ltd Push pull buffer circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072199A (en) * 1990-08-02 1991-12-10 The Boeing Company Broadband N-way active power splitter

Similar Documents

Publication Publication Date Title
JP3158759B2 (en) Differential amplifier with enhanced common-mode stability
US7205840B2 (en) Wideband CMOS gain stage
US3392342A (en) Transistor amplifier with gain stability
US4241314A (en) Transistor amplifier circuits
EP1014567B1 (en) Improvements in or relating to an operational amplifier
US4077012A (en) Amplifier devices
JPS58162108A (en) Gaas monolithic amplifier
US5124586A (en) Impedance multiplier
JPS5922245B2 (en) Teiden Atsubias Cairo
JPH04278705A (en) High frequency power amplifier
JPH051649B2 (en)
JP2509462Y2 (en) amplifier
JPH0754888B2 (en) Bias circuit
KR100918789B1 (en) Image display apparatus and high voltage driver circuit
JPH0511527U (en) Booster amplifier
JPS61145908A (en) Low frequency amplifier
JPH0746973Y2 (en) Temperature compensation voltage amplifier
JPH032988Y2 (en)
JPS58198911A (en) Field effect transistor amplifier
SU1584076A1 (en) Voltage repeater
JPS6325766Y2 (en)
JPS6314504A (en) Amplifier circuit
JPH0685553A (en) High frequency amplifier
JPS5811060Y2 (en) amplifier circuit
JPH05327368A (en) Amplifier circuit