JPS58161998A - Growth device for thin film crystal - Google Patents

Growth device for thin film crystal

Info

Publication number
JPS58161998A
JPS58161998A JP4166682A JP4166682A JPS58161998A JP S58161998 A JPS58161998 A JP S58161998A JP 4166682 A JP4166682 A JP 4166682A JP 4166682 A JP4166682 A JP 4166682A JP S58161998 A JPS58161998 A JP S58161998A
Authority
JP
Japan
Prior art keywords
valve
crystal
molecular beam
cells
holding part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4166682A
Other languages
Japanese (ja)
Other versions
JPS5948785B2 (en
Inventor
Shinichi Iguchi
井口 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4166682A priority Critical patent/JPS5948785B2/en
Publication of JPS58161998A publication Critical patent/JPS58161998A/en
Publication of JPS5948785B2 publication Critical patent/JPS5948785B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To prevent the contamination of the inside wall in a crystal growth chamber, by providing a partition valve between the crystal growth chamber and a holding part for molecular beam cells and circulating a reducing gas in the holding part for the cells. CONSTITUTION:A crystal growth chamber 1 and a holding part 4 for a molecular beam cell are partitioned with a partition valve 9. In the case of growing a group III-V compd. crystal, raw materials are charged into cells 5 while the valve 9 is held closed, whereafter a reducing gas is introduced through an introducing port 11 past a valve 10. At the point of the time when the pressure in the part 4 attains a prescribed pressure, a valve 13 is opened to discharge the gas through an evacuating port 13 and while the gas is kept distributed, the cells 5 are heated and the oxides in the raw materials are reduced and removed, then the valve 9 is opened to grow a thin film crystal of a group III-V compd. semiconductor on a substrate crystal 3 held in a holder 2.

Description

【発明の詳細な説明】 本発明は、■−v族化合物半導体の分子線結晶長装置(
MBE装置)の改良に関するも−のであMBEは従来の
液相成長(LPE)や気相成長(VPE)に比べて、制
御性、再現性が格段に優れており、また極博膜多層へテ
ロ構造を用いた量子i月形レーザダイオードや高電子移
動度を利用した高速トランジスタなどがMBE法により
実現されたことから、その有用性が認められてきた。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a molecular beam crystal length apparatus (
MBE has much better controllability and reproducibility than conventional liquid phase epitaxy (LPE) and vapor phase epitaxy (VPE), and also has extremely high film multilayer heterogeneity. The usefulness of the MBE method has been recognized since quantum I-lunar laser diodes using this structure and high-speed transistors using high electron mobility were realized using the MBE method.

MBE法における問題点の一つは、分子線ソースに使用
するGaなど■族元素の酸化物が原因となって、成長し
た結晶の表面に微小な欠陥が発生することである。
One of the problems with the MBE method is that minute defects are generated on the surface of the grown crystal due to the oxides of Group I elements such as Ga used in the molecular beam source.

通常Gaなど■族材料は高純度に精製されたものを使用
し、充分な注意を払って取り扱うが、表面酸化などによ
る微量の酸化物の混入は避けることができない。
Normally, group II materials such as Ga are used that have been purified to a high degree of purity and are handled with great care, but trace amounts of oxides cannot be avoided due to surface oxidation.

このため、MBE成長においては第1図に示す成長室1
.基板ホルダー2.基板結晶61分子線セル保持部41
分子線セル5.真空ポンプ6、基板準備室7.ゲートパ
ルプ8を備えた装置により従来分子線ソース材料を装置
にセットした後、高真空中で加熱することにより、酸化
物を蒸発させ取り除いていた。
For this reason, in MBE growth, the growth chamber 1 shown in FIG.
.. Board holder 2. Substrate crystal 61 Molecular beam cell holding part 41
Molecular beam cell5. Vacuum pump 6, substrate preparation room 7. Conventionally, after a molecular beam source material is set in an apparatus equipped with a gate pulp 8, oxides are evaporated and removed by heating in a high vacuum.

しかし、このような従来の方法では真空中でのJB蒸発
によって酸化物を除くため、除去に時間’MIJb)\
る。除去のスピードを上げるために温度をA’lぐする
き、ソース材料自体の蒸発がおこり材料のロスになる。
However, in this conventional method, the oxide is removed by JB evaporation in vacuum, so it takes time for removal.
Ru. When the temperature is increased to increase the speed of removal, evaporation of the source material itself occurs, resulting in material loss.

蒸発した酸化物が成長室の内壁その他に付着し許卑染の
原因となるおそれがあるなどの欠点があつた。
There were drawbacks such as the possibility that the evaporated oxides would adhere to the inner walls of the growth chamber and other surfaces, causing staining.

本発明は、上に述べた従来の問題点を解決するために、
Gaなど■族材料をHユガスなどの雰囲気中で加熱し還
元反応によって酸化物を除去し、しかも結晶成長室内壁
の汚染を防止することが可能な装置を提供するものであ
って、結晶成長室と分子線セル保持部分との間に仕切り
バルブを設け、か′″η子線セル保持部分に還元性ガス
を流通させ得るi構を設けたことを特徴としている。
In order to solve the above-mentioned conventional problems, the present invention has the following features:
The purpose of the present invention is to provide an apparatus capable of heating group III materials such as Ga in an atmosphere such as H gas, removing oxides through a reduction reaction, and preventing contamination of the inner walls of a crystal growth chamber. The present invention is characterized in that a partition valve is provided between the and the molecular beam cell holding portion, and an i-structure is provided that allows reducing gas to flow through the molecular beam cell holding portion.

以゛下、本発明を実施例について図面を用いて説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments and drawings.

第2図は本発明の装置を用いた結晶成長の一実施例を示
したものである。
FIG. 2 shows an example of crystal growth using the apparatus of the present invention.

第2図において、結晶成長室1と分子線セル保持部分4
とは仕切りバルブ9で仕切られている。
In Figure 2, a crystal growth chamber 1 and a molecular beam cell holding part 4 are shown.
and is separated by a partition valve 9.

GaAs結晶を成長させる場合、仕切りバルブ9を閉じ
た状態で、原料のGaおよびAsをそれぞれ分子線セル
5に投入し、真空ポンプ62で真空に排気した後、還元
性ガス導入口11よりバルブ1oを通して]鳴吻スを導
入する。分子線セル保持部4の中のHLガス圧力が/気
圧に達した時点で、バルブ16を開いてガス排気口12
よりH2ガスを排出する。以後H2ガスを流通させた状
態に保って、Gaの分子線セル5を加熱し、Ga中の酸
化物をH1ガスによって還元する。還元反応は例えば下
記のように起る。
When growing a GaAs crystal, with the partition valve 9 closed, the raw materials Ga and As are respectively introduced into the molecular beam cell 5 and evacuated using the vacuum pump 62. through] Introducing the proboscis. When the HL gas pressure in the molecular beam cell holding part 4 reaches /atmosphere, the valve 16 is opened and the gas exhaust port 12 is opened.
Emit more H2 gas. Thereafter, the Ga molecular beam cell 5 is heated while the H2 gas is kept flowing, and the oxides in Ga are reduced by the H1 gas. For example, the reduction reaction occurs as follows.

Ga、O+ HjL→、l Qa 十HヨOGaを単に
真空中で加熱することにより・Ga、 0を蒸−1すせ
る従来の方法に比べ、H1中で還元する木刀り法−では
反応の速度が速< N Ga□0が効率的に取り除かれ
る。
By simply heating Ga, O+ HjL→,l Qa 10Hyo OGa in a vacuum, compared to the conventional method in which Ga, 0 is vaporized, the reaction rate is reduced in the wooden cutting method in which it is reduced in H1. When the speed < N Ga□0 is efficiently removed.

Ga、Oが充分除かれた時点で、仕切りバルブ9を捌き
成長を開始する。
When Ga and O are sufficiently removed, the partition valve 9 is removed and growth is started.

1ヤ−1以上のように本発明の装置を用いると、H2ガ
スに1よる還元反応でGa中の酸化物を除くことができ
るため、酸化物の除去に要する時間が短い。還元中Qa
の温度を適当に保つことにより、Gaの蒸発によるロス
を少なくすることができる。還元反応中は仕切り′パル
プ9で成長室1との間を閉じているため、成長室を汚染
することがないなど、従来゛の1−V族化合物半導体薄
膜の成長方法に比べて非常に有利である。
When the apparatus of the present invention is used as described above, the oxides in Ga can be removed by a reduction reaction with H2 gas, so the time required for removing the oxides is short. Reducing Qa
By maintaining the temperature appropriately, loss due to evaporation of Ga can be reduced. During the reduction reaction, the partition 'pulp 9' closes off the growth chamber 1, so there is no contamination of the growth chamber, which is very advantageous compared to the conventional method for growing 1-V group compound semiconductor thin films. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の、第2図は本発明のそれぞれ薄膜結晶成
長装置の概略説明図である。 丁・・・成長室、2・・・基板ホルダー、6・・・基板
、結晶、4・中分子線セル保持部、5・・・分子線セル
、6・・・真11j’ ンフ、7・・・基板準備室、8
・・・ゲートバルブ、9・・・仕切りバルブ、10・・
・還元性ガース導入バルブ、11・・・還元性ガス導入
管、12・・・還元性ガス排気管、13・・・排気0バ
ルブ、62・・・分子線セル保持部用真空ポンプ。 71図 72図
FIG. 1 is a schematic explanatory diagram of a conventional thin film crystal growth apparatus, and FIG. 2 is a schematic illustration of a thin film crystal growth apparatus according to the present invention. D...Growth chamber, 2...Substrate holder, 6...Substrate, crystal, 4.Medium molecule beam cell holding part, 5...Molecular beam cell, 6...True 11j' 7. ... Board preparation room, 8
...Gate valve, 9...Partition valve, 10...
- Reducing gas introduction valve, 11... Reducing gas introduction pipe, 12... Reducing gas exhaust pipe, 13... Exhaust 0 valve, 62... Vacuum pump for molecular beam cell holding section. Figure 71 Figure 72

Claims (1)

【特許請求の範囲】[Claims] i、m−v族化合物半導体の分子線結晶成長装置におい
て、結晶成長室と分子線セル保持部分との間に仕切バル
ブを設け、かつ分子線セル保持部分に還元性ガスを流通
させ得る機構を設けたことを特徴とする薄膜結晶成長装
置。
In a molecular beam crystal growth apparatus for I, M-V group compound semiconductors, a partition valve is provided between the crystal growth chamber and the molecular beam cell holding part, and a mechanism is provided that allows reducing gas to flow through the molecular beam cell holding part. A thin film crystal growth apparatus characterized in that:
JP4166682A 1982-03-18 1982-03-18 Thin film crystal growth equipment Expired JPS5948785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166682A JPS5948785B2 (en) 1982-03-18 1982-03-18 Thin film crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166682A JPS5948785B2 (en) 1982-03-18 1982-03-18 Thin film crystal growth equipment

Publications (2)

Publication Number Publication Date
JPS58161998A true JPS58161998A (en) 1983-09-26
JPS5948785B2 JPS5948785B2 (en) 1984-11-28

Family

ID=12614705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166682A Expired JPS5948785B2 (en) 1982-03-18 1982-03-18 Thin film crystal growth equipment

Country Status (1)

Country Link
JP (1) JPS5948785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261294A (en) * 1985-05-14 1986-11-19 Nippon Telegr & Teleph Corp <Ntt> Method of molecular beam epitaxial growth and molecular beam source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261294A (en) * 1985-05-14 1986-11-19 Nippon Telegr & Teleph Corp <Ntt> Method of molecular beam epitaxial growth and molecular beam source

Also Published As

Publication number Publication date
JPS5948785B2 (en) 1984-11-28

Similar Documents

Publication Publication Date Title
JPS58161998A (en) Growth device for thin film crystal
US4824518A (en) Method for the production of semiconductor devices
JP2607239B2 (en) Molecular beam epitaxy equipment
JPS6329743Y2 (en)
JPS6060714A (en) Vapor-phase epitaxial crowing method for i-v group compound semiconductor
JP2528912B2 (en) Semiconductor growth equipment
JPH035051B2 (en)
JP2817356B2 (en) Molecular beam crystal growth apparatus and crystal growth method using the same
JPS6265996A (en) Production of compound semiconductor crystal
JPS60109218A (en) Device for epitaxial growth by molecular beam
JPS5895695A (en) Crystal growing apparatus with molecular beam
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS6344988Y2 (en)
JPS62128522A (en) Liquid growth method
JPS5922319A (en) Vapor growth of 3-5 group semiconductor
JPS62189727A (en) Apparatus for thermal decomposition vapor growth of organic metal
JPH05194085A (en) Method for forming thin high-temperature superconducting film
JPS6399524A (en) Crystal growth apparatus
JPS6473715A (en) Molecular beam crystal growth method
JPH025512A (en) Molecular beam epitaxial growth method and device thereof
JPH0262033A (en) Growth of compound semiconductor thin-film crystal
JPS62230693A (en) Vapor growth apparatus
JPS63138722A (en) Vapor growth apparatus
JPH04345017A (en) Manufacturing method of semiconductor device
JPS59220916A (en) Vapor phase growing method and device therefor