JPS5895695A - Crystal growing apparatus with molecular beam - Google Patents

Crystal growing apparatus with molecular beam

Info

Publication number
JPS5895695A
JPS5895695A JP19260381A JP19260381A JPS5895695A JP S5895695 A JPS5895695 A JP S5895695A JP 19260381 A JP19260381 A JP 19260381A JP 19260381 A JP19260381 A JP 19260381A JP S5895695 A JPS5895695 A JP S5895695A
Authority
JP
Japan
Prior art keywords
molecular beam
beam source
gas
oven
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19260381A
Other languages
Japanese (ja)
Other versions
JPH0339040B2 (en
Inventor
Junji Saito
淳二 斉藤
Hidetoshi Nishi
西 秀敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19260381A priority Critical patent/JPS5895695A/en
Publication of JPS5895695A publication Critical patent/JPS5895695A/en
Publication of JPH0339040B2 publication Critical patent/JPH0339040B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To expel impurities in a molecular beam source in a short time and form a semiconductor single crystal of high purity efficiently, by means of separate introducing and evacuating means for an atmospheric gas in molecular beam source oven chambers and dividing the molecular beam source oven chambers from a crystal growing chamber with gate valves. CONSTITUTION:Molecular beam source oven chambers 7, 8, 9 and 10, containing a material for a molecular beam source, and connecting to a crystal growing chamber 1 are respectively divided by gate valves 13, 14, 15 and 16 (through shutters 12), and gas introductory pipes (2a), (2b), (2c) and (2d) are separately connected to the respective oven chambers 7, 8, 9 and 10 through valves (3a), (3b), (3c) and (3d). In growing a single crystal with the above-mentioned apparatus, hydrogen is fed to the oven chamver 7 filled with Ga to reduce impurities, e.g. gallium oxide, contained therein. The reduced impurities are then discharged by an ion pump 17, and high-purity Ga is fed to the single crystal growing step. If the material for the molecular beam source is Al, NH4 is introduced thereinto as an introductory gas. The above-mentioned operations are similarly conducted in the oven chambers 8, 9 and 10.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は分子線結晶成長装置に係り、特に表面モホロジ
ーが良好で高純度の半導体結晶の得られる分子線結晶成
長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a molecular beam crystal growth apparatus, and more particularly to a molecular beam crystal growth apparatus capable of obtaining highly pure semiconductor crystals with good surface morphology.

(2)技術の背景 半導体薄膜のエピタキシャル成長装置としては種々の成
長装置が提案されている。
(2) Background of the Technology Various growth apparatuses have been proposed as epitaxial growth apparatuses for semiconductor thin films.

一般的には液相エピタキシャル成長装置および気相エピ
タキシャル成長装置が知られているが、これらのエピタ
キシャル成長装置は結晶成長中の制御は主に温度だけで
定まるのに比べて多くのパラメータて紬昌威長の基板制
御ができる分子線結晶成長装置(MBE)によって得ら
れる半導体結晶はその高純度性から期待されている。
Liquid-phase epitaxial growth equipment and vapor-phase epitaxial growth equipment are generally known, but in these epitaxial growth equipment, control during crystal growth is determined mainly by temperature, and many parameters are required. Semiconductor crystals obtained by a molecular beam crystal growth apparatus (MBE) that allows substrate control are expected to have high purity.

上記MBE装置は各種のパラメータを精密に制御できる
高級な真空蒸着装置であり、その構造は1個または複数
個のセル型ルツボから蒸発させた成分元素をビーム状に
して基板に照射し、該基板の表面をエピタキシャル成長
させるようにしたもので基板に捕えられない分子は真空
系で運び去られ、常に分子線源オーブンのルツボかも蒸
発した新鮮な分子ビームを基板表面に照射している。基
板に到達する各元素の分子数は蒸着系の幾何学的形状と
蒸着源温度によって一義的に決定され、従って結晶の成
長速度、添加不純物の濃度等を正確に制御することが可
能であり、通t#晶の成長速度は数A〜数μ/hrであ
る。
The above MBE apparatus is a high-grade vacuum evaporation apparatus that can precisely control various parameters, and its structure is such that component elements evaporated from one or more cell-type crucibles are irradiated onto the substrate in the form of a beam. Molecules that are not captured by the substrate are carried away in a vacuum system, and the substrate surface is constantly irradiated with a fresh molecular beam that has been evaporated from the crucible of the molecular beam source oven. The number of molecules of each element that reaches the substrate is uniquely determined by the geometry of the deposition system and the temperature of the deposition source, so it is possible to accurately control the crystal growth rate, concentration of added impurities, etc. The growth rate of regular t# crystals is several A to several μ/hr.

上述の如きMBE装置においては結晶成長室内を超高真
空に保って分子線源材料を加熱して分子ビームを放出し
ているが分子線源材料は分子線源オープンに挿入される
際に大気にさらされるため表面が酸化される。この酸化
物を除去するためには長時間分子線源材料を加熱すると
共に超高真空中でガスを排出させなければならなかった
。しかしこのガス排出方法では分子線源材料の酸化物が
極めて安定なので酸素等のガス成分を排出するのに長時
間を要し、完全にこれを排出することができなかった。
In the above-mentioned MBE apparatus, the inside of the crystal growth chamber is kept in an ultra-high vacuum and the molecular beam source material is heated to emit a molecular beam. However, when the molecular beam source material is inserted into the open molecular beam source, it is exposed to the atmosphere. The surface becomes oxidized due to exposure. In order to remove this oxide, it was necessary to heat the molecular beam source material for a long time and to exhaust the gas in an ultra-high vacuum. However, in this gas exhaust method, the oxide of the molecular beam source material is extremely stable, so it takes a long time to exhaust gas components such as oxygen, and it is not possible to completely exhaust gas components such as oxygen.

さらに分子線源材料の多くをガスの排出に使用するため
結晶成長に有効に利用できず、分子線源材料の酸化物を
短時間に排出することのできる分子線結晶成長装置が要
望されていた。
Furthermore, much of the molecular beam source material is used for gas evacuation and cannot be used effectively for crystal growth, and there is a need for a molecular beam crystal growth apparatus that can exhaust the oxides of the molecular beam source material in a short period of time. .

(3)従来技術の問題点 第1図は従来のMBE@置の略練的構威を示すもので分
子線結晶装置の結晶成長室1内に複数の分子線源材料ル
ツボに入れ、該ルツボの周囲に加熱用ヒータ11を巻き
回した分子線源オーブン7゜8.9.10を有し、これ
ら分子線源オーブンには分子線源材料としてたとえばヒ
素(As) 、アルミニウム(AI) 、ガリウム(G
a) 、ドーパントとしてシリコン(St)等が充填さ
れている0分子線源オーブン?、8.9.10の前面に
はシャッタ12が配され、さらに基板ホルダー4上に基
板5が載置され、基板ホルダー4の裏面に、はヒータ6
を有し、加熱される。
(3) Problems with the prior art Figure 1 shows a schematic configuration of a conventional MBE @ system. The molecular beam source oven 7°8.9.10 has a heater 11 wound around it, and these molecular beam source ovens contain molecular beam source materials such as arsenic (As), aluminum (AI), and gallium. (G
a) 0 molecular beam source oven filled with silicon (St) etc. as a dopant? , 8.9.10, a shutter 12 is disposed on the front side, a substrate 5 is placed on the substrate holder 4, and a heater 6 is placed on the back side of the substrate holder 4.
and is heated.

上記構成において結晶成長室1を超高真空としたとえば
10”−′。Torr以下として、シャッタを閉鎖状態
にして分子線源オーブン?、8.9.10が加熱される
。たとえば、分子線源材料としてGaであればGaの表
面はGay  Osの酸化物となり、AIであれば表面
はAI 2.0の1化物となっている。
In the above configuration, the crystal growth chamber 1 is set to an ultra-high vacuum of, for example, 10"-' Torr or less, and the molecular beam source oven is heated with the shutter closed. For example, the molecular beam source material In the case of Ga, the surface of Ga is an oxide of Gay Os, and in the case of AI, the surface is a monide of AI 2.0.

これら酸化物は非常に安定で真空中では1200℃の高
温で加熱すると次の如き反応を生ずる。
These oxides are very stable, and when heated at a high temperature of 1200° C. in vacuum, the following reaction occurs.

Ga 2 0 m + 4 Gトーサ3 Ga 20す
なわちGazOが蒸気となってGaの分子ビームと共に
Gas  02より飛び出す、この場合上記Ga20s
やAlzOは極めて安定であるから長時間に亘ってGa
yO等のガス成分がGaの分子ビーム中に混入して結晶
成長時の純度をそこなう、そこでこれらGa2O等のガ
スを長い時間排気しなければならないが完全に除去でき
ないだけでなくGa等の分子線源材料を消費するために
、実際のMBE時にこれら材料が不足する等の欠点を有
していた。
Ga 2 0 m + 4 G tosa 3 Ga 20, that is, GazO, turns into vapor and flies out from Gas 02 together with the molecular beam of Ga. In this case, the above Ga20s
Since Ga and AlzO are extremely stable, Ga
Gas components such as yO mix into the molecular beam of Ga and impair the purity during crystal growth. Therefore, these gases such as Ga2O must be exhausted for a long time, but not only can they not be completely removed, but also the molecular beam of Ga etc. Since the source materials are consumed, these materials are in short supply during actual MBE.

すなわち、結晶成長室自社充填した分子線源材料は、充
填時に一度大気にさらされているため、表面が酸化する
が、非常に微量ではあるが酸化物以外の不純物も含まれ
ている。従来、この不純物を除去するために超高真空中
で長時間分子線源材料を高温で加熱し、不純物のガス出
しを行っている。しかし、この方法では不純物の蒸気圧
が低いために分子線源材料を消費する。そのうえ、高温
での加熱を必要とするため、充填した分子線源材料の多
くをガス出し時に消費してしまい、結晶成長に有効に使
えず、また、完全に不純物を除去できないという欠点が
あった。
In other words, the molecular beam source material filled in-house in the crystal growth chamber is exposed to the atmosphere once during filling, so the surface becomes oxidized, but it also contains impurities other than oxides, albeit in very small amounts. Conventionally, in order to remove these impurities, the molecular beam source material is heated at high temperature for a long time in an ultra-high vacuum to gas out the impurities. However, this method consumes molecular beam source material due to the low vapor pressure of impurities. Furthermore, since it requires heating at high temperatures, much of the packed molecular beam source material is consumed during gas release, making it ineffective for crystal growth, and impurities cannot be completely removed. .

(4)発明の目的 本発明は上記従来の欠点に鑑み、分子線源材料を有する
分子線源オーブンと結晶成長室とを分離させ、該分子線
源オープン中の分子線源材料に応じた活性ガスを該分子
線源オーブンに流入して、該分子線源材料を活性ガス中
で加熱することによって分子線源材料中に含まれる不純
物を上記活性ガスと化学的に反応させて排気して短時間
に高純度の半導体結晶が得られる分子線結晶成長装置を
提供することを目的とするものである。
(4) Purpose of the Invention In view of the above-mentioned conventional drawbacks, the present invention separates a molecular beam source oven having a molecular beam source material from a crystal growth chamber, and adjusts the activity according to the molecular beam source material while the molecular beam source is open. A gas is flowed into the molecular beam source oven and the molecular beam source material is heated in the active gas, thereby causing impurities contained in the molecular beam source material to chemically react with the active gas and being evacuated. The object of the present invention is to provide a molecular beam crystal growth apparatus that can obtain highly pure semiconductor crystals in a short time.

(5)発明の構成 そしてこの目的は本発明によれば、結晶成長室と1個ま
たは複数の分子線源オーブンをゲートバルブを介して仕
切り、該各分子噛源オーブンにそれぞれ別々に排気手段
を設け、峡分子線源オーブンに配設した分子線源材料に
応じた活性ガスを該オープン内に導入し、該分子線源材
料に含まれている不純物と該活性ガスを反応させるよう
にしてなる分子線結晶成長装置を提供することによりて
達成される。
(5) Structure and object of the invention According to the present invention, a crystal growth chamber and one or more molecular beam source ovens are partitioned via a gate valve, and each molecular beam source oven is provided with a separate exhaust means. An active gas corresponding to the molecular beam source material disposed in the molecular beam source oven is introduced into the open, and the active gas is caused to react with impurities contained in the molecular beam source material. This is achieved by providing a molecular beam crystal growth apparatus.

(6)発明の実施例 以下、本発明の1実施例を第2図および第3図について
詳記する。
(6) Embodiment of the Invention Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 2 and 3.

第2図は本発明の分子線結晶成長装置の路線図であり、
第3IlIは分子線源オープンの1つを拡大した路線図
を示すものであり、第1図と同一部分には同一符号を付
して重複説明を省略する。結晶成長室1内には基板r1
ダー4、基板5、ヒータ6を有し、複数の分子線源オー
プン?、8.9゜10はゲートパルプ13,14.15
.16によって結晶成長室1から仕切られ、イオンポン
プ17.1B、19.20によって個別に排気できるよ
うになっている。
FIG. 2 is a route map of the molecular beam crystal growth apparatus of the present invention,
3IlI shows an enlarged route map of one of the open molecular beam sources, and the same parts as in FIG. Inside the crystal growth chamber 1 is a substrate r1.
Has multiple molecular beam sources open? , 8.9°10 is gate pulp 13, 14.15
.. It is separated from the crystal growth chamber 1 by 16, and can be individually evacuated by ion pumps 17.1B and 19.20.

各分子線源オーブン7.8,9.10の真空室にはガス
導入管2a、2b、2c、2dと弁3 a +3b、3
c、3dを有し、各分子線源オープン内に活性ガスを導
入できるように構成されている。
The vacuum chambers of each molecular beam source oven 7.8, 9.10 are equipped with gas introduction pipes 2a, 2b, 2c, 2d and valves 3a + 3b, 3.
c and 3d, and is configured so that active gas can be introduced into each molecular beam source open.

各分子線篩オープン?、8.9.10内には第3図に示
すようにセル21内に分子線源材料22のA1. Ga
、 Sl、 As等が挿入され、加熱用ヒータ11がセ
ルに巻き回されている。
Each molecular beam sieve open? , 8.9.10, A1. of the molecular beam source material 22 is placed in the cell 21 as shown in FIG. Ga
, Sl, As, etc. are inserted, and a heating heater 11 is wound around the cell.

今、分子線源材料としてGaがセル21内に挿入された
とすれば分子線源オーブン7内に導入管2aの弁3aを
調整して水素(H)を導入する。
Now, if Ga is inserted into the cell 21 as a molecular beam source material, hydrogen (H) is introduced into the molecular beam source oven 7 by adjusting the valve 3a of the introduction tube 2a.

このとき分子線源オープン内に水素を〜X 10’To
rr程度流入させてゲートパルプ13、およびシャッタ
12を閉じた状態でGaを800℃程度で加熱すれば次
の如き還元反応を生ずる。
At this time, hydrogen is introduced into the open molecular beam source ~X 10'To
If Ga is heated to about 800° C. with the gate pulp 13 and shutter 12 closed after approximately rr inflow, the following reduction reaction will occur.

Ga20s + 2  Hz−→Gat O+ 2 8
20この状態では通常、成長に使うGaの分子線源温度
(約1000℃以上)に較べて充分低いのでほとんど蒸
発することなくGatOと共に2 N20 (水)蒸気
となって飛び出して短時間にGa酸化物を排出する。排
出されたガスはイオンポンプ17により排気される。同
様に分子線源オープン8内にAIを分子線源材料として
挿入した場合には流入ガスとしてアンモニア(NHa)
を導入管2bの弁3bを調整して導入し、^lを800
℃で加熱すればAl2OがN1(iによって還元され酸
素を除去することができる。
Ga20s + 2 Hz-→Gat O+ 2 8
20 In this state, the temperature is usually sufficiently low compared to the Ga molecular beam source temperature used for growth (approximately 1000°C or higher), so the 2N20 (water) vapor is released together with GatO without evaporating, and Ga oxidizes in a short time. eject things. The exhausted gas is exhausted by the ion pump 17. Similarly, when AI is inserted as the molecular beam source material into the molecular beam source open 8, ammonia (NHa) is used as the inflow gas.
Adjust the valve 3b of the introduction pipe 2b and introduce the
When heated at ℃, Al2O is reduced by N1(i) and oxygen can be removed.

同様に他の分子線源材料の場合も、それらを還元するよ
うな活性ガスを導入管より流入させて、還元後排気させ
て真空にすることで分子線源材料に応じた還元を行うこ
とが可能となる。
Similarly, in the case of other molecular beam source materials, it is possible to perform reduction according to the molecular beam source material by introducing an active gas that reduces them through the introduction tube, and after reduction, exhausting to create a vacuum. It becomes possible.

(7)発明の効果 以上、詳細に説明したように本発明の分子線結晶成長装
置によれば分子線源材料中に含まれる不純物を活性ガス
と化学反応させガスとして放出除去できるので、極めて
短時間に酸化物を放出し得ると共に分子線源材料に応じ
て活性ガスが選択できる特徴を有する。
(7) Effects of the Invention As explained in detail above, the molecular beam crystal growth apparatus of the present invention allows impurities contained in the molecular beam source material to be chemically reacted with an active gas and released as a gas and removed in an extremely short period of time. It has the characteristics that it can release oxides over time and that active gas can be selected depending on the molecular beam source material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の分子線結晶成長装置の路線的平面図、第
2図は本発明の分子線結晶成長装置の路線的平面図、第
3図は第2図の分子線源オープン部分の拡大平面図であ
る。 1・・・結晶成長室、4・・・基板ホルダー、5・・・
基板、?、8.9.10・・・分子線源オープン、13
.14,15.16・・・ゲートパルプ、17.1B、
19.20・・・イオンポンプ、21・・・セル、22
・・・分子線源材料。 第 2 図 第 3図
Figure 1 is a schematic plan view of a conventional molecular beam crystal growth apparatus, Figure 2 is a schematic plane view of the molecular beam crystal growth apparatus of the present invention, and Figure 3 is an enlarged view of the open portion of the molecular beam source in Figure 2. FIG. 1... Crystal growth chamber, 4... Substrate holder, 5...
substrate,? , 8.9.10...Molecular beam source open, 13
.. 14,15.16...Gate pulp, 17.1B,
19.20...Ion pump, 21...Cell, 22
...Molecular beam source material. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 結晶成長室と1個または複数の分子線源オーブンをゲー
トパルプを介して仕切り、該各分子線源オーブンにそれ
ぞれ別々に導入排気手段を設け、該分子線源オーブンに
配設した分子線源材料に応じた活性ガスを該オーブン内
に導入し、該分子線源材料に含まれている不純物と該活
性ガスを反応させるようにしてなる分子線結晶成長装置
A crystal growth chamber and one or more molecular beam source ovens are partitioned via a gate pulp, each of the molecular beam source ovens is provided with a separate introduction/exhaust means, and the molecular beam source material is disposed in the molecular beam source oven. 1. A molecular beam crystal growth apparatus which introduces an active gas into the oven and causes the active gas to react with impurities contained in the molecular beam source material.
JP19260381A 1981-11-30 1981-11-30 Crystal growing apparatus with molecular beam Granted JPS5895695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19260381A JPS5895695A (en) 1981-11-30 1981-11-30 Crystal growing apparatus with molecular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19260381A JPS5895695A (en) 1981-11-30 1981-11-30 Crystal growing apparatus with molecular beam

Publications (2)

Publication Number Publication Date
JPS5895695A true JPS5895695A (en) 1983-06-07
JPH0339040B2 JPH0339040B2 (en) 1991-06-12

Family

ID=16294005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19260381A Granted JPS5895695A (en) 1981-11-30 1981-11-30 Crystal growing apparatus with molecular beam

Country Status (1)

Country Link
JP (1) JPS5895695A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261294A (en) * 1985-05-14 1986-11-19 Nippon Telegr & Teleph Corp <Ntt> Method of molecular beam epitaxial growth and molecular beam source
JPH0524974A (en) * 1991-10-22 1993-02-02 Nec Corp Molecular beam crystal growing device
US5989339A (en) * 1994-09-04 1999-11-23 Sony Corporation MBE system and semiconductor device fabricated, using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261294A (en) * 1985-05-14 1986-11-19 Nippon Telegr & Teleph Corp <Ntt> Method of molecular beam epitaxial growth and molecular beam source
JPH0524974A (en) * 1991-10-22 1993-02-02 Nec Corp Molecular beam crystal growing device
US5989339A (en) * 1994-09-04 1999-11-23 Sony Corporation MBE system and semiconductor device fabricated, using same

Also Published As

Publication number Publication date
JPH0339040B2 (en) 1991-06-12

Similar Documents

Publication Publication Date Title
JPS5895695A (en) Crystal growing apparatus with molecular beam
JPS6369219A (en) Molecular beam source cell
JP2577542B2 (en) Semiconductor crystal growth equipment
JPS61260622A (en) Growth for gaas single crystal thin film
JPS6132414A (en) Thin film forming equipment
JPS6272113A (en) Molecular beam crystal growth device
JPH039076B2 (en)
JPH02199820A (en) Vapor phase treatment apparatus
JPS6153197A (en) Crystal growth device
JPH05243283A (en) Epitaxial growth device and growth method
JPH0212814A (en) Crystal growth method of compound semiconductor
JPS6120513B2 (en)
JPH02160693A (en) Vapor phase epitaxial growth unit
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JPH039077B2 (en)
JP2719281B2 (en) Knudsen cell for low temperature
JPS5833823A (en) Molecular beam epitaxial growth apparatus
JPS61117193A (en) Method for growing crystal
JPS6294920A (en) Source for generating molecular beam
JPS61151093A (en) Vapor-phase epitaxial growth of semiconductor of group iii-v compound
JPS61261296A (en) Method of molecular beam epitaxial growth of single crystal thin film and device for generating atomic hydrogen used in said method
JPS6233420A (en) Formation of gaas thin film
JPS6379315A (en) Growth of iii-v compound single crystal
JPH0243720A (en) Molecular beam epitaxial growth method
JPH01305890A (en) Device for growing crystal by molecular beam