JPS5816175A - Method and device for separating air - Google Patents

Method and device for separating air

Info

Publication number
JPS5816175A
JPS5816175A JP11368481A JP11368481A JPS5816175A JP S5816175 A JPS5816175 A JP S5816175A JP 11368481 A JP11368481 A JP 11368481A JP 11368481 A JP11368481 A JP 11368481A JP S5816175 A JPS5816175 A JP S5816175A
Authority
JP
Japan
Prior art keywords
column
air
conduit
oxygen
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11368481A
Other languages
Japanese (ja)
Other versions
JPS6119904B2 (en
Inventor
正博 山崎
染矢 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11368481A priority Critical patent/JPS5816175A/en
Publication of JPS5816175A publication Critical patent/JPS5816175A/en
Publication of JPS6119904B2 publication Critical patent/JPS6119904B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、深冷分離法による空気力M#法および装置に
係Q1特に、窒素を多Iに採J[Mt、、かつ酸素を少
量採取するに好適なプロセスを有する空気分離法および
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aerodynamic M# method and apparatus using a cryogenic separation method. In particular, the present invention provides a process suitable for extracting a large amount of nitrogen [Mt] and a small amount of oxygen. The present invention relates to an air separation method and apparatus having the following features.

従来の深冷分離法による空気分離法」?よび装置を第1
図によシ説明する。第1図t、1、原料空気の圧力よシ
約14/cr/IG程度圧力の低い窒素を多量に採取し
、かつ、少量の酸素を採取する空気分離装置の基本構成
を示すプロセス系統図である。第1図で、圧力が約6 
時/ cl Oの原料空気は導管lより主熱交換器2へ
供給され、主熱交換器2で約−170℃まで冷却後、導
管3を紅て精留填下塔(以下、下塔と略)4に供給され
る。下塔4には多数の棚段5が内股されておシ、その上
部からは製品窒素が、また、その下部からは酸素公約3
0−程度の液体空気が抜出される。この場合、下塔4上
部から抜出し得る製品窒素量には、下塔4の操作圧力、
棚段5数、製品窒素の純度および酸素。
“Air separation method using conventional cryogenic separation method”? and equipment first.
This will be explained with the help of a diagram. Figure 1 is a process system diagram showing the basic configuration of an air separation device that collects a large amount of nitrogen at a pressure lower than the pressure of the raw air, about 14/cr/IG, and a small amount of oxygen. be. In Figure 1, the pressure is approximately 6
The feed air of 1 hour/cl O is supplied to the main heat exchanger 2 through the conduit 1, and after being cooled down to approximately -170°C in the main heat exchanger 2, it is sent to the conduit 3 and sent to the rectification filling lower column (hereinafter referred to as the lower column). omitted) 4. The lower column 4 has a large number of trays 5, from the upper part of which the product nitrogen is supplied, and from the lower part of which the oxygen supply 3.
0-degree liquid air is extracted. In this case, the amount of product nitrogen that can be extracted from the upper part of the lower column 4 includes the operating pressure of the lower column 4,
5 number of shelves, product nitrogen purity and oxygen.

窒素、アルゴン等の空気成分の熱力学的な性質によシ理
論的な上限値が存在する。例えば、下塔4の操作圧力が
約6 KSI / (i Gで99.94以上の高純度
窒素を得るには、製品窒素量の2.5〜3倍程度の量の
原料空気を下塔4へ供給する必要がある。
A theoretical upper limit exists depending on the thermodynamic properties of air components such as nitrogen and argon. For example, in order to obtain high purity nitrogen with an operating pressure of approximately 6 KSI/(iG of 99.94 or higher), feed air in an amount approximately 2.5 to 3 times the amount of product nitrogen must be pumped into the lower column 4. need to be supplied to

精留塔上塔(以下、上塔と略)6下部から製品酸素を得
るための原料として、下塔4下部から抜出された液体空
気は、導管7を経て膨張弁8に↓シ上塔6の操作圧力約
04に9/cdGまで膨張後、導管9を経て上塔6上部
へ供給される。上塔6上部へは、この他に、主熱交換器
2の中間で原料空気よシ分流し、導管10.弁11.導
管12を経た空気と、導管3の途中で原料空気よシ分流
し、導管13.弁14を経た空気が合流し、導管15を
経て空気分離装置の寒冷損失を補償するための装置であ
る膨張タービン16に供給され、導管17を紅で膨張タ
ービン16で膨張した空気も供給される。上塔6」一部
に供給された液体空気は、上塔6に内股さり、た棚段1
8上を流れ落ち、上塔6底部に設置さノ]、た主凝縮器
19内で蒸発して上#E6内を上昇する蒸気と接触する
内に精留され99%以上の高純度酸素が」二基6下部で
得られる。この場合、酸素を分Mf、するために必要な
液体空気の最少必要1−1土塔6の操作圧力、棚段18
数、液体空気の酸素濃度、製品酸素の純度および酸素、
窒素、アルゴン等の空気成分の熱力学的な性質により理
論1貢できる。例えば、上塔6の操作圧力が0.4 ?
/、ffl Gで純度99−以上の高純度酸素を得るに
は、液体空気の酸素濃度が約30チであるので、酸素量
の約4〜5倍程度の量の液体空気を上塔6へ供給する必
要がある。
The liquid air extracted from the lower part of the lower column 4 as a raw material for obtaining product oxygen from the lower part of the upper column (hereinafter referred to as the upper column) 6 passes through the conduit 7 to the expansion valve 8 ↓ to the upper column. After being expanded to an operating pressure of about 0.6 to 9/cdG, it is fed to the upper part of the upper column 6 via conduit 9. In addition to this, raw air is diverted to the upper part of the upper tower 6 at the middle of the main heat exchanger 2, and a conduit 10. Valve 11. The air that has passed through the conduit 12 is separated from the raw material air in the middle of the conduit 3, and the air is separated from the raw material air in the conduit 13. The air that has passed through the valve 14 joins and is supplied via a conduit 15 to an expansion turbine 16, which is a device for compensating the cooling loss of the air separation device, and the air expanded by the expansion turbine 16 is also supplied through a conduit 17. . The liquid air supplied to a part of the upper tower 6 is internally connected to the upper tower 6, and the liquid air is
The oxygen flows down the top of the upper tower 6], evaporates in the main condenser 19, and is rectified while coming into contact with the vapor rising in the upper tower 6, producing high purity oxygen of over 99%. Two units are obtained at the bottom of 6. In this case, the minimum required amount of liquid air to produce oxygen is 1-1.
number, liquid air oxygen concentration, product oxygen purity and oxygen,
The thermodynamic properties of air components such as nitrogen and argon can contribute to this theory. For example, the operating pressure of upper tower 6 is 0.4?
/,ffl In order to obtain high purity oxygen with a purity of 99 or higher using G, the oxygen concentration of liquid air is about 30 g, so an amount of liquid air that is about 4 to 5 times the amount of oxygen must be sent to the upper tower 6. need to be supplied.

なお、窒素は、下塔4上部よυ抜出され、導管加を経て
主熱交換器2で温度回復後、導管21よ〕製品窒素とし
て採取され、また、酸素は、上塔6下部よシ抜出され、
導管nを経て主熱交庚器2で温度回復後、導管列より製
品酸素として採取される。
In addition, nitrogen is extracted from the upper part of the lower column 4, passed through a conduit, and after temperature recovery in the main heat exchanger 2, is collected as product nitrogen through the conduit 21. Oxygen is extracted from the lower part of the upper column 6. Extracted,
After the temperature is recovered in the main heat exchanger 2 through the conduit n, it is collected as product oxygen from the conduit row.

酸素が分離された残シの廃ガスは、上塔6上部よシ抜出
され、導管列を経て主熱交換器2で温度回復後、導管5
より不純窒素として取出される。
The residual waste gas from which oxygen has been separated is extracted from the upper part of the upper tower 6, passes through a line of conduits, recovers its temperature in the main heat exchanger 2, and then enters the conduit 5.
It is extracted as impure nitrogen.

上記7のような構成およびプロセスを有する従来の空気
分離装置では、酸素量と無関係に液体空気量が決まって
しまうため、下塔5で窒素を分離した残りの液体空気の
全量が上塔6へ供給されることになり、少量の酸素しか
必要ない場合は、液体空気の圧力的6に9/iGが利用
されずに0.41’l/iGtで圧力を無駄に低下させ
ておシ、エネルギが十分利用できないといった欠点があ
った。また、液体空気の酸素濃度の関係から上塔6の塔
径をこれ以上細く、かつ棚段数を少なくできないといっ
た問題もあった。
In a conventional air separation device having the configuration and process as described in 7 above, the amount of liquid air is determined regardless of the amount of oxygen, so the entire amount of liquid air remaining after nitrogen is separated in the lower column 5 is sent to the upper column 6. If only a small amount of oxygen is required, the pressure of liquid air will not be utilized and the pressure will be reduced to 0.41'l/iGt, resulting in a waste of energy. The disadvantage was that it was not fully usable. Further, due to the oxygen concentration of the liquid air, there was a problem in that the diameter of the upper column 6 could not be made any smaller and the number of plates could not be reduced any further.

本発明の目的は、上記欠点の除去および上記問題の解決
を目的としたもので、圧力的61’f/cdGの液体空
気を選定された操作圧力下において蒸発させるためのリ
ボイラコンデンサを設置し、リボイラコンデンサで液体
空気から蒸発した空気によシ膨張タービンを駆動し寒冷
を発生させ、空気分離装置の寒冷損失の補償を行い、ま
た、リボイラコンデンサ内で酸素濃度が一段と高まった
液体窓本発明の一実施例を第2図によυ説明する。第2
図で、第1図と同−機器等は同一符号で示し説明を省略
する。部は下塔4上部に設置された第1リボイラコンデ
ンサで、第1リボイラコンデンサ加上部は、下塔4下部
と膨張弁8を継部に設けた導管7.27によシ連結され
ている。また、第1リボイラコンデンサ加他の上部から
の導管あが主熱交換器2内を通シ膨張タービン】6の入
口側に連結され、膨張タービン16の出口側からの導管
列は上塔6上部から主熱交換器2に入る導管列に連結さ
れている。更に、第1リボイラフンデンサ26下部と上
塔6上部は膨張弁31を継部に設けた導管(資)。
The object of the present invention is to eliminate the above-mentioned drawbacks and to solve the above-mentioned problems by installing a reboiler condenser for evaporating liquid air of pressure 61'f/cdG under a selected operating pressure. The air evaporated from the liquid air in the reboiler condenser drives an expansion turbine to generate refrigeration, thereby compensating for the refrigeration loss of the air separation device. One embodiment will be explained with reference to FIG. Second
In the figure, the same equipment as in FIG. 1 is denoted by the same reference numerals and the explanation thereof will be omitted. The section is a first reboiler condenser installed at the upper part of the lower column 4, and the first reboiler condenser boosting section is connected to the lower part of the lower column 4 by a conduit 7.27 having an expansion valve 8 at the joint. In addition, conduits from the upper part of the first reboiler condenser and others pass through the main heat exchanger 2 and are connected to the inlet side of the expansion turbine 6, and conduits from the outlet side of the expansion turbine 16 are connected to the upper part of the upper tower 6. It is connected to a bank of conduits entering the main heat exchanger 2 from the main heat exchanger 2 . Further, the lower part of the first reboiler fundenser 26 and the upper part of the upper tower 6 are conduits with an expansion valve 31 installed at the joint.

諺によシ連結されている。33は上塔6底部に設置され
た第2リボイラコンデンザである。
As the saying goes, it is connected. 33 is a second reboiler condenser installed at the bottom of the upper tower 6.

このような構成によれば、圧力が約6Ky / d G
の原料空気は導管lより主熱交換器2へ供給され、ここ
で約−170°Cまで冷却された後に導管3を経て下塔
4に供給される。その後、下塔4上部から製品窒素が量
的に従来技術と同様の制限を受は抜出される。一方、下
塔4下部からは酸素公約30チ程度の液体空気が抜出さ
れ、導管7.膨張弁8、導管nを経て第1リボイラコン
デンサかに供給される。この場合、第1リボイラコンデ
ンサがの操作圧力は、液体空気が下塔4上部の窒素で熱
せられ蒸発できる程度の圧力(約1〜3 KP/d G
)に選定される。第1リボイラコンデンサかで液体空気
よシ蒸発した空気は、導管列によp主熱交換器に戻り、
原料空気と熱交換して約−160℃近傍まで温度回復し
、導管あを経て膨張タービン16に供給される。膨張タ
ービン16で約0.4に6’/cIIGまで断熱膨張す
ることにより、寒冷が発生し、空気の温度が低下し、空
気分離装置の寒冷損失が補償される。この場合、膨張タ
ービン16に別途原料空気を供給する必要がなく、窒素
および酸素採取用の原料空気のみで済むため、原料空気
量が減量16を出た空気は導管四を経て」−塔6からの
廃ガスと合流し導管列を経て主熱交換器2で温度回復し
た後に導管6よシネ純窒素として取出される。
According to such a configuration, the pressure is approximately 6 Ky/dG
The feed air is supplied to the main heat exchanger 2 through the conduit 1, where it is cooled to about -170°C, and then supplied to the lower column 4 through the conduit 3. Thereafter, the product nitrogen is withdrawn from the upper part of the lower column 4, subject to the same quantitative limitations as in the prior art. On the other hand, from the lower part of the lower column 4, liquid air containing approximately 30 liters of oxygen is extracted, and the conduit 7. It is supplied to the first reboiler condenser via an expansion valve 8 and a conduit n. In this case, the operating pressure of the first reboiler condenser is a pressure (approximately 1 to 3 KP/d G
) was selected. The air evaporated from the liquid air in the first reboiler condenser is returned to the main heat exchanger through a series of conduits.
It exchanges heat with the raw material air, recovers its temperature to around -160°C, and is supplied to the expansion turbine 16 via a conduit. Adiabatic expansion to approximately 0.46'/cIIG in the expansion turbine 16 generates refrigeration, lowers the temperature of the air, and compensates for the refrigeration losses of the air separation device. In this case, there is no need to separately supply raw material air to the expansion turbine 16, and only the raw material air for nitrogen and oxygen extraction is required, so that the air leaving the reduced amount of raw material air 16 passes through the conduit 4 from the column 6. It joins with the waste gas of , passes through a line of conduits, recovers its temperature in the main heat exchanger 2, and is then taken out through a conduit 6 as cine-pure nitrogen.

この場合、下塔4から抜出された液体空気の全てが第1
リボイラコンデンサ圀で蒸発する訳ではなく、その一部
は、更に酸素濃度が、lliまった液体空気(酸素公約
50〜60チ)としてmlリボイラコンデンサ加の下部
から抜出され導管3(1,膨張弁31.導管32を経て
上塔6上部へ供給され、酸素を分離する原料として使用
さ九る。この場合、酸素の分離に酸素濃度が高い液体空
気を用いるので、液体空気の使用量は従来に比べ更に少
量で済み、したがって、上塔6の塔径を細く、がっ、棚
段数を削減することができる。上塔6で分離された酸素
は、第2リボイラコンデンサおの」二部から抜出され、
導管nを経て主熱交換器2で温度回復後、導管6よシ製
品酸素として採取される。一方、酸素が分離された残多
の廃ガスは上Q: a−J:部より抜出され、導管列で
膨張タービン16からの空気と合流し、主熱交換器2で
温度回復後、導管5よシネ純窒素として取出される。
In this case, all of the liquid air extracted from the lower tower 4
It does not evaporate in the reboiler condenser, but a part of it is extracted from the lower part of the reboiler condenser as liquid air with an even higher oxygen concentration (approximately 50 to 60 g of oxygen) and is extracted from the lower part of the reboiler condenser. Valve 31. It is supplied to the upper part of the upper column 6 through the conduit 32 and used as a raw material for separating oxygen.In this case, liquid air with a high oxygen concentration is used for oxygen separation, so the amount of liquid air used is the same as before. Therefore, the diameter of the upper column 6 can be made smaller and the number of plates can be reduced.The oxygen separated in the upper column 6 is transferred from the second reboiler condenser to the Extracted,
After the temperature is recovered in the main heat exchanger 2 through the conduit n, it is collected as product oxygen through the conduit 6. On the other hand, the residual waste gas from which oxygen has been separated is extracted from the upper Q: a-J: section, joins with the air from the expansion turbine 16 in the conduit row, and after temperature recovery in the main heat exchanger 2, the conduit 5 It is extracted as cine-pure nitrogen.

本発明は、以上説明したように、空気分離装置の精留塔
下塔上部に第1リボイラコンデンサを、また、精留塔上
塔底部に第2リボイラコンデンサを設置し、第1リボイ
ラコンデンサで、かつ、選定された操作圧力下において
、′nI留塔下塔よシ抜出された酸素分に富んだ液体空
気から蒸発した空気を利用し空気分離装置の寒冷損失の
補償が行えるので原料空気量を減量でき省エネルギを達
成できる効果があり、また、第1リボイラコンデンサで
蒸発し酸素濃度が更に高まった液体空気を酸素を分離す
る原料として使用するので精留塔上塔の塔径を細く、か
つ、棚段数を削減できる効果もめるO
As explained above, the present invention installs a first reboiler condenser at the upper part of the lower column of the rectification column of an air separation device, a second reboiler condenser at the bottom of the upper column of the rectification column, and Under the selected operating pressure, the air evaporated from the oxygen-rich liquid air extracted from the lower column of the 'nI distillation column can be used to compensate for the cooling loss of the air separation equipment, reducing the amount of feed air. This method has the effect of achieving energy savings, and since the liquid air, which has been evaporated in the first reboiler condenser and has an even higher oxygen concentration, is used as the raw material for separating oxygen, the column diameter of the upper column of the rectification column can be reduced, and See the effect of reducing the number of shelves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の深冷分離法による空気分離法および装
置を説明するもので、原料空気の圧力よシ約1’/cr
IG程度圧力の低い窒素を採取し、がつ、少量の酸素を
採取する空気分離装置の基本構成を示すプロセス系統図
である。tAz図は、本発明による窒素を多量に採取し
、かつ、酸素を少I採取する空気分離装置の基本構成を
示すプロセス系統図である。 2・・・・・・主熱交換器、4・・・・・・精留塔上塔
、6・・・・・・精留塔上塔、16・・・・・・膨張タ
ービン、に・・・・・・vg1リボイラコンデンサ、3
3・・・・・・第2リボイジコンデンサ
Figure 1 explains an air separation method and equipment using a conventional cryogenic separation method.
It is a process system diagram showing the basic configuration of an air separation device that collects nitrogen at a pressure as low as IG and a small amount of oxygen. The tAz diagram is a process system diagram showing the basic configuration of an air separation apparatus according to the present invention that extracts a large amount of nitrogen and extracts a small amount of oxygen. 2...Main heat exchanger, 4...Upper column of rectification column, 6...Upper column of rectification column, 16...Expansion turbine, ...vg1 reboiler capacitor, 3
3...Second revoice capacitor

Claims (1)

【特許請求の範囲】 1、 深冷分離法による空気分離法で、窒素を多量に採
取し、かつ、酸素を少量採取する空気分離法において、
該空気分離法による空気分離装置の精留塔下塔底部の液
体空気を所定の圧力下で蒸発させ、蒸発した空気を膨張
タービンに導入して空気分離装置の寒冷損失を補償する
とともに、前記蒸発によシ酸素濃度が高くなった液体空
気を精留塔上塔に環流液として導入することを特徴とす
る空気分離法。 2、深冷分離法による空気分離装置で、精留塔下塔、精
留塔上塔、膨張タービンおよび主熱交換器等で構成され
、窒素を多量に採取し、かつ、酸素を少量採取する空気
分離装置において、前記精留塔下塔上部に第1リボイラ
コンデンサを設置し、第1リポイラコンデンサ上部と精
留塔下塔下部を膨張弁を途中に設けた導管で、第1Aボ
イラコンデンサ下部と前記精留塔上塔上部を膨張弁を途
中に設けた導管で、第1リボイラコンデンサ部と前記膨
張タービン入11側とを途中前記主熱交換器内を通る導
管でそれぞれ連結し、膨張タービン出口側導管を鞘留填
上塔からの廃ガス抜出し用導管に主熱交換型入「I前部
で連結し、精留塔上塔底部に第2リボイラコンデンザを
設置したことを特徴とする空気分離装置。
[Claims] 1. In an air separation method using a cryogenic separation method, in which a large amount of nitrogen is collected and a small amount of oxygen is collected,
The liquid air at the bottom of the rectification column of the air separation device according to the air separation method is evaporated under a predetermined pressure, and the evaporated air is introduced into an expansion turbine to compensate for the cooling loss of the air separation device, and to compensate for the evaporation. An air separation method characterized by introducing liquid air with a high oxygen concentration into the upper column of a rectification column as a reflux liquid. 2. Air separation equipment using the cryogenic separation method, consisting of a rectification column lower column, a rectification column upper column, an expansion turbine, a main heat exchanger, etc., which extracts a large amount of nitrogen and a small amount of oxygen. In the separation device, a first reboiler condenser is installed in the upper part of the lower column of the rectification column, and a conduit with an expansion valve in the middle connects the upper part of the first reboiler condenser and the lower part of the lower column of the rectification column to the lower part of the 1A boiler condenser and the lower column of the rectification column. The upper part of the column is connected to the first reboiler condenser section and the expansion turbine inlet 11 side by a conduit that passes through the main heat exchanger on its way through a conduit with an expansion valve in the middle, and an expansion turbine outlet conduit is connected to the upper part of the column. is connected to the waste gas extraction conduit from the sheath filling upper tower at the front part of the main heat exchange type I, and a second reboiler condenser is installed at the bottom of the upper rectification tower. .
JP11368481A 1981-07-22 1981-07-22 Method and device for separating air Granted JPS5816175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11368481A JPS5816175A (en) 1981-07-22 1981-07-22 Method and device for separating air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11368481A JPS5816175A (en) 1981-07-22 1981-07-22 Method and device for separating air

Publications (2)

Publication Number Publication Date
JPS5816175A true JPS5816175A (en) 1983-01-29
JPS6119904B2 JPS6119904B2 (en) 1986-05-20

Family

ID=14618550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11368481A Granted JPS5816175A (en) 1981-07-22 1981-07-22 Method and device for separating air

Country Status (1)

Country Link
JP (1) JPS5816175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152194U (en) * 1986-03-19 1987-09-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152194U (en) * 1986-03-19 1987-09-26

Also Published As

Publication number Publication date
JPS6119904B2 (en) 1986-05-20

Similar Documents

Publication Publication Date Title
JPH0412392B2 (en)
JPH0755333A (en) Very low temperature rectification system for low-pressure operation
JPH08210769A (en) Cryogenic rectification system with side column for forming low-purity oxygen
JPH087019B2 (en) High-pressure low-temperature distillation method for air
TW483869B (en) Multiple column nitrogen generators with oxygen coproduction
JPS61503047A (en) Low energy - high purity oxygen and argon
JPH04332376A (en) Cryogenic air distillation method of argon production
JPH0859204A (en) Method and apparatus for separating gaseous mixture
US2417279A (en) Separation of the constituents of gaseous mixtures
JPH06257939A (en) Distilling method at low temperature of air
JPS6367636B2 (en)
US2316056A (en) Method and apparatus for rectifying fluid mixtures
US3057168A (en) Rectification of liquid mixtures boiling at low temperatures
US2502250A (en) Recovery of oxygen from the atmosphere
JPH074833A (en) Separation of air
JPS58198677A (en) Method and device for separating air
JP4787796B2 (en) Air separation method and apparatus
JPS5816175A (en) Method and device for separating air
US3196621A (en) Method of separating air by low temperature rectification
JP2917031B2 (en) Oxygen production method
JP2004205076A (en) Air liquefying and separating device and its method
JPH0531073B2 (en)
JP2003028568A (en) Method and apparatus for separating air
RU2044974C1 (en) Method of obtaining krypton-xenon mixture
US3298184A (en) Separation of air