JPS58161260A - Cell - Google Patents

Cell

Info

Publication number
JPS58161260A
JPS58161260A JP57044920A JP4492082A JPS58161260A JP S58161260 A JPS58161260 A JP S58161260A JP 57044920 A JP57044920 A JP 57044920A JP 4492082 A JP4492082 A JP 4492082A JP S58161260 A JPS58161260 A JP S58161260A
Authority
JP
Japan
Prior art keywords
active substance
voltage
discharge
added
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57044920A
Other languages
Japanese (ja)
Inventor
Ryoji Okazaki
良二 岡崎
Yoshinori Umeo
梅尾 良之
Kenichi Morigaki
健一 森垣
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57044920A priority Critical patent/JPS58161260A/en
Publication of JPS58161260A publication Critical patent/JPS58161260A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To eliminate the initial voltage drop by providing a negative pole employing a light metal as an active substance and a positive pole employing carbon fluoride as main active substance while added with specific chrome oxide. CONSTITUTION:In a cell having a negative pole employing light metal such as Li as an active substance and a positive pole employing nonaqueous electrolyte and carbon fluoride as main active substance, a chrome oxide shown by CrxOy (1.5<y/x<3) is added in the positive pole. consequently in the initial discharge, high potential chrome oxide is discharged precedently to increase the initial discharge voltage to provide the flat voltage characteristic essential to a carbon fluoride/Li cell and high discharge capacity.

Description

【発明の詳細な説明】 本発明はリチウム等の軽金属を活物質とした負極と、非
水電解液と、フッ化炭素を生活物質とした正極より構成
される電池の放電初期電圧の降下を解消したものである
[Detailed Description of the Invention] The present invention eliminates the drop in the initial discharge voltage of a battery composed of a negative electrode made of a light metal such as lithium as an active material, a nonaqueous electrolyte, and a positive electrode made of fluorocarbon as a living material. This is what I did.

上記のフッ化炭素/リチウム電池は、高エネルギー密度
で、貯蔵性、長期間作動時の信頼性、耐漏液性、温度特
性、平坦電圧の安定性等などが良2 べ−2S、′ く、最もすぐれた電池としてすでに広く実用化されてい
る。しかしこれらのすぐれた特性とともに、放電の初期
電圧が平坦電圧より若干低い値を示す特性があり、機器
によっては初期の電圧降下が設計上の障害となる場合が
あった。概念的には第1図に示すように平坦電圧(−)
に達する迄に放電開始当初は(b)の如く、(a)より
若干低い電圧を示す。この(b)の電圧を(a)以上に
引き上げて、なおかつフッ化炭素/リチウム電池のすぐ
れた緒特性、特にエネルギー密度、平坦電圧の安定性を
活すため、例えば二酸化マンガンなど高電位の正極活物
質を添加する方法などが既に提案されているが、貯蔵に
より添加効果が減少し、実用性が乏しかった。
The above-mentioned fluorocarbon/lithium battery has high energy density, good storage performance, long-term operation reliability, leakage resistance, temperature characteristics, flat voltage stability, etc. It is already widely used as the best battery. However, along with these excellent characteristics, there is also a characteristic that the initial discharge voltage is slightly lower than the flat voltage, and depending on the device, the initial voltage drop may become an obstacle in the design. Conceptually, as shown in Figure 1, the flat voltage (-)
At the beginning of the discharge, as shown in (b), the voltage is slightly lower than that in (a) until the voltage reaches . In order to raise the voltage in (b) above (a) and still take advantage of the excellent characteristics of fluorocarbon/lithium batteries, especially the stability of energy density and flat voltage, a high-potential positive electrode such as manganese dioxide, etc. Methods of adding active materials have already been proposed, but the effect of the addition decreases due to storage, making them impractical.

本発明はフッ化炭素/リチウム電池の放電初期電圧が降
下する特性を改良することを目的とするもので、電池の
正極中にCrO2とCr2O3の中間酸化物を添加する
ことを特徴とするものである。
The present invention aims to improve the characteristic that the initial discharge voltage of a fluorocarbon/lithium battery drops, and is characterized by adding an intermediate oxide of CrO2 and Cr2O3 to the positive electrode of the battery. be.

有機電解液中でのリチウムを対極としたクロムの中間酸
化物の正極活物質としての概念的な放電特性を第2図に
示す。クロム酸化物にはCr2O3゜31、− CrO3以外に、例えばCrO3を加圧下で加熱して得
られるC r 206.Cr3O8,Cr6o1.、C
rO2などのCr2O3とCrO3との中間酸化物(C
rxOy、16〈y/x<3)が知られており、これら
はCrO3とCrO2が電気化学的に活性度が低いにも
かかわらず、第2図に示すようにフッ化炭素(CF)n
に較べ電圧の平坦性や放電容量は劣るが、放電初期電圧
が高いという特徴を有しており、クロムの中間酸化物の
うちでも比較的Crsos + Cr 2051 Cr
 eol、の放電特性はすぐれている。このCr 30
8.Cr2O5+ Cr○2は酸素圧約20気圧非熱温
度250〜350℃で比較的容易に得られるが、Cr6
o1.は約10oO気圧の超高圧下でしか得られないの
で、工業的にはやや難点がある。
FIG. 2 shows the conceptual discharge characteristics of an intermediate oxide of chromium as a positive electrode active material with lithium as a counter electrode in an organic electrolyte. Chromium oxides include Cr2O3゜31, - In addition to CrO3, for example, Cr206. which is obtained by heating CrO3 under pressure. Cr3O8, Cr6o1. , C
Intermediate oxides between Cr2O3 and CrO3 such as rO2 (C
rxOy, 16〈y/x〉3), and although CrO3 and CrO2 have low electrochemical activity, as shown in Fig. 2, fluorocarbon (CF)n
Although it is inferior in voltage flatness and discharge capacity compared to Crsos + Cr 2051 Cr, it is characterized by a high initial discharge voltage, and is relatively superior to Crsos + Cr 2051 Cr among intermediate chromium oxides.
eol has excellent discharge characteristics. This Cr 30
8. Cr2O5+ Cr○2 can be obtained relatively easily at an oxygen pressure of about 20 atm and a nonthermal temperature of 250 to 350°C, but Cr6
o1. Since it can only be obtained under ultra-high pressure of about 10 oO atmosphere, it is somewhat difficult from an industrial perspective.

本発明はフッ化炭素を主成分とする正極に、放電初期電
位の高いクロム酸化物を添加することにより、画情物質
の利点を活し、欠点を補完するもので、放電初期に高電
位のクロム酸化物を優先的に放電させて放電初期電圧を
高めるとともに、フッ化炭素/リチウム電池本来の電圧
平坦性と大放電容量を兼ね備えた特性を得ようとするも
のであるO 第3図は本発明の効果を実験的に確認するために試作し
た電池の断面を示したものである。
The present invention utilizes the advantages of the image material and compensates for its disadvantages by adding chromium oxide, which has a high initial discharge potential, to a positive electrode whose main component is fluorocarbon. The aim is to discharge chromium oxide preferentially to increase the initial discharge voltage, and to obtain characteristics that combine the voltage flatness and large discharge capacity inherent to fluorocarbon/lithium batteries. This figure shows a cross section of a battery that was prototyped to experimentally confirm the effects of the invention.

第3図において、1はステンレススチール製の封口板、
2は1に溶接したニッケルネット製の負極集電体、3は
集電体2に圧着したリチウム負極、4はポリプロピレン
不織布製のセパレータ、6はフッ化黒鉛を主成分とし、
これにアセチレンブラック、フッ素樹脂粉末を各重量比
で5%添加し、後述する各種の比率でクロム酸化物を添
加したのち混合して加圧成形した正極である。6はチタ
ンのエキスバンドメタルから成る正極集電体で、正極5
と密着している07はステンレススケール製の電池容器
で、内面に集電体6が溶接されている。
In Fig. 3, 1 is a stainless steel sealing plate;
2 is a negative electrode current collector made of nickel net welded to 1, 3 is a lithium negative electrode crimped to current collector 2, 4 is a separator made of polypropylene nonwoven fabric, 6 is mainly composed of fluorinated graphite,
Acetylene black and fluororesin powder were added thereto in an amount of 5% by weight, and chromium oxide was added in various ratios to be described later, then mixed and pressure molded to produce a positive electrode. 6 is a positive electrode current collector made of expanded titanium metal;
07, which is in close contact with the battery container, is made of stainless steel scale, and a current collector 6 is welded to the inner surface of the battery container.

8はポリプロピレン製のガスケットで、電池容器7の開
口部の内方の折りまげにより圧縮されて電池の密封を果
している。電池内にはプロピレンカーボネイトとディメ
トキシエタンとを重量比で1:1に混合した溶媒にホウ
フッ化リチウムを1モ6ベー:゛ ル/ρ溶解させた電解液を注入している。
Reference numeral 8 denotes a polypropylene gasket, which is compressed by folding inward at the opening of the battery container 7 to seal the battery. An electrolytic solution in which lithium fluoroborate was dissolved in a solvent containing a mixture of propylene carbonate and dimethoxyethane at a weight ratio of 1:1 at a concentration of 1 mol/rho was injected into the battery.

本発明の効果を確認するため、上記の構成の各種の電池
を正極処方を変化させて直径20 mm 、厚さ20 
mmの電池を試作し、試験を行った結果を次に述べる。
In order to confirm the effects of the present invention, various batteries with the above configurations were tested with different cathode formulations, and the diameter was 20 mm and the thickness was 20 mm.
A prototype battery of 1.0 mm in diameter was manufactured and tested, and the results are described below.

クロム酸化物の代表的なものとして、Cr3O8及びC
r206を選び、これらの正極への添加量を変えて試作
した電池の内訳は次表の通りである。
Representative examples of chromium oxide include Cr3O8 and C
The details of the batteries prototyped by selecting R206 and varying the amounts added to the positive electrode are shown in the following table.

又、第4図にはCr5o8を添加した場合、第5図には
Cr206を添加した場合の20℃、30にΩ負荷での
初度放電特性を示し、46℃、3か月貯蔵後の20℃、
 30 KOでの放電特性も第4図、第5図の特性と殆
んど変化なかった。
In addition, Fig. 4 shows the initial discharge characteristics when Cr5o8 is added, Fig. 5 shows the initial discharge characteristics at 20°C and 30Ω load when Cr206 is added, and the initial discharge characteristics at 20°C after 3 months storage at 46°C. ,
The discharge characteristics at 30 KO were also almost unchanged from those shown in FIGS. 4 and 5.

以下余白 6ペー゛ 第4図、第5図より、クロム酸化物の添加により所期の
放電特性が得られており、クロム酸化物の添加量が多い
程放電初期電圧が上昇しているOCr 308とCr2
06の添加効果は定性的に類似しているが、Cr5o8
の場合の方が、同一量の添加で比較すると太きい、一方
、放電末期の特性はクロム酸化゛物の添加量の増大とと
もに若干、平坦性が悪くなるとともに放電容量は減少傾
向を示す。しかし7ベー゛ これらの放電末期の現象はクロム酸化物の添加比が、1
:03以下の場合は顕著にはあられれず、1:05 に
至って比較的顕著にあられれる。従って放電初期の電圧
の上昇、平坦性、容量を総合して、妥当と考えられる添
加比は1:○05〜03 程度で、さらに平坦性を重視
する場合1:O05〜02  程度が良い。
From the following blank page 6, Figures 4 and 5 show that the desired discharge characteristics are obtained by adding chromium oxide, and the initial discharge voltage increases as the amount of chromium oxide added increases.OCr 308 and Cr2
The effect of adding 06 is qualitatively similar, but Cr5o8
When compared with the same amount of chromium oxide added, on the other hand, the characteristics at the end of the discharge show that as the amount of chromium oxide added increases, the flatness slightly deteriorates and the discharge capacity tends to decrease. However, these phenomena at the end of discharge occur when the addition ratio of chromium oxide is 1.
When the temperature is 1:03 or less, it is not noticeable, but it is relatively noticeable up to 1:05. Therefore, taking into account the rise in voltage at the initial stage of discharge, flatness, and capacity, an appropriate addition ratio is about 1:05-03, and if flatness is more important, about 1:05-02 is better.

しかしこれらの添加比率は、目的、用途に応じて、適宜
の値を選択するのが望ましく、最良の処方設定はその都
度行うべきで、−概に決める必要はない。
However, it is desirable to select an appropriate value for these addition ratios depending on the purpose and use, and the best formulation should be determined each time - there is no need to determine it generally.

以上の如く、本発明の効果は極めて顕著である。As described above, the effects of the present invention are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフッ化炭素/リチウム電池の放電初期電圧の概
念的特性図、第2図は対極ffi IJチウムとした各
種クロノ、酸化物の正極放電特性図、第3図は実験に用
いた電池の断面図、第4図はCr3O8を添加した各種
電池の放電特性図、第5図はCr2O。 を添加した各種電池の放電特性図である。 2・・・・・・負極集電体、3・・・・・・リチウム負
極、6・・・・・・正極、6・・・・・・正極集電体。 代理人の氏名 弁理士 中 尾 敏 男 はが1名W+
−=  ミ 医 0%1 解 冒 ミ
Figure 1 is a conceptual characteristic diagram of the initial discharge voltage of a fluorocarbon/lithium battery, Figure 2 is a diagram of the positive electrode discharge characteristics of various chlorine and oxides with the counter electrode ffi IJ lithium, and Figure 3 is the battery used in the experiment. FIG. 4 is a discharge characteristic diagram of various batteries containing Cr3O8, and FIG. 5 is a cross-sectional view of Cr2O. FIG. 2... Negative electrode current collector, 3... Lithium negative electrode, 6... Positive electrode, 6... Positive electrode current collector. Name of agent: Patent attorney Toshio Nakao, 1 person W+
−= Mi doctor 0%1 solution adventure mi

Claims (2)

【特許請求の範囲】[Claims] (1)軽金属を活物質とした負極と、非水電解液と、フ
ッ化炭素を主活物質とした正極を備え、前記正極中にC
rxOy(ただし15<y/x<1で表わされるクロム
酸化物を添加したことを特徴とする電池。
(1) A negative electrode made of a light metal as an active material, a non-aqueous electrolyte, and a positive electrode made of fluorocarbon as a main active material;
A battery characterized by adding a chromium oxide represented by rxOy (where 15<y/x<1).
(2)前記クロム酸化物がCr5o8またはCr2O5
を主成分としたものである特許請求の範囲第1項記載の
電池。
(2) The chromium oxide is Cr5o8 or Cr2O5
The battery according to claim 1, which contains as a main component.
JP57044920A 1982-03-19 1982-03-19 Cell Pending JPS58161260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044920A JPS58161260A (en) 1982-03-19 1982-03-19 Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044920A JPS58161260A (en) 1982-03-19 1982-03-19 Cell

Publications (1)

Publication Number Publication Date
JPS58161260A true JPS58161260A (en) 1983-09-24

Family

ID=12704899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044920A Pending JPS58161260A (en) 1982-03-19 1982-03-19 Cell

Country Status (1)

Country Link
JP (1) JPS58161260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113364A (en) * 1985-11-11 1987-05-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
US4686161A (en) * 1985-09-16 1987-08-11 Allied Corporation Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
WO2008047421A1 (en) 2006-10-18 2008-04-24 Panasonic Corporation Lithium primary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686161A (en) * 1985-09-16 1987-08-11 Allied Corporation Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
JPS62113364A (en) * 1985-11-11 1987-05-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
WO2008047421A1 (en) 2006-10-18 2008-04-24 Panasonic Corporation Lithium primary battery

Similar Documents

Publication Publication Date Title
JPS61263069A (en) Battery
JPS58161260A (en) Cell
JPH06267542A (en) Nonaqueous electrolyte battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPS6248347B2 (en)
JPH04104468A (en) Nonaqueous electrolyte battery
JP2594034B2 (en) Non-aqueous electrolyte battery
JP4687021B2 (en) Non-aqueous electrolyte primary battery
JPS5947433B2 (en) battery
JPS63198260A (en) Nonaqueous electrolyte battery
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPS63969A (en) Nonaqueous electrolyte cell
JPH02236972A (en) Polyaniline battery
JP2980618B2 (en) Organic electrolyte primary battery
JP4484205B2 (en) Organic electrolyte battery
JPH05275083A (en) Lithium cell
JPS5966062A (en) Nonaqueous electrolyte battery
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JPH0588514B2 (en)
JP2763561B2 (en) Organic electrolyte secondary battery
JPH04192262A (en) Thionyl chloride lithium cell
JPS5951470A (en) Non-aqueous solvent cell
JPS63155560A (en) Organic electrolyte battery
JPS6161229B2 (en)