JPS58161251A - Manufacture of spiral positive plate for alkali cell - Google Patents

Manufacture of spiral positive plate for alkali cell

Info

Publication number
JPS58161251A
JPS58161251A JP57044847A JP4484782A JPS58161251A JP S58161251 A JPS58161251 A JP S58161251A JP 57044847 A JP57044847 A JP 57044847A JP 4484782 A JP4484782 A JP 4484782A JP S58161251 A JPS58161251 A JP S58161251A
Authority
JP
Japan
Prior art keywords
thickness
skeleton
spiral
layer
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57044847A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakamitsu
中満 和弘
Yasuji Tanaka
田中 保次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP57044847A priority Critical patent/JPS58161251A/en
Publication of JPS58161251A publication Critical patent/JPS58161251A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the strength of a positive plate thus to lengthen the service life, by pressure molding a three-dimensionally continuous porous nickel material to compress a thin frame layer more than a thick frame layer thus producing a positive plate and winding spirally. CONSTITUTION:Sponge urethane resin having the thickness of 1.5mm., frame thickness of 60-80mu and porosity of 94% is adhered to another sponge urethane resin having the thickness of 0.6mm., frame thickness of 30-50mu and porosity of 97% then applied with nickel galvanization. Said porous nickel member is pressure molded to have the thickness of 1.1mm. to compress the thin frame layer more than the thick frame layer to form a layer having low porosity on one face. Then active substance is filled over said layer. After drying, it is impregnated with the dispersion liquid of fluorine resin then dried again and pressure molded to provide the thickness of 0.68mm.. Thus produced positive plate is combined with a negative plate through a separator while bringing the layer compressed stronger to the outside and formed into a spiral. Consequently the strength of the positive plate is improved resulting in the lengthened service life.

Description

【発明の詳細な説明】 本発明は、厚さ方向に骨格の太さのWなる二l−を有す
る三次元的に連続した構造のスポンジ状ニッケル多孔体
を加圧成形(、て骨格の祷い噌を骨格の太い層よりも強
くLモ縮して正hiiを製作しTコのち渦巻状に巻くこ
とにより、電池性能の向上をはかると共にT!池寿命を
長くすることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to pressure forming a sponge-like porous nickel body having a three-dimensionally continuous structure having a thickness W of the skeleton in the thickness direction. The aim is to improve the battery performance and extend the life of the T! by compressing the L-mo more strongly than the thick layer of the skeleton to create a positive hii, and then winding it in a spiral shape after the T-coat. It is.

従来、アルカリ電池の市崗板の基板としては、ニッケル
粉末の焼結体が用いられているが、その多孔度は70〜
80%程闇であり、これ以上に多孔度をtげるとその機
械的@1室が著しく減少し、したがってその空隙内に1
EjTh活物質を充填した場合に、基板の変形、亀裂や
活物質の剥離等を招来する欠点があった。まtコ活物゛
6を充填する場合、橿常滅(含浸法とよばれる方法すな
わち硝酸二ノヶルや硫酸ニッケル等のニッケル塩の水m
液を基板にglf含浸しTこのち、アルカリ水m液で処
理し、さらに湯洗、乾燥オろという操作を繰り返す方法
がとられている。しかしながら、−回の操作によって充
填される清は少なく、しかも2回目から充填さノ]、る
礒は次第に減少してくるので通常4〜lO回の操作をく
り返す・必要がある。そのfコめに製造工程がinで経
済的コストが旨くなるという欠点があつTこ。
Conventionally, a sintered body of nickel powder has been used as a substrate for the board of alkaline batteries, but its porosity is 70~
It is about 80% dark, and increasing the porosity beyond this will significantly reduce the mechanical @1 chamber, so there will be 1
When the EjTh active material is filled, there is a drawback that deformation of the substrate, cracking, and peeling of the active material occur. When filling the raw material 6, it is necessary to use a method called the impregnation method, i.e. water containing nickel salts such as nitric acid or nickel sulfate.
A method is used in which a substrate is impregnated with a glf solution, then treated with an aqueous alkaline solution, and then the operations of washing with hot water and drying are repeated. However, the amount of liquid that can be filled with the second operation is small, and the amount of liquid that can be filled from the second time onwards gradually decreases, so it is usually necessary to repeat the operation 4 to 10 times. The disadvantage of this is that the manufacturing process is in-line, which reduces economic costs.

そこで近年、三次元的に連続しTこH4造を有するニッ
ケル冷間よ11なるスポンジ状多孔体に、ペースト状に
しfこifl筒fj物直を直接充填する方法が注目され
てAている。
Therefore, in recent years, attention has been paid to a method of directly filling a paste-like material into a sponge-like porous body of cold nickel having a three-dimensionally continuous structure of T and H4.

三次元的に連続Ljこ構竹を有する多孔体は、その多孔
度が90〜98%と高く、しかも機械的強度が大きい。
A porous body having three-dimensionally continuous Lj-shaped bamboo has a high porosity of 90 to 98% and high mechanical strength.

そのうえ孔径が大きいのでこの多孔体にfi物胃ル充請
すると市舐仮の高谷喰化をはかることができろとともに
充填方法が1aiめて簡便lこなり111!続工程がO
T能で経済的にも有利と4Cる。
Moreover, since the pore size is large, if you fill this porous material with a material, you can make it look like a high-quality product, and the filling method is simple and easy! The subsequent process is O
The 4Cs are economically advantageous due to their high performance.

しかしf(がら、多孔体の孔径が大きい1こめに梁(体
であるニッケル多孔体と活物質粉末との間および活物質
粒子間の電気的な接@性が光分に得られず、利用率が低
いという欠頓がある。その1こめに、ニッケル扮禾咎の
導電材や種々の添1111剤をυ口先ることによって、
利用率のlil上かは〕1〉らノtている。
However, due to the large pore diameter of the porous body, electrical contact between the nickel porous body and the active material powder and between the active material particles cannot be obtained in the light beam, so it cannot be used. There is a deficiency in that the rate is low.In order to solve this problem, by offering nickel-made conductive materials and various additives,
The usage rate is above 〕1〉.

まfコ、孔径が大Aいfコめに、活物質の保持性が悪<
 iE肉仮を渦巻状に巻く場会に活物質の剥離やひびね
れあるいは向板の切断が生じるという欠点もある。
The larger the pore size, the worse the retention of the active material.
There is also a drawback that when the iE material is wound into a spiral, the active material may peel or crack or the facing plate may be cut.

本発明はこの欠点を解決できろ一つの何句な1枝造法を
提供するものであろうすなわち、骨格の太さの異なる二
f傾を有するスポンジ状ニッケル多孔体を加圧成形する
ことによって骨格の細い11′4を骨格の太い膚よりも
強く干縮しtこものを基板として用いて正曙仮を製作す
ると、活物質の剥離やひびわれが唯めて少なく置板の強
度が大きいIF嘩板を得るこ々ができ、さらにこの1丁
画数を用いることにより寄命の醍い!池を提供でλるこ
とを見いだしrこことに基づくものである。
The present invention provides a simple one-pronged construction method that can solve this drawback, namely, by press-molding sponge-like nickel porous bodies with 2f inclinations with different skeleton thicknesses. If the thin 11'4 skeleton is shrunk more strongly than the thick skin of the skeleton, and the t-komono is used as a substrate to produce a new IF, the active material will be less likely to peel or crack, and the strength of the mounting plate will be greater. You can get a fighting board, and by using this number of strokes, you can get better at fighting! This is based on the fact that we found that λ is the same as the average temperature.

以下にその実施例およびその効果を詳述する。Examples and effects thereof will be described in detail below.

厚さ約1.5 Mll、iV均孔径0,3絹、骨格の太
さ6()〜80p 4fL度94%・ノ)スポンジ状つ
レタン嗣脂と、1!tさ約06絹、甲均孔洋0.8絹、
骨格の太さ30〜51)μ、子孔1す97%のスポンジ
1つウレタンイ剖H旨とをABS  制脂のテトラヒド
ロフランM液等で接着−r ル。ついでウレタン樹脂1
−に二′ノケル’j 7 キラ!寵してから不活性雰囲
気で焼結するとし\う公知の7jffiでスポンジ状ニ
ッケル多孔体を製作する。
Thickness approximately 1.5 Mll, iV average pore diameter 0.3 silk, skeleton thickness 6 ( ) ~ 80p 4fL degree 94% · ) spongy tsuretanshigure, 1! 06 silk, 0.8 silk,
Glue one urethane sponge with a skeleton with a thickness of 30 to 51 μm and a pore size of 97% using ABS anti-greasing tetrahydrofuran M solution or the like. Then urethane resin 1
−ni Ni'Nokel'j 7 Kira! A sponge-like porous nickel body is manufactured using a known 7jffi process, which is then sintered in an inert atmosphere.

こうして平均多孔度95%、厚さ約2.2mの骨格の太
さの異jイろニーを有するスポンジ状二・ソケル多孔体
が得られる。このニッケル多孔体を、厚さ力51.1f
lとなるように加圧成形する。これ1こより、骨格の細
い1が骨格の太い禰より強く王縮さJtて片面に番孔σ
の小さい補が形成される。つぎ1ここの禰を下にして、
水酸化二ソケル85部、二゛ノケル粉末IO部、Bよび
コl<ルト扮禾5部の混合物をカルボキシメチルセルロ
ースの水m液でペースト状にし1こものを′4f、填す
る。このように多孔IWの小さい1−を丁にしてペース
ト状の活物質を充填才ろと、この1−によりペーストが
ろ過され1こ状態とf、【り活物質の充填密度を増大さ
せることができろ。つぎに、活物質を充填1,1コ多孔
体を乾燥してフッ素樹脂の分散液を含浸し、呵び乾燥1
71コのちIシさが068順となるよう叩If成形する
。こうしてイ尋らノ11こl′E廟板を、骨格が強く子
線さ11Tこl−を外側に【。
In this way, a sponge-like porous material having an average porosity of 95%, a thickness of about 2.2 m, and a skeleton having different thicknesses is obtained. This nickel porous body has a thickness of 51.1 f.
Pressure mold it so that it becomes l. From this 1, the thin skeleton 1 is stronger than the thick skeleton 1, and the hole σ is on one side.
A small complement of is formed. Next 1, with this net facing down,
A mixture of 85 parts of dihydroxide, 10 parts of dinokel powder, 5 parts of B and chloride was made into a paste with an aqueous solution of carboxymethylcellulose, and 4 parts of the paste was filled. In this way, by filling the active material in paste form using the small pores 1- of the porous IW, the paste is filtered by the 1-, and the filling density of the active material can be increased. You can do it. Next, the porous body filled with the active material is dried, impregnated with a fluororesin dispersion, and dried.
After 71 pieces, the pieces are hammered and shaped so that the number of pieces is in the order of 068. In this way, the 11th part of the temple board was made with a strong skeleton and the 11th part of the board was placed on the outside.

てナイロンの不@市のセパレータを介して従来から公知
のベースト式カドミウム負TI!!!仮と組み合せて渦
巻状に巻き、電解故に8. G、 1.800 (20
”Cl ’に、OH水m液を用いて公亦容嘴が2,4a
hの円筒形密閉カドミウムf/111を製作しfこ。
Conventionally known base type cadmium negative TI is applied through a nylon non-commercial separator! ! ! 8. Combine with temporary and wind it into a spiral, because of electrolysis. G, 1.800 (20
The public beak is 2.4a using OH water m solution for "Cl'"
I made a cylindrical sealed cadmium f/111 of h.

つぎにト記実施例で示しtこ電池(Alと骨格の太さが
一様なニッケル多孔体を由いて従来法より・間作したq
池(81とを、それぞれ20個ずつ用いて20゛CO,
10aで16時間茫重しなのち1vAで放電しtこ部会
の毀電容歇のばらつきを第1図に示す。
Next, as shown in Example 2, a battery (intercropped using Al and a nickel porous body with a uniform skeleton thickness compared to the conventional method) will be described.
20゛CO, using 20 ponds (81 and 20 each)
Figure 1 shows the variation in the discharge capacity of the t-section after 16 hours of standing at 10a and then discharging at 1vA.

図より本発明によるt/1II(Alはばらつきが小さ
く、2.6Ah〜2,7Ahのnt谷喰を何しているこ
とがわかる。しかし4Cから、従来の方法によるKa(
81はばらつきが大きく、2、OAh程Ifの容量しか
示さない1と池もある。さらにt記のべ池の中から比較
的−6 容重の平均1.ている醒aを、(A1.tH+それぞれ
10個ず−) lli、り出し、040Aテ+611#
l’≠放電させるという充放電サイクルを繰り返1.て
イ/11!4=命を調べfコ。その結嘔を第2図に示す
。図より不発明による電池(Alはfi011サイクル
経ても異常はなく、充分な任命を確保できることがわか
る。
From the figure, it can be seen that the t/1II (Al) according to the present invention has small variations and what is the nt valley of 2.6Ah to 2.7Ah. However, from 4C, it can be seen that the Ka(
81 has a large variation, and there are also 1 and 2, which only show a capacity of If as much as OAh. Furthermore, from among the ponds listed in T, the average volume weight is 1. (A1.tH+10 pieces each)
Repeat the charging/discharging cycle where l'≠discharge 1. Tei/11!4 = Check out life fko. The vomiting is shown in Figure 2. From the figure, it can be seen that the battery (Al) according to the invention shows no abnormality even after fi011 cycles and can secure sufficient capacity.

1、かしなから従来のf5法による711曲m)は容量
低ドの割合が大Aく、400〜450サイクルで10I
III中8個の大きな6峨低下が見られた。しTコがっ
て!池の野命性能を比較すると、本発明による電池の方
か寿命性能において優れていることがわかる。
1. 711 pieces of music (from Kashina to the conventional f5 method) have a large proportion of low-capacity de, and 10I in 400 to 450 cycles.
A large 6-value decrease was observed in 8 of the III cases. Come on T! Comparing the cell life performance of the battery, it can be seen that the battery according to the present invention is superior in terms of life performance.

何故、骨格の穴さの異ζfるニッケル多孔体を加1f成
形しfこものを基板に用いろとiE噛仮の強1隻が向卜
し、電池寿命が長くなるのかはつぎの様な効果によるも
のと考えられる。すなわち骨格の太さおよび孔径が均一
である多孔体に活物質を充填しtこ市融板を渦巻状に巻
い1こ場合は、渦巻の外側の1IIII&lO1にかか
る伸びの1こめに多孔体の骨格が容易に切Ifrされて
しまうが、多孔体の一万の而を他方の面よりも強く圧縮
し1こ後活物質を光噴し1こ不発明によるiE匪数の場
合は、縮A、でい1こ骨格が渦巻の外側の1IIlIh
、而にかかる伸びを吸収することにより骨格の切断を防
ぐことができると拷えられる。
Why is it that a strong group of iE companies are advocating the use of nickel porous materials with different pore sizes for substrates, and that battery life can be extended due to the following effects? This is thought to be due to In other words, a porous body with a uniform skeleton thickness and pore diameter is filled with an active material, and a melted plate is wound in a spiral shape.In this case, the skeleton of the porous body is is easily cut off, but if one side of the porous body is compressed more strongly than the other side, and then the active material is injected with light, in the case of an iE number due to uninvention, the contraction A, The skeleton is outside the spiral.
However, it is believed that by absorbing such elongation, the skeleton can be prevented from being severed.

以を述べ1こように、本発明によるとrEFh仮を渦巻
状に巻く場合に活物質の脱落やひびわれ、あるいは画板
の切断が生じるということはなくなり、その結果このl
′E醜仮を用いることによりQ命の長い電池を提供する
ことができる。
As described above, 1 As described above, according to the present invention, when rEFh temporary is wound in a spiral shape, the active material does not fall off or crack, or the drawing board is cut, and as a result, this l
By using 'E', it is possible to provide a battery with a long Q life.

4 図面の簡@ f、c説明 第1図は本発明による電池と従来法による電池との放゛
醒谷虐のばらつきの比較図であり、第2図は充放電サイ
クルを繰り返し1こ場合の放を6欺の変化を示(71こ
図である。
4 Simplification of drawings @ f, c Explanation Figure 1 is a comparison diagram of the dispersion of the discharge voltage between the battery according to the present invention and the battery according to the conventional method. Showing the change of 6 deceptions (71 figures).

A・・ 本発明による電池、 B・・・・従昶法による
?を池。
A...Battery according to the present invention, B...Based on the conventional method? A pond.

Claims (1)

【特許請求の範囲】 1、骨格の太さのV4なるニーからなり、三次元的に通
続171こFWt造を何するスポンジ状ニッケル多孔体
を冊子成形することにより、骨格の細い層を骨格ノ太い
+4よりも強く圧縮するとともに、前記ニッケル多孔体
に活物質を充填し、さらに加圧成形しrこのち、渦巻状
に巻くことを特徴とするアルカIJ ?!池川用巻状正
懸仮の製造法。 2、 スポンジ状ニッケル多孔体が、骨格の太さの異な
る二171%のスポンジ状姻脂補を享さ方向にHに固着
【2てなり、この樹脂−に金属メッキ隻梱し1こもので
ある特許、?#求の範囲@1項記載のアルカリ電池用渦
巻状正Faii仮の製造法。 8、 ニッケル多孔体への活′@質の充填を、骨格が細
く強く圧縮されT、:1lilをF側にして行うことを
特徴とする特許哨求の範11]第1項記載のアルカリ電
池用渦巻状正画板の製造法。 4、 ニッケル多孔体を渦巻状に巻くに際し、骨格が細
く強く千編さn、1こ禰が渦巻の外側になるように巻い
てなる特許請求の範囲量1項記載のアルカリ電池用渦巻
状正画板の製造法。
[Claims] 1. By forming a sponge-like porous nickel material consisting of V4 knees with the thickness of the skeleton and having a three-dimensionally continuous 171 FWt structure, the thin layer of the skeleton is formed into a skeleton. Alka IJ is characterized in that it is compressed more strongly than thick +4, the nickel porous body is filled with an active material, further pressure molded, and then spirally wound. ! A manufacturing method for Ikegawa's roll-shaped front suspension. 2. The sponge-like porous nickel material is fixed in the H direction in the direction in which 2171% of the skeleton thickness is different, and this resin is packaged with metal plating. Patent? # Desired range @ Temporary manufacturing method for spiral positive Faii for alkaline batteries as described in item 1. 8. The alkaline battery according to item 1 of Patent Claim No. 11, characterized in that the active substance is filled into the nickel porous body with the skeleton being thin and strongly compressed and T:1lil being on the F side. Manufacturing method for spiral-shaped regular drawing boards. 4. The spiral positive for alkaline batteries according to claim 1, in which the nickel porous material is wound in a spiral shape so that the skeleton is thin and strongly twisted so that n, 1 thread is on the outside of the spiral. How to make a drawing board.
JP57044847A 1982-03-19 1982-03-19 Manufacture of spiral positive plate for alkali cell Pending JPS58161251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044847A JPS58161251A (en) 1982-03-19 1982-03-19 Manufacture of spiral positive plate for alkali cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044847A JPS58161251A (en) 1982-03-19 1982-03-19 Manufacture of spiral positive plate for alkali cell

Publications (1)

Publication Number Publication Date
JPS58161251A true JPS58161251A (en) 1983-09-24

Family

ID=12702866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044847A Pending JPS58161251A (en) 1982-03-19 1982-03-19 Manufacture of spiral positive plate for alkali cell

Country Status (1)

Country Link
JP (1) JPS58161251A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742600A1 (en) * 1995-05-09 1996-11-13 Matsushita Electric Industrial Co., Ltd. Electrodes for battery and method for fabricating the same
EP0742601A1 (en) * 1995-05-09 1996-11-13 Matsushita Electric Industrial Co., Ltd. Cylindrical battery with spirally wounded electrode assembly
US5721073A (en) * 1995-10-09 1998-02-24 Matsushita Electric Industrial Co., Ltd. Electrodes for battery and method for fabricating the same
US5981108A (en) * 1995-10-09 1999-11-09 Matsushita Electric Industrial Co, Ltd. Electrodes for battery and method of fabricating the same
EP1061596A2 (en) * 1999-06-15 2000-12-20 Katayama Special Industries, Ltd. Porous metal sheet, battery electrode plate composed of porous metal sheet and battery having electrode plate
US7074455B2 (en) * 2002-08-01 2006-07-11 Matsushita Electric Industrial Co., Ltd. Method of manufacturing porous metal plates and electrodes for alkaline storage batteries

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742600A1 (en) * 1995-05-09 1996-11-13 Matsushita Electric Industrial Co., Ltd. Electrodes for battery and method for fabricating the same
EP0742601A1 (en) * 1995-05-09 1996-11-13 Matsushita Electric Industrial Co., Ltd. Cylindrical battery with spirally wounded electrode assembly
US5637416A (en) * 1995-05-09 1997-06-10 Matsushita Electric Industrial Co., Ltd. Cylindrical battery
US5721073A (en) * 1995-10-09 1998-02-24 Matsushita Electric Industrial Co., Ltd. Electrodes for battery and method for fabricating the same
US5981108A (en) * 1995-10-09 1999-11-09 Matsushita Electric Industrial Co, Ltd. Electrodes for battery and method of fabricating the same
EP1061596A2 (en) * 1999-06-15 2000-12-20 Katayama Special Industries, Ltd. Porous metal sheet, battery electrode plate composed of porous metal sheet and battery having electrode plate
EP1061596A3 (en) * 1999-06-15 2006-04-05 Katayama Special Industries, Ltd. Porous metal sheet, battery electrode plate composed of porous metal sheet and battery having electrode plate
US7074455B2 (en) * 2002-08-01 2006-07-11 Matsushita Electric Industrial Co., Ltd. Method of manufacturing porous metal plates and electrodes for alkaline storage batteries

Similar Documents

Publication Publication Date Title
WO2009150485A1 (en) Electrode for lead-acid battery and method for producing such an electrode
JPS58161251A (en) Manufacture of spiral positive plate for alkali cell
JPS6110855A (en) Electrode for cell and its manufacturing method
JPS6327823B2 (en)
CN85106354A (en) The improvement technology of nickel hydroxide anode of alkaline accumulator
CN108615853A (en) A kind of ultrathin plate cluster integration combination process of high-energy density
JPS603741B2 (en) lead acid battery
JPH0845508A (en) Active material for nickel electrode and nickel electrode
JPS6040667B2 (en) Manufacturing method of nickel electrode
JPH0713896B2 (en) Sealed nickel cadmium battery
JPS60143569A (en) Positive plate for alkaline battery
JPS59217950A (en) Flexible electrode for alkaline storage battery
JPS62136761A (en) Manufacture of nickel electrode for alkaline battery
JPS6028167A (en) Manufacture of non-sintered type electrode for battery
JPS62208550A (en) Manufacture of nonsintered nickel electrode
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JPS58201253A (en) Manufacture of plate for alkaline storage battery
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH1012227A (en) Hydrogen storage alloy unit and manufacture thereof
JPS60146453A (en) Manufacture of nickel electrode for alkaline battery
JPH08162111A (en) Active material for nickel electrode and manufacture thereof
JPH01239764A (en) Paste type positive plate for alkaline storage battery and manufacture thereof
CN111193030A (en) Three-dimensional porous aluminum strip, preparation method and anode
JPS59196565A (en) Manufacture of nonsintered electrode
JPH0132633B2 (en)