JPS58160865A - Method and device for measuring ultrasonic wave attenuation in material - Google Patents

Method and device for measuring ultrasonic wave attenuation in material

Info

Publication number
JPS58160865A
JPS58160865A JP57042519A JP4251982A JPS58160865A JP S58160865 A JPS58160865 A JP S58160865A JP 57042519 A JP57042519 A JP 57042519A JP 4251982 A JP4251982 A JP 4251982A JP S58160865 A JPS58160865 A JP S58160865A
Authority
JP
Japan
Prior art keywords
attenuation
ultrasonic
ultrasonic wave
frequency
true
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57042519A
Other languages
Japanese (ja)
Other versions
JPH038510B2 (en
Inventor
Katsuhiro Kawashima
川島 捷宏
Naoya Hamada
直也 浜田
Hiroshi Soga
弘 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57042519A priority Critical patent/JPS58160865A/en
Publication of JPS58160865A publication Critical patent/JPS58160865A/en
Publication of JPH038510B2 publication Critical patent/JPH038510B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the real extent of attenuation of an ultrasonic wave by combining multiple information extracted from analysis in frequency of an ultrasonic wave output signal, and applying resulted information with arithmetic processing. CONSTITUTION:An ultrasonic wave generated by an ultrasonic wave transmitter and receiver 3 using laser light include a wide range spectrum up to tens MHz and is transmitted to intrude into a material. Then, a detected ultrasonic wave pulse echo signal while drawn on an oscilloscope 8 through an amplifier 4 is digitized by a high-speed wave memory 5 and read. On the basis of this read data, a computer 6 calculates the thickness of the material from a preset velocity of the ultrasonic wave and time intervals of the pulse train. Further, the high-speed Fourier transform of each pulse echo waveform is carried out to calculate the attenuation of each ultrasonic wave of preset frequencies f1-f3. Then, information variables increased by the frequency analysis are used in combination to find the real attenuation accompanying the propagation of the ultrasonic wave, reflection loss, and diffraction loss repsectively and separately, and reliable information for estimating the crystal particle size of the material and other various constants of the physical properties are obtained.

Description

【発明の詳細な説明】 本発明は、超音波パルスを発受信し、その出力の周波数
分析を行ない多重情報量化する事により。
DETAILED DESCRIPTION OF THE INVENTION The present invention transmits and receives ultrasonic pulses, performs frequency analysis of the output, and converts the output into multiple information.

伝播に伴う真の超音波減衰量を測定する方法および装置
に関する。
The present invention relates to a method and apparatus for measuring true ultrasonic attenuation due to propagation.

材料中の超音波減衰特性は、その材料の物理学的、ある
いは材料学的性質と密接に結びついており、材料中を透
過する超音波の真の減其量を知ることによって、たとえ
ば金属材料の結晶粒径を測定することが可能となる等、
工業的に極めて重要である処から、近来多くの研究者に
よってその測定の試みがなされてきた。
The ultrasonic attenuation characteristics in a material are closely linked to the physical or material properties of that material, and by knowing the true attenuation of ultrasonic waves transmitted through the material, it is possible to It becomes possible to measure crystal grain size, etc.
Due to its extremely important industrial importance, many researchers have recently attempted to measure it.

しかしながら、大半−の測定においては、超音波パルス
の反射損失や回折損失を分離せ、ずに測定しており、ま
た更に超音波減衰に犬き々影響をおよぼす反射面の表面
性状に対する考慮が欠落してい更に、超音波減衰量はそ
の周波数に依存して変化するが、超音波探触子の送出す
る超音波パルスの周波数は、探触子の共振周波数の池に
側波帯成分を含み、理想的な単一周波数超音波の減衰特
性の測定は困難であった。
However, in most measurements, the reflection loss and diffraction loss of ultrasonic pulses are measured without separating them, and there is also a lack of consideration of the surface properties of the reflecting surface, which greatly affect ultrasonic attenuation. Furthermore, the amount of ultrasonic attenuation changes depending on its frequency, but the frequency of the ultrasonic pulse sent out by the ultrasonic probe includes sideband components at the resonant frequency of the probe. Measuring the attenuation characteristics of an ideal single-frequency ultrasound wave has been difficult.

第1図は、従来の超音波減衰特性の測定装置の説明図並
びにその測定結果を示すグラフである。
FIG. 1 is an explanatory diagram of a conventional ultrasonic attenuation characteristic measuring device and a graph showing the measurement results.

超音波パルスエコー列は同図(b)に示される様に、伝
播距離Xに対して指数減衰を示し、従来その係数αを超
音波減衰定数として椴扱ってきたが、この減衰定数αは
上述の要因を全て混合した減衰特性を示しているに過ぎ
ない。
As shown in Figure (b), the ultrasonic pulse-echo train exhibits exponential attenuation with respect to the propagation distance It simply shows a damping characteristic that is a mixture of all of the factors.

ところで、電磁超音波技術やレーザ光を用いる技術等、
非接触にて超音波を発受信する方式が提案されており、
これによれは、超音波発受信点における音響インピーダ
ンスの不整合の点は考慮せずにすむが、パルスエコー列
のピーク値減衰量のみを測定する限り、上述の問題点は
なお存在する。
By the way, electromagnetic ultrasound technology, technology using laser light, etc.
A method for transmitting and receiving ultrasonic waves without contact has been proposed.
Although this eliminates the need to consider the acoustic impedance mismatch at the ultrasound transmitting and receiving points, the above-mentioned problem still exists as long as only the peak value attenuation of the pulse echo train is measured.

本発明は上述の問題点を解消し、超音波出力信号を周波
数分析して抽出される多重情報を組み合せて演算処理す
る事によシ真の超音波減衰量を測定する事を目的として
いる。
The present invention aims to solve the above-mentioned problems and to measure the true amount of ultrasonic attenuation by combining and processing multiplexed information extracted by frequency analysis of an ultrasonic output signal.

すなわち1本発明は、超音波を材料中に送入して得られ
る超音波エコーを検出し、該検出されたエコーを周波数
分析して、抽出される周波数領域における多重周波数情
報から、超音波が材料中を伝播するときの反射損失、回
折損失等に起因する真の減衰量以外の減衰量を演算々出
して、材料中における超音波の真の減衰量を出力するこ
とを特徴とする材料中の超音波減衰測定方法を第1発明
とする。更に材料中に超音波を送入し1反射エコーを検
出する超音波発受信装置と、該超音波発受信装置からの
出力信号を周波数分析する周波数分析手段と、該周波数
分析手段から出力される周波数領域におけ゛る多重周波
数情報に基づいて、材料中を超音波が伝播するときの反
射損失1回折損失等に起因する真の減衰以外の減衰量を
演算々出し   j′・て、材料中における超音波の真
の減衰量を出力する演算装置とを設けてなることを特徴
とする材料中の超音波減衰測定装置を第2発明とする。
In other words, the present invention detects ultrasonic echoes obtained by sending ultrasonic waves into a material, performs frequency analysis on the detected echoes, and extracts multiple frequency information in the frequency domain to determine whether the ultrasonic waves are A material in which the true attenuation of ultrasonic waves in the material is output by calculating the attenuation other than the true attenuation due to reflection loss, diffraction loss, etc. when propagating through the material. The method for measuring ultrasonic attenuation is the first invention. Further, an ultrasonic transmitter/receiver device transmits ultrasonic waves into the material and detects one reflected echo, a frequency analyzer frequency-analyzes the output signal from the ultrasonic transmitter-receiver device, and a frequency analyzer output from the frequency analyzer. Based on multi-frequency information in the frequency domain, calculate the amount of attenuation other than the true attenuation due to reflection loss, diffraction loss, etc. when ultrasonic waves propagate through the material. A second invention provides an apparatus for measuring ultrasonic attenuation in a material, characterized in that it is provided with an arithmetic device that outputs the true attenuation amount of ultrasonic waves in a material.

以下1本発明の詳細について説明を加える。The details of the present invention will be explained below.

境界面間で多重反射を繰り返す超音波の減衰は。What is the attenuation of ultrasonic waves that undergo multiple reflections between interfaces?

境界面における反射損失1回折損失および伝播に伴う貞
の減衰に分類される。したがって、超音波パルスを発受
信した際の減衰定数をα(f)CdB )とすると1、
これは(1)式で与えられる。
It is classified into reflection loss at the interface, diffraction loss, and attenuation due to propagation. Therefore, if the attenuation constant when transmitting and receiving ultrasonic pulses is α(f)CdB), then 1,
This is given by equation (1).

α(f〕=αrtf)/2d+αa(f)十αt(f)
    ・・・・・(1)ここで、αr(f)(ds)
 、  αa (f) (d B/cm 〕、  αt
(f) (d¥”cm”Jはそれぞれ超音波の上下境界
面における反射損失の和、回折損失ならびに真の減頁定
数を表わし、周波数fの関数である。またdCCrn〕
は超音波伝播材料における伝播方向の厚みを表わす。さ
て1本発明者らは1反射損失および回折損失を測定する
実験ケ行ない、下記の様な知見を得た。反射損失αr(
f)  は、超音波反射面の表面性状に依存して変化す
るが、一般に周波数fと反射損失αr(dB)は。
α(f)=αrtf)/2d+αa(f) ten αt(f)
...(1) Here, αr(f)(ds)
, αa (f) (d B/cm ), αt
(f) (d\"cm"J represents the sum of reflection loss, diffraction loss and true page reduction constant at the upper and lower boundary surfaces of ultrasonic waves, respectively, and is a function of frequency f. Also, dCCrn]
represents the thickness of the ultrasonic propagation material in the propagation direction. The present inventors conducted an experiment to measure reflection loss and diffraction loss and obtained the following findings. Reflection loss αr (
f) varies depending on the surface properties of the ultrasonic reflecting surface, but in general, the frequency f and the reflection loss αr (dB) are:

両対数軸上で直線関係にあり、(2)式で表わされる。There is a linear relationship on the logarithmic axis, and it is expressed by equation (2).

αr(f) −に−fq            ・・
・・・(2)ここで、には表囲性状によシ変化する定数
で々qはほぼ0.5である。次に回折損失αa(f)は
超音波伝播材料の材質に殆んど依存せず、反射損失の場
合と同様に1周波数fと回折損失αa(dB/cm)の
間に両対数軸上での直線関係が成立し、(3)式で与え
られる。
αr(f) −to −fq ・・
(2) Here, is a constant that changes depending on the surface properties, and q is approximately 0.5. Next, the diffraction loss αa (f) hardly depends on the material of the ultrasonic propagation material, and as in the case of reflection loss, there is a difference between one frequency f and the diffraction loss αa (dB/cm) on the logarithmic axis. A linear relationship holds true and is given by equation (3).

αa(f)= r−f”         −−−−−
−−−・−(3)ここで、r、eは定数で、θはほぼ−
lである。
αa(f)=r-f” ------
−−・−(3) Here, r and e are constants, and θ is approximately −
It is l.

次に超音波の真の減衰定数αt[’dB/6++″Jは
、超音波伝播材料の平均結晶粒径をす、超音波の波長を
λとすると、一般的に周波数fに対して下記の様に与え
られる。
Next, the true attenuation constant αt['dB/6++''J of ultrasonic waves is the average crystal grain size of the ultrasonic propagation material.If the wavelength of ultrasonic waves is λ, then the following is generally given for the frequency f: will be given to you.

ここでtI*t2は、結晶粒径すによって決められる定
数である。
Here, tI*t2 is a constant determined by the crystal grain size.

以上の結果よシ、減衣定数α(f)を与える(1ン式は
(5)式の様に書き直される。
Based on the above results, the reduction constant α(f) is given (the equation 1 can be rewritten as equation (5)).

α(f) = kf’/2d +rf’ +tfu(q
:: 0.5.  s::−1,u :; 2or 4
 ) ・・・<5)(5)式の中で未知数はに、  r
、  t、  dであり、dは測定されたパルスエコー
列の時間間隔に、超音波伝播音速を乗する事により求め
られる。
α(f) = kf'/2d +rf' +tfu(q
:: 0.5. s::-1, u:; 2or 4
) ...<5) In equation (5), the unknown quantity is r
, t, and d, where d is obtained by multiplying the time interval of the measured pulse-echo train by the ultrasound propagation speed.

次に第2図(a)に示されるパルスエコー列PI+P2
1・・・・・を周波数分析l、同図(b)の様に得られ
た結果の中で、適当な周波数fl * f2 + f3
について着目する。p、  r、  tは同図(C)の
様に、それぞれの周波数に対する減衰定数α(fi) 
(i= 1.2.3)  を求め、(5)式から得られ
る3元連立方程式を解く事により(6)式の様に与えら
れる。
Next, the pulse echo train PI+P2 shown in FIG. 2(a)
1... is frequency analyzed l, and among the results obtained as shown in the same figure (b), an appropriate frequency fl * f2 + f3
We will focus on As shown in the same figure (C), p, r, and t are the attenuation constant α(fi) for each frequency.
(i = 1.2.3) and by solving the three-dimensional simultaneous equations obtained from equation (5), it is given as equation (6).

以上の手法にて1周波数分析による多重情報量化を行な
う事で、超音波減衰を反射損失、回折損失ならびに真の
伝播減屓に分離して求める事が可能となる。
By performing multiplex information quantification using single frequency analysis using the above method, it becomes possible to separate the ultrasonic attenuation into reflection loss, diffraction loss, and true propagation attenuation.

次に本発明の以上の方法を実施する一例について説明す
る。第3図は、本発明の一実施例を示すブロック図であ
る。
Next, an example of implementing the above method of the present invention will be described. FIG. 3 is a block diagram showing one embodiment of the present invention.

第3図中の超音波発受信装置3は1例えば特願昭56−
188987号に示されたレーザ光による超音波発受信
装置である。レーザ光を用いる理由は、非接触であると
いう利点に加えて、Qスイッチパルスレーザ光により発
生する超音波は、数10MHzまでの広帯域スペクトル
を含むからである。
The ultrasonic transmitting/receiving device 3 in FIG.
This is an ultrasonic wave transmitting/receiving device using a laser beam as shown in No. 188987. The reason for using a laser beam is that in addition to the advantage of being non-contact, the ultrasonic waves generated by the Q-switched pulsed laser beam include a broadband spectrum up to several tens of MHz.

これによって発生・検出された超音波ノクノシスエコー
信号は、増幅器4によって増幅された後、オシロスコー
プ8上に描き出されると同時に、高速ウェーブメモリ5
によって、ディジタル化され読    ゛み込葦れる。
The ultrasonic noknosis echo signal generated and detected by this is amplified by the amplifier 4 and then drawn on the oscilloscope 8, and at the same time, the high-speed wave memory 5
It is then digitized and read in.

計算機6は、この読み込まれたデータをもとに、予め設
定された超音波音速と、パルス列の時間間隔から厚みd
を算出する。さらに。
Based on this read data, the calculator 6 calculates the thickness d from the preset ultrasonic sound velocity and the time interval of the pulse train.
Calculate. moreover.

それぞれのパルスエコー波形について高速フーリエ変換
をほどこし、予め設定された周波数fIIf21f、に
ついて1式(1)で定義されるそれぞれの超音波減衰量
α(f)を算出する。
A fast Fourier transform is applied to each pulse echo waveform, and each ultrasonic attenuation amount α(f) defined by Equation 1 (1) is calculated for a preset frequency fIIf21f.

その後、(6)式に従って未知数に、  r、  tの
演算を行ない、各演算処理結果を表示装置7に出力する
Thereafter, calculations of r and t are performed on the unknown numbers according to equation (6), and the results of each calculation are output to the display device 7.

以上に述べた様に、本発明によれば、周波数分析による
増大した情@i菫を組み合せる事により、超音波の伝播
に伴う真の減衰量、反射損失1回折損失をそれぞれ分離
して求め得るので、材料の結晶粒径その1m種々の物性
定数を推定するだめの信頼性のある情報?与え得るとい
う利点を有する。
As described above, according to the present invention, by combining the information increased by frequency analysis, the true attenuation, reflection loss, and diffraction loss accompanying the propagation of ultrasonic waves are separately determined. Is it possible to obtain reliable information for estimating various physical property constants such as the grain size of the material? It has the advantage of being able to provide

なお、以上の実施例においては、超音波発受信装置は、
特願昭56−188987号に示された装置としたが、
レーザ光を用いる他の方式の装置でもよく、また、通常
の超音阪探傷装置や電磁超音技法による装置でもよい。
In addition, in the above embodiment, the ultrasonic transmitting and receiving device is
Although the device was shown in Japanese Patent Application No. 188987/1987,
Other types of devices using laser light may be used, or a device using a normal ultrasonic flaw detection device or an electromagnetic ultrasonic technique may be used.

更にはこれらの組み合せであってもよい。Furthermore, a combination of these may be used.

また更に上述の実施例においては、(5)式のパラメー
タr、θ、Uを既知数として取シ扱ったが。
Furthermore, in the above embodiment, the parameters r, θ, and U in equation (5) were treated as known values.

計算機の演算時間か長くなる点を許せば、これらを未知
数として取シ扱い、演算に使用する周波数を3周波数か
ら6周波数に増す事で、より正確な測定が可能となる。
If we accept that the calculation time of the computer will be longer, more accurate measurements can be made by treating these as unknowns and increasing the frequencies used for calculation from 3 frequencies to 6 frequencies.

また1本実施例においては。Also, in one embodiment.

周波数分析の際、波形を高速ウェーブメモリでディジタ
ル化した後、高速フーリエ変換によシ行なったが、アナ
ログのスペクトラムアナライザを用いて、アナログ波形
を直接周波数分析してもよい。
During frequency analysis, the waveform was digitized using a high-speed wave memory and then subjected to fast Fourier transformation, but the analog waveform may also be directly frequency-analyzed using an analog spectrum analyzer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来の超音波減衰特性の測定装置の説明
図、同図(b)はその測定結果を示すグラフ、第2図は
本発明の実施方法の説明図であり、同図(a)は計測さ
れるパルスエコー列を示すグラフ、同図(b)はパルス
エコー列を周波数分析した結果を示すグラフ、同図(C
)は、(b)の結果から減設定数を求めるへ法の説明図
、第3図は1本発明の実施例を示すフロック図である。 1・・・超音波伝播材料  2・・・超音波探触子3・
・・超音波発受信装置 4・・・増幅器5・・・高速ウ
ェーブメモ 6・・・計算機り        7・・
・表示装置 8・・・オシロスコープ 隼/図 (b) イ云41ト区巨−11χ   → gs費難1 竿3図 手続補正書(自発) 昭和57年 4九部 日 特許庁長官 島 1)春 樹 殿 l、事件の表示 昭和57年特許願第42519号2発
明の名称  材料中の超音波減衰測定方法および装置3
、補、正をする者 事件との関係 特許出願人住 所 
 東京都千代田区大手町2丁目6番3号名 称  (6
65)  新日本製鐵株式會社代表者  武 1)  
豊 一4代 理 人 住 所  東京都中央区日本橋3丁目3番3号5、補正
命令の日付 昭和  年  月  日(発送日)6、補
正により増加する発明の数 8補正の内容        イT〉 l 特許請求の範囲を別紙の通シ補正する。 2、 明細書2頁18行、4頁、8行及び17行、5頁
4行、11行及び14行、6頁1行及び3行、8頁2行
、9頁11行の「回折」を「回折」にそれぞれ補正する
。 3、同7頁4行「分析1」を「分析−」に補正する。 4 同第7頁6行rPJをrkJに補正する。 )  ! 特許請求の範囲を次のように補正する。 l 超音波を材料中に速入して得られる超音波エコー(
検出し、該検出されたエコーを周波数分析して、抽出さ
れる周波数領域における多重周波数情報から、超音波が
材料中と伝播するときの反射損失1回折損失等に起因す
る真の減衰量以外の減衰量を演算々出して、材料中にお
ける超音波の真の減衰量を出力することを特徴とする材
料中の超音波減衰測定方法。 2 材料中に超音波を速入し、反射エコーを検出する超
音波発受信装置と、該超音波発受信装置からの出力信号
を周V数分析する周波数分析手段と、該周波数分析手段
から出力される周波数領域における多重周波数情報に基
づいて、材料中′!f−超音波が伝播するときの反射損
失1量販損失等に起因する真の減其以外の減衰量を演算
々出して、材料中における超音波の真の減衰量を出力す
る演算装置とを設けてなることを特徴とする材料中の超
音波減衰測定方法。
FIG. 1(a) is an explanatory diagram of a conventional ultrasonic attenuation characteristic measuring device, FIG. 1(b) is a graph showing the measurement results, and FIG. 2 is an explanatory diagram of the implementation method of the present invention. (a) is a graph showing the measured pulse echo train, (b) is a graph showing the result of frequency analysis of the pulse echo train, and (C
) is an explanatory diagram of the method for determining the number of reduced settings from the result of (b), and FIG. 3 is a block diagram showing an embodiment of the present invention. 1... Ultrasonic propagation material 2... Ultrasonic probe 3.
・・Ultrasonic transmitting/receiving device 4・・Amplifier 5・・High speed wave memo 6・・Computer 7・・
・Display device 8... Oscilloscope Hayabusa/Diagram (b) Iyun 41 Toku G-11χ → GS expense 1 Rod 3 figure procedural amendment (voluntary) 1981 Part 49 Japanese Patent Office Commissioner Shima 1) Haruki 1. Indication of the incident Patent Application No. 42519 of 1982 2 Title of the invention Method and apparatus for measuring ultrasonic attenuation in materials 3
, person making the amendment or correction Relationship to the case Address of the patent applicant
2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (6)
65) Nippon Steel Corporation Representative Takeshi 1)
Toyoichi 4th generation Osamu Address: 3-3-3-5 Nihonbashi, Chuo-ku, Tokyo Date of amendment order: Showa 1920 Month/Day (shipment date) 6 Number of inventions increased by amendment 8 Contents of amendment Amend the claims in a separate document. 2. "Diffraction" on page 2, lines 18, 4, lines 8 and 17, page 5, lines 4, 11 and 14, page 6, lines 1 and 3, page 8, line 2, page 9, line 11 are corrected to "diffraction". 3. On page 7, line 4, "Analysis 1" is corrected to "Analysis-". 4 Correct page 7, line 6 rPJ to rkJ. )! The scope of claims is amended as follows. l Ultrasonic echo obtained by rapidly injecting ultrasonic waves into the material (
The detected echoes are frequency-analyzed, and from the extracted multi-frequency information in the frequency domain, the amount of attenuation other than the true attenuation due to reflection loss, diffraction loss, etc. when the ultrasonic wave propagates through the material is determined. A method for measuring ultrasonic attenuation in a material, characterized by calculating the amount of attenuation and outputting the true amount of attenuation of ultrasonic waves in the material. 2. An ultrasonic transmitter/receiver that rapidly injects ultrasonic waves into a material and detects reflected echoes, a frequency analyzer that analyzes the frequency V of the output signal from the ultrasonic transmitter/receiver, and an output from the frequency analyzer. Based on multiple frequency information in the frequency domain, f-Reflection loss when ultrasonic waves propagate 1 A calculation device is provided which calculates the amount of attenuation other than the true attenuation due to mass sales loss, etc., and outputs the true amount of attenuation of the ultrasonic waves in the material. A method for measuring ultrasonic attenuation in a material, characterized by:

Claims (1)

【特許請求の範囲】 ■ 超音波を材料中に速入して得られる超音波エコーを
検出し、該検出されたエコーを周波数分析して、抽出さ
れる周波数領域における多重鳩波数情報から、超音波が
材料中を伝播すると券の反射損失1回折損失等に起因す
る真の減衰音以外の減衰量を演算々出して、材料中にお
ける超音波の真の減衰量を出力することを特徴とする材
料中の超音波減衰測定方法。 2 材料中に超音波を速入し1反射エコーを検出する超
音波発受信装置と、該超音波発受信装置からの出力信号
を周波数分析する周波数分析手段と、該周波数分析手段
から出力される周波数領域における多事周波数情報に基
づいて、材料中を超音波が伝播するときの反射損失1回
折損失等に起因する真の減衰以外の減衰量を演算々出し
て、材料中における超音波の真の減衰量を出力する演算
装置とを設けてなることを特徴とする材料中の超音波減
衰測定装置。
[Claims] ■ Detecting ultrasonic echoes obtained by rapidly injecting ultrasonic waves into a material, frequency-analyzing the detected echoes, and extracting multiple pigeon wave number information in the extracted frequency domain. When a sound wave propagates through a material, the amount of attenuation other than the true attenuation sound due to reflection loss, diffraction loss, etc. of the ticket is calculated, and the true amount of attenuation of the ultrasonic wave in the material is output. Method for measuring ultrasonic attenuation in materials. 2. An ultrasonic transmitter/receiver that quickly injects ultrasonic waves into a material and detects one reflected echo; a frequency analyzer that frequency-analyzes the output signal from the ultrasonic transmitter/receiver; and a frequency analyzer output from the frequency analyzer. Based on the multi-frequency information in the frequency domain, the amount of attenuation other than the true attenuation due to reflection loss, diffraction loss, etc. when the ultrasonic wave propagates through the material is calculated, and the true attenuation of the ultrasonic wave in the material is calculated. 1. An apparatus for measuring ultrasonic attenuation in a material, comprising: an arithmetic device that outputs an amount of attenuation.
JP57042519A 1982-03-19 1982-03-19 Method and device for measuring ultrasonic wave attenuation in material Granted JPS58160865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042519A JPS58160865A (en) 1982-03-19 1982-03-19 Method and device for measuring ultrasonic wave attenuation in material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042519A JPS58160865A (en) 1982-03-19 1982-03-19 Method and device for measuring ultrasonic wave attenuation in material

Publications (2)

Publication Number Publication Date
JPS58160865A true JPS58160865A (en) 1983-09-24
JPH038510B2 JPH038510B2 (en) 1991-02-06

Family

ID=12638323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042519A Granted JPS58160865A (en) 1982-03-19 1982-03-19 Method and device for measuring ultrasonic wave attenuation in material

Country Status (1)

Country Link
JP (1) JPS58160865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187911A1 (en) * 2016-04-25 2017-11-02 非破壊検査株式会社 Laminated body peeling examination method and peeling examination device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938490A (en) * 1972-08-16 1974-04-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938490A (en) * 1972-08-16 1974-04-10

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187911A1 (en) * 2016-04-25 2017-11-02 非破壊検査株式会社 Laminated body peeling examination method and peeling examination device
JP2017198459A (en) * 2016-04-25 2017-11-02 非破壊検査株式会社 Method for inspecting separation of laminate and separation inspection device
TWI623747B (en) * 2016-04-25 2018-05-11 日商非破壊檢查股份有限公司 Layered-body detachment-testing method and detachment-testing device
US10429358B2 (en) 2016-04-25 2019-10-01 Non-Destructive Inspection Company Limited. Method and apparatus for inspecting delamination of laminated body

Also Published As

Publication number Publication date
JPH038510B2 (en) 1991-02-06

Similar Documents

Publication Publication Date Title
US7353709B2 (en) Method and system for determining material properties using ultrasonic attenuation
KR101281273B1 (en) Method and system for determining material properties using ultrasonic attenuation
US5035144A (en) Frequency broadband measurement of the characteristics of acoustic waves
US5663502A (en) Method and apparatus for measuring thickness of layer using acoustic waves
Clorennec et al. Nondestructive evaluation of cylindrical parts using laser ultrasonics
CA2352839A1 (en) Apparatus and method for evaluating the physical properties of a sample using ultrasonics
US4524621A (en) Method for measurement of velocity of surface acoustic wave
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JPS58160865A (en) Method and device for measuring ultrasonic wave attenuation in material
Perov et al. Localization of reflectors in plates by ultrasonic testing with lamb waves
JPH0454447A (en) Fatigue damage measuring method
JP3140244B2 (en) Grain size measurement method
Lofqvist Ultrasonic wave attenuation and phase velocity in a paper-fibre suspension
JPH07248317A (en) Ultrasonic flaw detecting method
Lasaygues et al. Use of a chirp-coded excitation method in order to improve geometrical and acoustical measurements in wood specimen
USH2112H1 (en) Method for measuring coating thickness using ultrasonic spectral tracking
Djerir et al. Experimental Investigation of the parameters Influencing the surface defect detection by using the critically refracted longitudinal waves
JP2973759B2 (en) Grain size measuring device
CA2511629C (en) Method and system for determining material properties using ultrasonic attenuation
JPH05333003A (en) Method and apparatus for measuring attenuating amount of ultrasonic wave in body to be inspected
JP2001343366A (en) Crystal grain measuring method and device for metal sheet
Duong et al. Determination of acoustic attenuation in composites by the time frequency method
JP3388316B2 (en) Ultrasonic inspection method
Edwards et al. Interaction of ultrasonic waves with surface-breaking defects