JPS5816081A - Electrolyzing method for aqueous solution of alkali metal chloride - Google Patents

Electrolyzing method for aqueous solution of alkali metal chloride

Info

Publication number
JPS5816081A
JPS5816081A JP11303781A JP11303781A JPS5816081A JP S5816081 A JPS5816081 A JP S5816081A JP 11303781 A JP11303781 A JP 11303781A JP 11303781 A JP11303781 A JP 11303781A JP S5816081 A JPS5816081 A JP S5816081A
Authority
JP
Japan
Prior art keywords
anode
exchange membrane
cation exchange
space
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11303781A
Other languages
Japanese (ja)
Inventor
Yosuke Kakihara
柿原 陽助
Etsuro Matsui
悦郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP11303781A priority Critical patent/JPS5816081A/en
Publication of JPS5816081A publication Critical patent/JPS5816081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To decrease the electric resistance on an anode chamber side and to prevent the degradation in the durability of a cation exchange membrane by maintaining the spacing between the cation exchange membrane and an anode in a specific range, and maintaining the corresponding diameter in the spacing part on the rear surface of the anode and the linear ascending speed of liquid under specific conditions. CONSTITUTION:In the stage of electrolyzing an aq. soln. of alkali metal chloride by the use of a vertical type electrolytic cell of an ion exchange membrane method, the spacing (t) between a cation exchange membrane 2 and an anode 5 is adjusted to 0.5-3mm., more preferably to about 0.5-2mm., and electrolysis is performed under the conditions under which the relation between the corresponding diameter De(mm.) in the space part 4 on the rear surface of the anode 1 and the linear ascending speed U(cm/sec) of liquid in the part 4 assumes U/De>=0.15. If (t)<0.5mm. in said relation, the foam of gaseous chlorine stagnates and contributes to deterioration of the cation exchange membrane, and if (t)>3mm., the electric resistance increases. If U/De exceeds 0.15, it is evident from experiment that the electric resistace on the anode chamber side decreases sharply.

Description

【発明の詳細な説明】 本発明はイオン交換膜法竪を電解槽を用いた塩化アルカ
リ金属水溶液の電解にお−て、特に陽極室側の電気抵抗
を低減させることを目的とした塩化アルカリ金属水溶液
の電解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an ion-exchange membrane method to electrolyze an alkali metal chloride aqueous solution using an electrolytic cell, particularly for the purpose of reducing the electrical resistance on the anode chamber side. This invention relates to a method for electrolyzing an aqueous solution.

イオン交換膜法竪鳳電解槽を用−た塩化アルカリ金属水
溶液1例えば塩化ナトリウム、塩化カリウム等の水溶液
の電解方法につ−ては多くの研究が成され、新しい電解
技術として確立されつつある。該電解方法にお≠て陽極
室側の電気抵抗を低減させ、電力原単位の向上を図るこ
とは、該電解方法を経済的に実施する上で非常に大きな
l1fflであり、従来から種々の試みがなされて−る
。例えば、特開昭55−58381号には陽極の形状に
特殊な工夫を加えたり、陽極室の厚みを厚くシ、ガス抜
けを良くすることにより、陽極室側の電気抵抗を低減さ
せる技術が記載されて−る。
Much research has been carried out on methods of electrolyzing aqueous solutions of alkali metal chloride (1), such as sodium chloride, potassium chloride, etc., using an ion-exchange membrane vertical electrolytic cell, and this is becoming established as a new electrolytic technology. In this electrolysis method, reducing the electrical resistance on the anode chamber side and improving the power consumption rate is a very big l1ffl in economically implementing this electrolysis method, and various attempts have been made to date. is being done. For example, JP-A No. 55-58381 describes a technique for reducing the electrical resistance on the anode chamber side by adding special innovations to the shape of the anode, increasing the thickness of the anode chamber, and improving gas release. It's being done.

また、陽イオン交換膜な陽極面に密接さ破ることも、陽
極室側の電気抵抗を下ける手段の一つとして広〈実施さ
れて−る。
In addition, breaking the close contact with the anode surface of a cation exchange membrane is widely practiced as a means of lowering the electrical resistance on the anode chamber side.

しかし、これらの方法では、陽極室側の電気抵抗の減少
の度合は十分とは言−難く満足し得るものとはなってい
な−。また、陽イオン交換膜を陽極面に密接させた場合
では、陽イオン交換膜の耐久性が低下すると−ラた欠点
も生ずる。
However, with these methods, the degree of reduction in electrical resistance on the anode chamber side is far from sufficient and is not satisfactory. In addition, when the cation exchange membrane is brought into close contact with the anode surface, the durability of the cation exchange membrane decreases, resulting in the disadvantage of cracking.

本発明者等は、上記欠点を解消し、しかも、陽他室側の
電気抵抗の低減を達成しうる電解方法を確立すべく長年
にわたって実験、検討を行なつてきた。その結果、下記
の知見を得た。即ち、陽極で発生する塩素ガスは陽極の
如き金属に付着し易く該塩素ガスが通常0.5〜数nの
気泡に成長するまで陽極表面に留まること。該気泡によ
る電気抵抗が陽極室側の電気抵抗のうちのかなりの部分
をしめていること。陽イオン交換膜を陽極に密接させた
場合には、陽極表面への気泡の付着量が更に増大し、陽
イオン交換膜を陽極に密接さ”せることによる容液抵抗
の減少分は、該気泡による電気抵抗の増加によりほとん
ど打ち消されてしまうこと。
The present inventors have conducted experiments and studies for many years in order to establish an electrolysis method that can eliminate the above-mentioned drawbacks and also achieve a reduction in the electrical resistance on the positive side chamber side. As a result, the following findings were obtained. That is, the chlorine gas generated at the anode tends to adhere to metals such as the anode, and usually remains on the surface of the anode until it grows into bubbles of 0.5 to several nanometers. The electrical resistance due to the bubbles accounts for a considerable portion of the electrical resistance on the anode chamber side. When the cation exchange membrane is brought into close contact with the anode, the amount of air bubbles adhering to the anode surface further increases, and the reduction in fluid resistance due to the cation exchange membrane being brought into close contact with the anode is due to the amount of air bubbles adhering to the anode surface. almost canceled out by the increase in electrical resistance due to

また、陽極表面に気泡が留まることにより、局部的な高
電流部分、過脱塩部分が発生し、これが陽イオン交換膜
を陽極に密接させた場合の陽イオン交換膜の劣化をひき
おこす原因となって−ること。これらの知見をもとにさ
らに数多くの実験を重ねた結果、陽イオン交換膜と陽極
との間隔を特定な範囲に維持し、且つ陽極背面の空間部
の相当径と該空間部における液の上昇線速度とを特定の
条件に保つことによって所期の目的を達成できることを
見−出し本発明を完成するに至った〇即ち、本発明はイ
オン交換農法竪型電解槽を用−て塩化アルカリ金属水溶
液を電解するに際し、陽イオン交換膜と陽極との間隙を
0.5〜3afに調節し、且つ該陽極背面の空間部の相
当径D e (11+1 )と該空間部におりる液の上
昇速度U(cm/s@a)との関係がU / D e≧
0.15となる条件下で電解を行なうことを特徴とする
塩化アルカリ金属水溶液の電解方法である。
In addition, air bubbles remaining on the anode surface generate localized high current areas and excessive desalination areas, which can cause deterioration of the cation exchange membrane when it is placed in close contact with the anode. What to do. Based on these findings, we conducted many more experiments and found that the distance between the cation exchange membrane and the anode was maintained within a specific range, and the equivalent diameter of the space on the back of the anode and the rise of the liquid in the space were determined. They discovered that the desired objective could be achieved by maintaining the linear velocity under specific conditions, and thus completed the present invention.That is, the present invention utilizes an ion exchange farming vertical electrolytic cell to produce alkali metal chloride. When electrolyzing an aqueous solution, the gap between the cation exchange membrane and the anode is adjusted to 0.5 to 3af, and the equivalent diameter D e (11+1) of the space on the back of the anode and the rise of the liquid flowing into the space are adjusted. The relationship with speed U (cm/s@a) is U/D e≧
This is a method for electrolyzing an aqueous alkali metal chloride solution, which is characterized in that electrolysis is carried out under conditions such that the electrolysis temperature is 0.15.

本発明の電解方法は、陽極がエクスパンドメタル、金属
多孔板等の多孔性電極酸−は棒状体を縦方向に整列させ
てなる形状、所謂すだれ状の電極よりなり且つ陽極背面
に間隔をあけてW壁が存在するイオン交換膜法竪型電解
檜な用いる塩化アルカリ金属水溶液の電解に特に制限な
く適用される。
In the electrolysis method of the present invention, the anode is made of a porous electrode such as an expanded metal or a metal porous plate.The electrode acid is formed by vertically arranging rod-like bodies, a so-called interdigital electrode, and the anode is made of a porous electrode such as an expanded metal or metal porous plate. The present invention can be applied to the electrolysis of an aqueous alkali metal chloride solution using an ion-exchange membrane vertical electrolytic cylinder in which a W wall exists without particular limitation.

本発明にお−て、陽イオン交換膜と陽極との間隙、Eち
、第1図に示すイオン交換農法竪型電解槽の部分断面図
において陽イオン交換膜Q)と陽極(1)との間a(t
)It O,s 〜3tx、好ましく ハ0.5〜2謂
に調節することが重要である。尚、第1図において、(
3)は隔壁、(4)は陽極背面の空間部である。
In the present invention, the gap between the cation exchange membrane and the anode, E, and the gap between the cation exchange membrane Q) and the anode (1) in the partial sectional view of the vertical electrolytic cell for ion exchange farming shown in FIG. Interval a(t
) It is important to adjust it to 3tx, preferably 0.5 to 2. In addition, in Figure 1, (
3) is a partition wall, and (4) is a space behind the anode.

該間隙(りが上記範囲より小さいと陽極表面で気泡が成
長し易く、該気泡により電気抵抗の増大、陽イオン交換
膜の劣化を招く。また、該間隙(匂が前記範囲より太き
―と、陽イオン交換膜と陽極との間に存在する気泡及び
溶液による電気抵抗分が増大すると共に、後述する陽極
背面の空間部の液流を特定な条件に調整することによる
電気抵抗の低減効果を充分発揮することができな−。陽
イオン交換膜と陽極との間隙を前記範囲内に調節する態
様は特に制限されない。例えは、第2図、第3図はフィ
ルタープレス型陽イオン交換膜法電解槽において、該間
隙を前記範囲内に調節する代表的な態様を示す部分断面
図である。第2図に示す態様は陽イオン交換膜(2)と
陽極(1)との間に、縦方向に連続した空隙を有するス
ペーサー(6)を介在させ、陽イオン交換膜し)を該ス
ペーサーで保持するものである。該スペーサーの形状は
縦方向に連続した空隙を有するものであれば特に制限さ
れなψが、好ましくは、多孔性電極に対してはすだれ状
をしたスペーサーを用−1すだれ状の電極に対しては網
状のスペーサーを用−ればよ−。また、該スペーサーの
材質は陽極室内の液及びガスに対して耐食性を有する樹
脂が一般的である。例えば、フッ素系樹脂が好適である
。尚、第2図において、(5)は陰極、(7)は液供給
口、(8)は気液排出口である。
If the gap is smaller than the above range, bubbles are likely to grow on the anode surface, causing an increase in electrical resistance and deterioration of the cation exchange membrane. , the electrical resistance increases due to the bubbles and solution existing between the cation exchange membrane and the anode, and the electrical resistance is reduced by adjusting the liquid flow in the space on the back of the anode to specific conditions, which will be described later. The method of adjusting the gap between the cation exchange membrane and the anode within the above range is not particularly limited.For example, FIGS. 2 and 3 show the filter press type cation exchange membrane method. FIG. 2 is a partial cross-sectional view showing a typical mode of adjusting the gap within the above range in an electrolytic cell.The mode shown in FIG. A spacer (6) having continuous voids in the vertical direction is interposed, and the cation exchange membrane is held by the spacer.The shape of the spacer is particularly limited as long as it has continuous voids in the vertical direction. Preferably, a spacer in the form of a blind is used for the porous electrode, and a spacer in the form of a net is used for the electrode in the shape of a blind.The material of the spacer is Resins that have corrosion resistance against the liquid and gas in the anode chamber are generally used. For example, fluorine-based resins are preferred. In Fig. 2, (5) is the cathode, (7) is the liquid supply port, (8) is a gas/liquid outlet.

第3図に示す態様は、陽イオン交換膜(2))を陰極(
5)に保持させて陽イオン交換膜C)と陽1k(1)と
の間隙を調節する態様である。この場合、陰極で発生す
る水素ガスが陽イオン交換膜に付着して陰極側°におけ
る電気抵抗を増大させるのを防止するため、陽イオン交
換膜(支))と陰極(5)との間に多孔性の金属スペー
サー〇)を介在させることが好まし−。該金属スペーサ
ーの材質は陰極より水素過電圧が高い金属が一般に使用
される。また、該金属スペーサーの形状はワイヤーメツ
シワ状t 網状t yイルム状等特に制限されな−。
In the embodiment shown in FIG. 3, the cation exchange membrane (2)) is connected to the cathode (
5) to adjust the gap between the cation exchange membrane C) and the cation 1k(1). In this case, in order to prevent hydrogen gas generated at the cathode from adhering to the cation exchange membrane and increasing the electrical resistance on the cathode side, there is a gap between the cation exchange membrane (support) and the cathode (5). Preferably, a porous metal spacer 〇) is used. As the material of the metal spacer, a metal having a higher hydrogen overvoltage than that of the cathode is generally used. Further, the shape of the metal spacer is not particularly limited, such as a wire mesh shape, a net shape, a film shape, etc.

本発明の電解方法にお−て、陽イオン交換膜と陽極との
間隙を前記特定な範囲に調節すると共に該陽極背面の空
間部の相当径D e (IM)と該空間部における液の
上昇線速度U (e1m/ sea )との関係がU/
Do≧0.15となる条件下で電解を行なうことが極め
て重要である。尚、陽極背面の空間部の相当径Daは公
知の方法によって求めることができる。
In the electrolysis method of the present invention, the gap between the cation exchange membrane and the anode is adjusted to the specified range, and the equivalent diameter D e (IM) of the space on the back of the anode and the rise of the liquid in the space are adjusted. The relationship with linear velocity U (e1m/sea) is U/
It is extremely important to perform electrolysis under conditions such that Do≧0.15. Note that the equivalent diameter Da of the space on the back surface of the anode can be determined by a known method.

例えば、該空間部の断面が矩形の場合。For example, when the cross section of the space is rectangular.

また、該空間部における液の上昇速度U(cm/8ec
)は陽極室への供給液量を陽極部分を除く陽極室の断面
積で除することによつて求めることができる。
In addition, the rising speed U (cm/8ec
) can be determined by dividing the amount of liquid supplied to the anode chamber by the cross-sectional area of the anode chamber excluding the anode portion.

従来、陽極背面の厚さとしては、30〜601111が
一般的であり、陽11f面の空間部の相当径としては、
60〜120mの範囲にあった。また、該空間部におけ
る液の上昇速度としては、0.05〜0、 s ctx
/ seaの範囲で行なわれている。従うて、17 /
 D 6としては、0.0004〜0.01の範囲で運
転されている。該陽極背面の空間部の相当径を小さくす
ると陽極室側の気泡密度が増加し電気抵抗が上昇すると
考えられていたこともあって、TT/Daが0.15以
上というような太き一範囲で運転されたことはなかりた
。本発明者等は数多くの実験を繰り返した結果、陽イオ
ン交換膜とlli極との間隙を前記特定の間隔に保ち、
且つ流量を一定に保ち陽極背面の空間部の相当径Deを
小さくシ、液の上昇速度υを上けてφった場合、徐々に
陽極室側の電気抵抗は上昇してくるが% v/noが一
定の値を越えたところから逆に陽極室側の電気抵抗が急
激に減少してくると−うきわめて特異な現象があること
を見い出した。そして、この特異な現象が陽極室への送
液流量にはかかわりなく、前記した特定な陽イオン交換
膜と陽極との間隙とした場合常にIT / D eが一
定値を越えると発生することを確認した。該U/D41
の値は、0.15以上であれけ特に制限されないが、数
値をあまり大きくすると大容量のポンプを必要とし不経
済である。そのため、該TJ / D・の値の上限は3
G、特に2oとする〜50 ell/ B’aOe好ま
しくは2〜40 Cal/ 860の範囲からU / 
Deの値が前記範囲となるように決定することが好まし
い。特に、相当径Deが上記範囲内で電解を行なりた場
合は本発明の効果が顕著に発揮され好適である。
Conventionally, the thickness of the back surface of the anode is generally 30 to 601111, and the equivalent diameter of the space on the positive 11f surface is:
It was in the range of 60-120m. In addition, the rising speed of the liquid in the space is 0.05 to 0, s ctx
/ sea. Follow me, 17/
D6 is operated in the range of 0.0004 to 0.01. It was believed that reducing the equivalent diameter of the space on the back of the anode would increase the bubble density on the anode chamber side and increase the electrical resistance. It had never been driven. As a result of repeated numerous experiments, the present inventors maintained the gap between the cation exchange membrane and the lli electrode at the specific interval,
In addition, if the flow rate is kept constant, the equivalent diameter De of the space on the back of the anode is reduced, and the rising speed υ of the liquid is increased to φ, the electrical resistance on the anode chamber side will gradually rise, but %v/ It has been found that a very peculiar phenomenon occurs when the electrical resistance on the anode chamber side suddenly decreases when no exceeds a certain value. This unique phenomenon occurs when IT/De exceeds a certain value when the gap between the specific cation exchange membrane and the anode is set as described above, regardless of the flow rate of liquid sent to the anode chamber. confirmed. The U/D41
The value of is not particularly limited as long as it is 0.15 or more, but if the value is too large, a large-capacity pump is required, which is uneconomical. Therefore, the upper limit of the value of TJ/D・ is 3
G, especially 2o to 50 ell/B'aOe preferably from the range 2 to 40 Cal/860 U/
It is preferable to determine the value of De so that it falls within the above range. In particular, it is preferable to carry out electrolysis with the equivalent diameter De within the above range, since the effects of the present invention are significantly exhibited.

本発明において、用−るイオン交換農法竪型電解槽は、
本発明の各条件を満足し得る構造であれば特に制限され
な−。例えば、第4図は本発明の方法を実施するのに好
適なイオン交換農法竪型電解槽の一態様を示す断面図で
ある。第4v!Jに示すイオン交換農法竪型電解槽は通
液部分において陽極室の隔壁(3)を陽イオン交換膜(
2)に接近させ、その上下に液供給口(7)気液排出口
(8)を夫々有する拡大空間部(lO)を形成させた態
様である。上記電解槽は少な一液供給量でU / I)
・を大きくすることが可能である。また、本発明にお−
で、他の電解条件は公知の条件が特に制限なく追尾され
る。
In the present invention, the ion exchange farming vertical electrolyzer used is:
There is no particular restriction as long as the structure satisfies each condition of the present invention. For example, FIG. 4 is a sectional view showing one embodiment of a vertical electrolytic cell for ion exchange farming suitable for carrying out the method of the present invention. 4th v! In the ion exchange farming vertical electrolyzer shown in J, the partition wall (3) of the anode chamber is replaced with a cation exchange membrane (
2), and an enlarged space (lO) having a liquid supply port (7) and a gas/liquid discharge port (8) above and below, respectively, is formed. The above electrolytic cell can handle U/I) with a small supply amount of one liquid.
・It is possible to increase . In addition, the present invention-
As for other electrolytic conditions, known conditions are followed without any particular restrictions.

以上の説明より理解される如く、本発明の電解方法は、
イオン交換農法竪型電解槽の陽極側の電気抵抗を著しく
減少することができ、その経済的メリットは測り知れな
−ものである。また、陽イオン交換膜を陽極に密接させ
る従来の方法において生1て―た陽イオン交換膜の劣化
現象もはは完全に防止することができる。更に、本発明
の方法は前記した如く@極室の厚みが小さい範囲で特に
効果的であり、電解槽のコンパクシ化に有効であるO 以下、本発明を更に具体的に説明するため実施例を洋す
が、本発明はこれらの実施例に限定される屯のではなψ
As understood from the above explanation, the electrolysis method of the present invention includes:
The electrical resistance on the anode side of a vertical electrolytic cell using ion exchange farming can be significantly reduced, and its economic benefits are immeasurable. Furthermore, the deterioration phenomenon of the cation exchange membrane, which is caused by the conventional method of bringing the cation exchange membrane into close contact with the anode, can be completely prevented. Furthermore, as described above, the method of the present invention is particularly effective in a range where the thickness of the electrode chamber is small, and is effective for compacting the electrolytic cell. However, the present invention is not limited to these embodiments.
.

実施例1 陽イオン交換膜としてパー7g1nカーボン系陽イオン
交換膜ネオ七ブタyo−1000(商品名。
Example 1 As a cation exchange membrane, Par7g1n carbon-based cation exchange membrane Neo Shichibuta YO-1000 (trade name).

徳山曹達製)を用−1陽極は酸化ルテニウムをコーティ
ングしたチタンラス材、陰極は軟鋼メッ9゜を張つたバ
イポーラ電極で、WIk極と陽イオン交換膜の間には、
縦方向に連続した9諏を有するフッ素樹脂製のすだれ状
のスペーサーを介在させた、巾2001ff、高さ90
0mの電槽を用−て実験を実施した。陽極室へは下部よ
り食塩水(塩化ナトリウム水溶液)を供給し、上部より
塩素とともに排塩水を取り出した。排塩水は一部外部循
環する構造とし、外部循環する液量な変えることにより
陽極背面の空間部における液の上昇速度を変化さすこと
が出来るようにした。
(manufactured by Tokuyama Soda) -1 The anode is a titanium lath material coated with ruthenium oxide, the cathode is a bipolar electrode with a 9° mild steel mesh, and between the WIk electrode and the cation exchange membrane,
Width: 2001 ff, height: 90 mm, interposed with a fluororesin blind-shaped spacer having nine vertically continuous lines
Experiments were conducted using a 0 m battery container. Salt water (sodium chloride aqueous solution) was supplied to the anode chamber from the bottom, and drained brine along with chlorine was taken out from the top. A part of the drained salt water is circulated externally, and by changing the amount of liquid circulating externally, the rate of rise of the liquid in the space behind the anode can be changed.

陰極は、陽イオン交換膜との距離が2fiになるように
設置し、下部に純水供給口、上部に水素と苛性ソーダ水
溶液の取り出し口を設けた。得られた苛性ソーダ水溶液
は一部外部循環させるとともに、その途中に熱交換器を
設け、陰極室での液温か80℃になるようコントロール
出来る構造とした。こうした構造をもつ電槽を陽極背面
の空間部の厚さが20111のもの、10a+のもの、
5Hのもの、2smのもの、4種類準備した。また陽極
と陽イオン交換膜の間に介在さすスペーサーとしては厚
さ11101.2111W、 5101の3種を、いろ
いろと取りかえて、使用した。
The cathode was installed so that the distance from the cation exchange membrane was 2fi, and a pure water supply port was provided at the bottom, and a hydrogen and caustic soda aqueous solution outlet was provided at the top. A part of the obtained caustic soda aqueous solution was circulated externally, and a heat exchanger was installed in the middle of the circulation, so that the temperature of the solution in the cathode chamber could be controlled to 80°C. The thickness of the space on the back of the anode is 20111, 10a+, etc. with such a structure.
We prepared four types: 5H and 2sm. In addition, three types of spacers with thicknesses of 11101, 2111W and 5101 were used with various thicknesses as the spacer interposed between the anode and the cation exchange membrane.

電流密度は30 A/III”で電解を行なψ、陽極室
排塩水は3.511T、陰極室出口の苛性濃度は7Nに
なるように、それぞれ供給する塩水及び純水の量を調節
した。陽極背面の空間部の厚さ、陽イオン交換膜と陽極
との間隙、及び陽極背面の空間部における液の上昇線速
度を表−1に示す如く種々変化さ・せ、それぞれにつ−
て運転開始5日後の極間電圧を測定した。その結果は表
−1に示す通りであつた。
Electrolysis was carried out at a current density of 30 A/III'', and the amounts of brine and pure water to be supplied were adjusted so that the anode chamber waste brine was 3.511 T, and the caustic concentration at the cathode chamber outlet was 7 N. The thickness of the space on the back of the anode, the gap between the cation exchange membrane and the anode, and the rising linear velocity of the liquid in the space on the back of the anode were varied as shown in Table 1.
The interelectrode voltage was measured 5 days after the start of operation. The results were as shown in Table-1.

表−1 秦 尚A 1.6.11.15.18.23.24.2
5.30.31.36は比較例である。また、各欄の記
号は下記のとおりである。
Table-1 Nao Hata A 1.6.11.15.18.23.24.2
5.30.31.36 are comparative examples. In addition, the symbols in each column are as follows.

t;陽イオン交換膜と陽極面との間隙 d;陽極背面空間部の厚さ De;陽極背面空間部の相当径 ム;陽極室への供給流量 υ;陽極背面の空間部におりる液の上昇線速度0・V;
極間電圧 比較例1 実施例1の方法において、陽極と陽イオン交換膜の間に
フッ素樹脂製のスパゲティ状のスペーサーを介在させず
、陰極室側の圧力を約35Q*Aq陽極室側圧力よ染高
くすることによりS陽イオン交換膜を陽極面に密接した
状態で表−2に示す条件で電解を行なった。運転開始5
日後の極間電圧は、表−2に示す通9であった。
t; Gap between the cation exchange membrane and the anode surface d; Thickness of the anode back space De; Equivalent diameter of the anode back space M; Supply flow rate to the anode chamber υ; Rising linear velocity 0 V;
Electrode voltage comparison example 1 In the method of Example 1, a fluororesin spaghetti-shaped spacer was not interposed between the anode and the cation exchange membrane, and the pressure on the cathode chamber side was lowered to about 35Q*Aq anode chamber side pressure. Electrolysis was carried out under the conditions shown in Table 2 with the S cation exchange membrane brought into close contact with the anode surface by increasing the dyeing height. Start of operation 5
The interelectrode voltage after 1 day was 9 as shown in Table 2.

表−2 実施例2 実施例1のA3にお−で、6力月間連続して電解を行な
フ九。電解を停止後、電槽を解体して陽イオン交換膜を
調べたが、ピンホール等も発生しておらず陽イオン交換
膜の劣化は詔められなかった。
Table 2 Example 2 Electrolysis was carried out in A3 of Example 1 continuously for 6 months. After stopping electrolysis, the battery case was disassembled and the cation exchange membrane was examined, but no pinholes were found, and no signs of deterioration of the cation exchange membrane were found.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオン交換農法竪型電解槽の部分断面図、第2
図及び第3図はフィルタープレス型イオン交換膜法電解
槽にお−で陽イオン交換膜と陽極とめ間隙を調節する代
表的な態様を示す部分断面図、第4図は本発明の方法を
実施するのに好適なイオン交換農法竪型電解槽の一顧様
を示す部分断面図である。また、図にお−て、(1)は
陽極、 (2)は陽イオン交換膜、(3)は隔壁、(4
)は陽極背面の空間部、(5)は陰極、(6)はスペー
サー、(7)は液供給口。 (8)は気液排出口、(9)は金属スペーサー、(1の
は拡大空間部を夫々示す。 特許出願人 徳山曹達株式会社
Figure 1 is a partial cross-sectional view of a vertical electrolyzer for ion exchange farming, Figure 2
3 and 3 are partial cross-sectional views showing typical embodiments of adjusting the gap between the cation exchange membrane and the anode in a filter press type ion exchange membrane method electrolytic cell, and FIG. 4 is a partial sectional view showing the method of the present invention being carried out. 1 is a partial sectional view showing one aspect of a vertical electrolytic cell suitable for ion exchange farming. In the figure, (1) is the anode, (2) is the cation exchange membrane, (3) is the partition wall, and (4) is the anode.
) is the space on the back of the anode, (5) is the cathode, (6) is the spacer, and (7) is the liquid supply port. (8) indicates the gas-liquid outlet, (9) indicates the metal spacer, and (1 indicates the expanded space. Patent applicant: Tokuyama Soda Co., Ltd.)

Claims (1)

【特許請求の範囲】 1 イオン交換農法竪型電解槽を“用−て塩化アルカリ
金属水溶液を電解するに際し、陽イオン交換膜と陽極と
の間隙を0.5〜3Hに調節し、且つ該陽極背面の空間
部の相当径De(W)と該空間部における液の上昇線速
度tr (am/%IO)トノ関係がU/D@≧0.1
5となる条件下で電解を行なう仁とを特徴とする塩化ア
ルカリ金属水溶液の電解方法。 2 陽極背面の空間部の相当径D・が1〜500である
特許請求の範囲第1項記載の方法。
[Claims] 1. When electrolyzing an alkali metal chloride aqueous solution using a vertical electrolytic cell in ion exchange farming, the gap between the cation exchange membrane and the anode is adjusted to 0.5 to 3 H, and the anode The relationship between the equivalent diameter De (W) of the space on the back surface and the rising linear velocity tr (am/%IO) of the liquid in the space is U/D@≧0.1
5. A method for electrolyzing an aqueous alkali metal chloride solution, characterized by carrying out electrolysis under conditions of 5. 2. The method according to claim 1, wherein the equivalent diameter D of the space on the back surface of the anode is 1 to 500.
JP11303781A 1981-07-21 1981-07-21 Electrolyzing method for aqueous solution of alkali metal chloride Pending JPS5816081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11303781A JPS5816081A (en) 1981-07-21 1981-07-21 Electrolyzing method for aqueous solution of alkali metal chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11303781A JPS5816081A (en) 1981-07-21 1981-07-21 Electrolyzing method for aqueous solution of alkali metal chloride

Publications (1)

Publication Number Publication Date
JPS5816081A true JPS5816081A (en) 1983-01-29

Family

ID=14601873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11303781A Pending JPS5816081A (en) 1981-07-21 1981-07-21 Electrolyzing method for aqueous solution of alkali metal chloride

Country Status (1)

Country Link
JP (1) JPS5816081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1609887A1 (en) * 2004-06-22 2005-12-28 CHLORINE ENGINEERS CORP., Ltd. Ion exchange membrane electrolytic process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1609887A1 (en) * 2004-06-22 2005-12-28 CHLORINE ENGINEERS CORP., Ltd. Ion exchange membrane electrolytic process

Similar Documents

Publication Publication Date Title
US5082543A (en) Filter press electrolysis cell
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
CA1153982A (en) Electrolytic production of alkali metal hypohalite and apparatus therefor
JPS59190379A (en) Vertical type electrolytic cell and electrolyzing method using said cell
GB2088410A (en) Removal of Deposits from Electrodes in Performing Electrolytic Processes
RU97100560A (en) METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID
JPH09512861A (en) Electrolytic cell producing mixed oxidant gas
JPS599634B2 (en) improved electrolyzer
EP0383243A2 (en) Electrolyser for chlor-alkali electrolysis, and anode
KR20010086305A (en) Synthesis of tetramethylammonium hydroxide
JPH07214063A (en) Production of electrolytic acidic water and producting device therefor
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JP3437127B2 (en) Operating method of alkaline chloride electrolytic cell
JP3727579B2 (en) Hydrothermal electrolysis reactor and electrode
JPS5816081A (en) Electrolyzing method for aqueous solution of alkali metal chloride
US4568433A (en) Electrolytic process of an aqueous alkali metal halide solution
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
US4101406A (en) Simplified electrolytic system
JP2670935B2 (en) Electrolysis method
JPS622036B2 (en)
JP3204322B2 (en) Electrolysis method of alkali chloride
JPS6327432B2 (en)
JPH0216389B2 (en)
JPH05271974A (en) Electrolytic cell for ion-exchange membrane process using gas diffusion electrode
JPS621237Y2 (en)