JPH05271974A - Electrolytic cell for ion-exchange membrane process using gas diffusion electrode - Google Patents

Electrolytic cell for ion-exchange membrane process using gas diffusion electrode

Info

Publication number
JPH05271974A
JPH05271974A JP4098483A JP9848392A JPH05271974A JP H05271974 A JPH05271974 A JP H05271974A JP 4098483 A JP4098483 A JP 4098483A JP 9848392 A JP9848392 A JP 9848392A JP H05271974 A JPH05271974 A JP H05271974A
Authority
JP
Japan
Prior art keywords
diffusion electrode
gas diffusion
exchange membrane
gas
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4098483A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Mitsui Toatsu Chemicals Inc
Original Assignee
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd, Kanegafuchi Chemical Industry Co Ltd, Mitsui Toatsu Chemicals Inc filed Critical Toagosei Co Ltd
Priority to JP4098483A priority Critical patent/JPH05271974A/en
Publication of JPH05271974A publication Critical patent/JPH05271974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To eliminate nonuniformity in the concn. of a caustic alkali in a cathode compartment and to exclude an increase in electrolytic voltage due to the deformation of a gas diffusion electrode caused by the pressure of a catholyte in ion-exchange membrane electrolysis using the electrode. CONSTITUTION:A cathode consisting of a gas diffusion electrode 2 and an ion-exchange membrane 3 are arranged as close to each other as possible, an electrode with the surface corrugated is used as an anode 4 on the other side of the membrane to change the thickness of a cathode compartment 5, or a rigid gas-passable porous body is inserted into a gas chamber 7 of the electrode 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス拡散電極を用いる
イオン交換膜法電解における電解槽に関し,特に陰極液
の濃度の不均一により或いは液圧によるガス拡散電極の
変形などにより電解電圧が上昇することがないようにし
たイオン交換膜法電解における電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell in an ion exchange membrane method electrolysis using a gas diffusion electrode, and in particular, the electrolysis voltage increases due to nonuniform concentration of the catholyte or deformation of the gas diffusion electrode due to liquid pressure. The present invention relates to an electrolytic cell for ion-exchange membrane method electrolysis that is prevented from occurring.

【0002】[0002]

【従来の技術】塩化ナトリウム水溶液(以下「塩水」と
いう)をガス拡散電極、例えば酸素陰極を使用するイオ
ン交換膜法で電解し、苛性ソーダを製造する方法は公知
である。この製造方法は、その大要が、陽極を有し塩水
を入れた陽極室と、陰極を有し水又は苛性ソーダ水溶液
を入れた陰極室とを、一般に陽イオン膜であるイオン交
換膜により区画し、両電極間に通電して電解する際に、
陰極として素材が多孔質体からなり酸素含有ガスが供給
されつつ電解されるガス拡散電極(いわゆる酸素陰極)
を用いて電解することにより、陰極室に苛性ソーダを得
るものであって、その陰極では酸素ガス拡散電極となる
ため、またそこでは水素ガスが発生しないため、電解電
圧が著しく低減されるという利点を有する。
2. Description of the Related Art A method for producing caustic soda by electrolyzing an aqueous sodium chloride solution (hereinafter referred to as "salt water") by an ion exchange membrane method using a gas diffusion electrode such as an oxygen cathode is known. The outline of this manufacturing method is that an anode chamber having an anode and containing salt water and a cathode chamber having a cathode and containing water or a caustic soda solution are partitioned by an ion exchange membrane, which is generally a cation membrane. , When energizing between both electrodes to electrolyze,
Gas diffusion electrode (so-called oxygen cathode), which is made of porous material as the cathode and is electrolyzed while oxygen-containing gas is supplied.
By using electrolysis to obtain caustic soda in the cathode chamber, the cathode serves as an oxygen gas diffusion electrode, and since hydrogen gas is not generated there, the advantage that the electrolysis voltage is significantly reduced is provided. Have.

【0003】この製造方法を開示した特許文献として
は、例えば特開昭54−97600号、同56−447
84号、56−130482号、同57−152479
号、同59−133386号、同61−266591
号、特公昭58−44156号、同58−49639
号、同60−9595号及び同61−20634号公報
などが挙げられる。
Patent documents disclosing this manufacturing method include, for example, JP-A-54-97600 and JP-A-56-447.
No. 84, No. 56-130482, No. 57-152479.
No. 59-133386, No. 61-266591.
No. 58-44156 and 58-496939
No. 60-9595 and No. 61-20634.

【0004】[0004]

【発明が解決しようとする課題】しかして、これらのガ
ス拡散電極を使用するイオン交換膜法電解の特許におい
ては、ガス拡散電極の製法や性能向上のみに注意が払わ
れており、ガス拡散電極を使用するイオン交換膜法電解
槽の構造上の改善等についてはほとんど考慮されていな
い。イオン交換膜法電解槽を高性能で運転するために
は、陽極とイオン交換膜、イオン交換膜と陰極との距離
が数mm程度に近接したものとしなければならない。
However, in the patent of ion exchange membrane method electrolysis using these gas diffusion electrodes, attention is paid only to the manufacturing method and performance improvement of the gas diffusion electrode. Almost no consideration has been given to the structural improvement of the ion-exchange membrane method electrolyzer using the. In order to operate the ion exchange membrane electrolytic cell with high performance, the distance between the anode and the ion exchange membrane and between the ion exchange membrane and the cathode must be close to each other by about several mm.

【0005】従来の既に知られている、ガス拡散電極を
使用しない通常のイオン交換膜法塩化アルカリ電解で
は、陽極とイオン交換膜との距離はゼロ、イオン交換膜
と陰極との距離は2mm以下であって、極間距離を極め
て小さく抑えている。これは、両方の電極をガス及び液
が通れる部材で構成し、陽極液及び陰極液が両電極の背
面から供給できるようになっており、かつ電極表面で発
生したガスを電極の背面に排出できるようになっている
ため、このようにすることができるのであって、これら
の構造により特に陽極とイオン交換膜との距離をゼロと
することなどが可能になっている。
In the conventional ion-exchange membrane method alkali chloride electrolysis that does not use a gas diffusion electrode, which is already known, the distance between the anode and the ion-exchange membrane is zero, and the distance between the ion-exchange membrane and the cathode is 2 mm or less. Therefore, the distance between the electrodes is kept extremely small. This is because both electrodes are composed of members through which gas and liquid can pass, and anolyte and catholyte can be supplied from the back surface of both electrodes, and the gas generated on the electrode surface can be discharged to the back surface of the electrode. Therefore, it is possible to do so, and these structures make it possible to make the distance between the anode and the ion exchange membrane zero, for example.

【0006】しかしながら、ガス拡散電極を用いる電解
槽においては、ガス拡散電極は、イオン交換膜に面した
側と反対の側の部分ではそこへガスを供給しなければな
らないので、従来技術のように該電極の背面側から電極
内部を通して表面側に陰極液を供給するようなことはで
きず、イオン交換膜に面した側のみに液を供給する必要
がある。
However, in the electrolytic cell using the gas diffusion electrode, the gas diffusion electrode has to supply gas to the portion on the side opposite to the side facing the ion exchange membrane. It is not possible to supply the catholyte from the back side of the electrode through the inside of the electrode to the front side, and it is necessary to supply the solution only to the side facing the ion exchange membrane.

【0007】したがって、ガス拡散電極を用いるイオン
交換膜法電解槽においては、イオン交換膜とガス拡散電
極(陰極)との間に陰極液を供給するための供給口及び
排出口が設けられるため、イオン交換膜とガス拡散電極
(陰極)との間の距離の短縮には限界があった。更に、
イオン交換膜とガス拡散電極(陰極)との距離の短縮を
行った場合において、この狭い間に陰極液を流すとすれ
ば、かなりの液圧を生じ、これによりガス拡散電極の変
形が起こり、その本来の性能を十分発揮しえなくなる。
これらの問題に対して、これまでの方法は十分対応でき
るものではない。
Therefore, in the ion exchange membrane method electrolytic cell using the gas diffusion electrode, since the supply port and the discharge port for supplying the catholyte are provided between the ion exchange membrane and the gas diffusion electrode (cathode), There is a limit to the reduction of the distance between the ion exchange membrane and the gas diffusion electrode (cathode). Furthermore,
When the distance between the ion exchange membrane and the gas diffusion electrode (cathode) is shortened, if the catholyte is allowed to flow in this narrow space, a considerable liquid pressure is generated, which causes deformation of the gas diffusion electrode, It will not be able to fully exhibit its original performance.
The conventional methods do not sufficiently address these problems.

【0008】本発明は、ガス拡散電極を用いるイオン交
換膜法電解において、イオン交換膜とガス拡散電極(陰
極)との間の距離をなるべく近接すると共に、陰極室に
陰極液を十分供給可能にした電解槽を提供し、さらに陰
極液が加圧された状態にて電解するに際して、その液圧
によりガス拡散電極が変形するのを防止した電解槽を提
供し、これにより電解槽における電解が高性能を長期に
わたって維持できるようにすることを目的とするもので
ある。
According to the present invention, in the ion exchange membrane method electrolysis using a gas diffusion electrode, the distance between the ion exchange membrane and the gas diffusion electrode (cathode) is as close as possible and the catholyte can be sufficiently supplied to the cathode chamber. In addition, the electrolysis tank is provided with an electrolysis tank that prevents deformation of the gas diffusion electrode due to the liquid pressure when electrolyzing in a state where the catholyte is pressurized. The purpose is to maintain the performance for a long time.

【0009】[0009]

【課題を解決するための手段】本発明者らは、ガス拡散
電極を用いるイオン交換膜法電解において、イオン交換
膜と陰極との間の距離をなるべく近接した陰極室に、陰
極液を容易に供給可能にすることによる高性能化と、陰
極液圧によるガス拡散電極の変形防止による性能の長期
維持を得るべく鋭意研究を重ねた結果、本発明を完成す
るに至った。
Means for Solving the Problems In the ion exchange membrane method electrolysis using a gas diffusion electrode, the present inventors have made it easy to place the catholyte in a cathode chamber as close as possible to the distance between the ion exchange membrane and the cathode. The present invention has been completed as a result of intensive research to obtain high performance by making it possible to supply gas and long-term maintenance of performance by preventing deformation of the gas diffusion electrode due to the liquid pressure of the cathode.

【0010】本発明は、ガス拡散電極を用いるイオン交
換膜法電解において、波型形状の陽極を用いると、陰極
室における陰極液の流れがよくなることを見いだし、ま
たガス拡散電極のガス室に剛性のガス透過性多孔体を設
けると、陰極が陰極液の液圧に十分耐えられるようにな
ることを見いだしてなされたものである。即ち、本発明
は、次の手段によって前記の目的を達成することができ
た。 (1) ガス拡散電極を用いるイオン交換膜法電解槽に
おいて、ガス拡散電極からなる陰極とイオン交換膜との
間をなるべく近接せしめるとともに、該イオン交換膜の
他面側にある陽極として表面が波型形状の電極を用いる
ことを特徴とするガス拡散電極を用いるイオン交換膜法
電解槽。 (2) ガス拡散電極を用いるイオン交換膜法電解槽に
おいて、ガス拡散電極からなる陰極とイオン交換膜との
間をなるべく近接せしめるとともに、前記ガス拡散電極
のガス室内に剛性のガス透過性多孔体が挿入されている
ことを特徴とするガス拡散電極を用いるイオン交換膜法
電解槽。
The present invention has found that, in the ion exchange membrane method electrolysis using a gas diffusion electrode, when a corrugated anode is used, the flow of catholyte in the cathode chamber is improved, and the gas chamber of the gas diffusion electrode is rigid. It was made by discovering that the provision of the gas permeable porous body makes it possible for the cathode to sufficiently withstand the liquid pressure of the catholyte. That is, the present invention was able to achieve the above object by the following means. (1) In an ion-exchange membrane method electrolytic cell using a gas diffusion electrode, the cathode composed of the gas diffusion electrode and the ion-exchange membrane are made to be as close as possible, and the surface is corrugated as an anode on the other side of the ion-exchange membrane. An ion-exchange membrane method electrolytic cell using a gas diffusion electrode characterized by using a mold-shaped electrode. (2) In an ion exchange membrane method electrolytic cell using a gas diffusion electrode, a cathode composed of a gas diffusion electrode and an ion exchange membrane are brought as close as possible, and a rigid gas permeable porous body is provided in the gas chamber of the gas diffusion electrode. An ion exchange membrane method electrolytic cell using a gas diffusion electrode, characterized in that

【0011】本発明を更に詳しく説明する。ガス拡散電
極を用いるイオン交換膜法塩化アルカリ電解において、
陰極(ガス拡散電極)では、次の反応が起こっている。 1/4O2 +1/2H2 O+e- →OH- このように、ガス拡散電極では酸素及び水が反応に関与
する。ガス拡散電極を用いた従来のイオン交換膜法電解
槽の1例を図4に示す。図4において、陽極室26は、
通常のイオン交換膜法電解槽と同じであり、供給口34
より塩化アルカリ水溶液(塩水)が供給され、通液性陽
極24で電解される。生成した塩素及び希薄塩化アルカ
リ水溶液は排出口35より排出される。また、陽極にて
生成したアルカリ金属イオンは、イオン交換膜23を通
り陰極室25へ移動する。陰極室25では供給口32よ
り苛性アルカリ水溶液又は水が供給され、ガス拡散電極
(陰極)22にて上式に従って電解される。生成した水
酸イオンは、イオン交換膜23を通り移動してきたアル
カリ金属イオンと反応して苛性アルカリを生成し、排出
口33より排出される。一方、ガス拡散電極22の陰極
室25と反対側にガス室27があり、ガス供給口30よ
り酸素ガス(又は酸素含有ガス)が供給され、排出口3
1より排出される。
The present invention will be described in more detail. In ion exchange membrane method alkali chloride electrolysis using a gas diffusion electrode,
The following reactions occur at the cathode (gas diffusion electrode). 1 / 4O 2 + 1 / 2H 2 O + e → OH Thus, in the gas diffusion electrode, oxygen and water participate in the reaction. FIG. 4 shows an example of a conventional ion exchange membrane method electrolytic cell using a gas diffusion electrode. In FIG. 4, the anode chamber 26 is
It is the same as an ordinary ion-exchange membrane electrolytic cell, and has a supply port 34
Further, an alkaline chloride aqueous solution (salt water) is supplied and electrolyzed at the liquid-permeable anode 24. The generated chlorine and the dilute aqueous alkali chloride solution are discharged from the discharge port 35. The alkali metal ions generated at the anode move to the cathode chamber 25 through the ion exchange membrane 23. In the cathode chamber 25, a caustic aqueous solution or water is supplied from the supply port 32, and the gas diffusion electrode (cathode) 22 is electrolyzed according to the above formula. The generated hydroxide ions react with the alkali metal ions that have moved through the ion exchange membrane 23 to generate caustic alkali, and are discharged from the discharge port 33. On the other hand, a gas chamber 27 is provided on the opposite side of the gas diffusion electrode 22 from the cathode chamber 25, oxygen gas (or oxygen-containing gas) is supplied from the gas supply port 30, and the discharge port 3
Emitted from 1.

【0012】このような電解槽において、陰極液は、イ
オン交換膜と陰極との間に供給しなければならない。し
かし、イオン交換膜と陰極との間に陰極液供給口及び排
出口を取り付けると、膜と陰極間の距離が大きくなるた
め、電解電圧の上昇をもたらすことになる。更に、ガス
拡散電極を使用する場合、陰極室内でのガス発生がない
ために、生成した苛性ソーダの分散が悪く不均一とな
り、図4の陰極液の流れの場合、垂直方向に陰極液の濃
度分布を生じさせ、イオン交換膜性能に対する最適濃度
にならず、ガス拡散電極の使用によって得られる低電解
電圧の利点を減少させることになる。
In such an electrolytic cell, the catholyte must be supplied between the ion exchange membrane and the cathode. However, when a catholyte supply port and a discharge port are attached between the ion exchange membrane and the cathode, the distance between the membrane and the cathode becomes large, which causes an increase in electrolysis voltage. Furthermore, when a gas diffusion electrode is used, the generated caustic soda is not well dispersed because the gas is not generated in the cathode chamber, resulting in non-uniformity. In the case of the flow of the catholyte shown in FIG. 4, the concentration distribution of the catholyte in the vertical direction is increased. Will result in sub-optimal concentrations for ion exchange membrane performance and reduce the advantages of low electrolysis voltage obtained by using gas diffusion electrodes.

【0013】そこで、陰極室への陰極液の供給及び排出
を可能にし、かつ陰極液中の苛性アルカリの分散性を向
上させる方法について、本発明者らが検討したところ、
図4の電解槽の場合、イオン交換膜と陰極間の距離を垂
直方向に変化させればよいとの結論に達した。即ち、陽
極の表面(イオン交換膜側)には、縦方向の波型の形状
を持たせ、イオン交換膜は陽極の形状に沿って波型に保
持させることにより、波型の拡大した下端及び上端にガ
スケット及び分散板を設置して、陰極液の供給口及び排
出口とするものである。
Therefore, the inventors of the present invention have studied a method of enabling the supply and discharge of the catholyte into the cathode chamber and improving the dispersibility of the caustic alkali in the catholyte.
In the case of the electrolytic cell of FIG. 4, it was concluded that the distance between the ion exchange membrane and the cathode should be changed in the vertical direction. That is, the surface of the anode (on the side of the ion exchange membrane) has a vertical wavy shape, and the ion exchange membrane is held in a wavy shape along the shape of the anode, whereby the expanded lower end of the wavy shape and A gasket and a dispersion plate are installed on the upper end to serve as a catholyte supply port and a discharge port.

【0014】この場合、陰極の形状を波型としてもよい
が、ガス拡散電極は通常粉末冶金やヒートプレスなどの
手段により製造されるため、表面が波型の形状を有する
ものを作ることは、その加工が難しくなるので、製造が
容易である陽極の方に前記の形状を付与するものであ
る。そして、図4の電解槽では陰極液が垂直方向に流れ
るため、イオン交換膜と陰極間の距離を垂直方向に変化
させているが、陰極液が横方向に流れる場合には横方向
に前記の距離を変化させるように、その波型の形状を持
たせればよい。この陽極の波型における高低差は、5〜
15mmの範囲が好ましい。また、前記波型の間隔は、
電解槽の構造に応じて適宜決められるが、例えば1〜3
0cmとすることができる。
In this case, the shape of the cathode may be wavy, but since the gas diffusion electrode is usually manufactured by means such as powder metallurgy or heat press, it is not possible to make a surface having a wavy shape. Since the processing becomes difficult, the above-mentioned shape is given to the anode which is easy to manufacture. Since the catholyte flows vertically in the electrolytic cell of FIG. 4, the distance between the ion exchange membrane and the cathode is changed in the vertical direction. The corrugated shape may be given so that the distance is changed. The difference in height of the corrugated shape of this anode is 5 to
A range of 15 mm is preferred. Also, the corrugated spacing is
It is appropriately determined depending on the structure of the electrolytic cell, for example, 1 to 3
It can be 0 cm.

【0015】このように、陽極の形状を波型にすること
により、ガス拡散電極とイオン交換膜との距離を成るべ
く近接して設けることができ、そのようにしても電流効
率が低下することがない。ガス拡散電極とイオン交換膜
との距離は、0〜数mmとするのが好ましい。従来のイ
オン交換膜法電解では、両者の距離は通常10〜15m
mであり、それ以上の短縮は難しい。これに比して本発
明では図1のようにすることにより、その距離を著しく
小さくでき、条件が悪くてもその半分程度(平均距離
で)まで短縮可能であるので、電解電圧を相当程度低下
させることができる。
As described above, by making the shape of the anode corrugated, the gas diffusion electrode and the ion exchange membrane can be provided as close to each other as possible, and even in that case the current efficiency is reduced. There is no. The distance between the gas diffusion electrode and the ion exchange membrane is preferably 0 to several mm. In conventional ion exchange membrane electrolysis, the distance between the two is usually 10 to 15 m.
m, and further shortening is difficult. On the other hand, in the present invention, the distance can be remarkably reduced by making it as shown in FIG. 1, and even if the condition is bad, it can be shortened to about half (at the average distance), so that the electrolysis voltage is considerably reduced. Can be made.

【0016】一方、陽極を波型にしないで、イオン交換
膜とガス拡散電極(陰極)の間の距離をなるべく近接せ
しめるようにした場合において、この狭い間に陰極液を
流したときには、陰極室にかなりの液圧を生じ、これに
よりガス拡散電極の変形が起こり、その本来の性能を発
揮し得なくなる。陰極液の供給量は多いほど好ましいの
で、好適に運転しようとした場合には液圧は更に大きく
なる。これを防止するため、ガス室の圧力を高めて陰極
液圧とバランスを取る方法も考えられるが、その適用は
限られる。
On the other hand, when the distance between the ion exchange membrane and the gas diffusion electrode (cathode) is made as close as possible without making the anode corrugated, when the catholyte is flown in this narrow space, the cathode chamber A considerable amount of liquid pressure is generated in the gas diffusion electrode, which causes deformation of the gas diffusion electrode, making it impossible to exhibit its original performance. Since the larger the supply amount of the catholyte is, the more preferable it is, so that the liquid pressure is further increased when an attempt is made to perform a suitable operation. In order to prevent this, a method of increasing the pressure of the gas chamber to balance with the catholyte pressure is possible, but its application is limited.

【0017】その理由は以下の通りである。すなわち、
ガス拡散電極においては、その反応活性部分に液(水)
とガス(酸素ガス)が十分に供給されることが必要であ
る。ガスの供給が悪い場合は、ガス室の圧を高くしてガ
スの供給を十分にし、液の供給が悪い場合は、陰極室の
圧を高くして液が十分供給されるようにするが、これは
ガス拡散電極の構造に依存する。したがって、ガス拡散
電極の最適性能を使用する場合には、陰極液圧及びガス
室圧には、最適な条件があるため、陰極液圧及びガス室
圧のバランスをとることは、必ずしもすべてのガス拡散
電極に適用できないのである。
The reason is as follows. That is,
In the gas diffusion electrode, the reaction active part is liquid (water).
And gas (oxygen gas) must be sufficiently supplied. When the gas supply is bad, the pressure in the gas chamber is increased to make the gas supply sufficient, and when the liquid supply is bad, the pressure in the cathode chamber is made high so that the liquid is sufficiently supplied. This depends on the structure of the gas diffusion electrode. Therefore, when using the optimum performance of the gas diffusion electrode, there is an optimum condition for the catholyte pressure and the gas chamber pressure, so balancing the catholyte pressure and the gas chamber pressure is not necessary for all gases. It cannot be applied to diffusion electrodes.

【0018】ところで、陰極室の圧を高くして使用する
ようなガス拡散電極を用いる場合においては、その圧力
によりガス拡散電極がガス室側に膨らむことがある。殊
に、ガス拡散電極が薄い構造となっている場合には、意
識的な加圧を行わない時であっても、その下部において
は液圧によりガス室側に膨らむ。このような場合におい
て、ガス拡散電極の破損につながる危険性があり、そう
でなくても膜とガス拡散電極の間の距離の増大により槽
電圧の上昇をきたす。
By the way, when a gas diffusion electrode is used in which the pressure in the cathode chamber is increased, the gas diffusion electrode may expand toward the gas chamber due to the pressure. In particular, when the gas diffusion electrode has a thin structure, the lower part of the gas diffusion electrode swells toward the gas chamber due to liquid pressure even when conscious pressure is not applied. In such a case, there is a risk of damaging the gas diffusion electrode, and if not so, an increase in the distance between the membrane and the gas diffusion electrode causes an increase in the cell voltage.

【0019】これを防止するための電解槽の構造を種々
検討の結果、ガス室に剛性のガス透過性多孔体を挿入す
ることにより防止できることがわかり、本発明を完成し
た。前記の剛性のガス透過性多孔体は、ガス拡散電極が
ガス室側に膨らむのを支えるために、ガス拡散電極のガ
ス室側にその電極の面に接するように設けるのが好まし
い。
As a result of various studies on the structure of the electrolytic cell for preventing this, it was found that it can be prevented by inserting a rigid gas-permeable porous body into the gas chamber, and the present invention has been completed. The rigid gas permeable porous body is preferably provided on the gas chamber side of the gas diffusion electrode so as to be in contact with the surface of the gas diffusion electrode in order to support the expansion of the gas diffusion electrode toward the gas chamber.

【0020】本発明を図面に基づいて説明する。図1
は、波型陽極を使用した本発明の電解槽の模式図を示
す。この電解槽1も、図4の電解槽と同様に、ガス拡散
電極(陰極)2と陽極4がイオン交換膜(陽イオン交換
膜)3を挟んで対向しているが、前記イオン交換膜3の
両側にガスケット及び分散板8とガスケット9を設けて
陰極室5と陽極室6が形成されており、前記陽極4はそ
の表面が波型をしており、陰極室などの液圧によりイオ
ン交換膜3は陽極4と同様な波型の形状をすることにな
る。陰極液はガスケット及び分散板8の陰極液入口12
から陰極室5に入り、電解反応により生成した苛性アル
カリは陰極液出口13から出る。この際、陰極室内では
ガス拡散電極2とイオン交換膜3との間隔が変動してい
ることにより、陰極液が混合して苛性アルカリ濃度が均
一化される。また、塩水は塩水入口14から入り、塩水
出口15から出る。ガス拡散電極2のガス室7には酸素
含有ガスが入口10から供給され、出口11から出るこ
とにより、ガス拡散電極2に酸素を供給する。
The present invention will be described with reference to the drawings. Figure 1
FIG. 3 shows a schematic view of the electrolytic cell of the present invention using a corrugated anode. In this electrolytic cell 1, as in the electrolytic cell of FIG. 4, the gas diffusion electrode (cathode) 2 and the anode 4 are opposed to each other with the ion exchange membrane (cation exchange membrane) 3 interposed therebetween. A cathode chamber 5 and an anode chamber 6 are formed by providing a gasket and a dispersion plate 8 and a gasket 9 on both sides of the anode 4. The anode 4 has a corrugated surface, and ion exchange is performed by liquid pressure in the cathode chamber or the like. The membrane 3 will have a corrugated shape similar to the anode 4. The catholyte is the gasket and the catholyte inlet 12 of the dispersion plate 8.
And enters the cathode chamber 5, and the caustic alkali produced by the electrolytic reaction exits from the catholyte outlet 13. At this time, since the distance between the gas diffusion electrode 2 and the ion exchange membrane 3 varies in the cathode chamber, the catholyte mixes and the caustic concentration is made uniform. Further, salt water enters through the salt water inlet 14 and exits through the salt water outlet 15. An oxygen-containing gas is supplied to the gas chamber 7 of the gas diffusion electrode 2 from the inlet 10 and exits from the outlet 11 to supply oxygen to the gas diffusion electrode 2.

【0021】図2は、ガス拡散電極22のガス室27内
に剛性のガス透過性多孔体41を挿入されている電解槽
を模式図で示したものであり、前記ガス透過性多孔体4
1を設け、ガス拡散電極22とイオン交換膜23との距
離をなるべく近接せしめた外は、図4の電解槽と全く同
じである。図3の電解槽も同様である。このガス透過性
多孔体は、図2のように、ガス室27全体にわたって挿
入されていてもよいし、また図3に示すように部分的に
補強するように挿入されていてもよいが、ガス拡散電極
が液圧によりガス室側に膨らむのを防止するように配置
することと、その強度が圧力に十分耐えうることが必要
である。図3の電解槽では、テフロンコーティングした
エキスパンドメタルからなるガス透過性多孔体42が部
分的に挿入されている。
FIG. 2 is a schematic view showing an electrolytic cell in which a rigid gas permeable porous body 41 is inserted in the gas chamber 27 of the gas diffusion electrode 22, and the gas permeable porous body 4 is used.
1 is provided, and the distance between the gas diffusion electrode 22 and the ion exchange membrane 23 is made as close as possible, except that it is exactly the same as the electrolytic cell of FIG. The same applies to the electrolytic cell of FIG. The gas-permeable porous body may be inserted over the entire gas chamber 27 as shown in FIG. 2 or may be inserted so as to partially reinforce it as shown in FIG. It is necessary to dispose the diffusion electrode so as to prevent the diffusion electrode from expanding toward the gas chamber side due to the liquid pressure, and to have the strength enough to withstand the pressure. In the electrolytic cell of FIG. 3, a gas permeable porous body 42 made of expanded metal coated with Teflon is partially inserted.

【0022】また、このガス透過性多孔体は、ガスの流
通が十分に行えるような構造とすることが必要であると
ともに、撥水性、疎水性を付与しておくことが特に好ま
しい。撥水性及び疎水性を付与しておくことにより結露
による閉塞が防止できる。その材質は、特に制限され
ず、金属、樹脂、及びセラミックス等が好適に使用で
き、金属、セラミックス等のような場合には、撥水化処
理をしておくことが特に好ましい。最も好適な例とし
て、アルミナ多孔体、多孔性発泡樹脂、発泡金属体(例
えばセルメット─住友電気工業社の商品名)、エキスパ
ンドメタル等がある。
Further, the gas-permeable porous body is required to have a structure that allows sufficient gas flow, and it is particularly preferable to impart water repellency and hydrophobicity. By providing water repellency and hydrophobicity, it is possible to prevent clogging due to dew condensation. The material is not particularly limited, and metals, resins, ceramics, and the like can be preferably used, and in the case of metals, ceramics, and the like, it is particularly preferable to perform water repellent treatment. The most preferable examples include porous alumina, porous foamed resin, foamed metal (for example, Celmet-a trade name of Sumitomo Electric Industries, Ltd.), expanded metal and the like.

【0023】また、図1の陽極を波型にする手段と図2
のガス拡散電極のガス室に剛性のガス透過性多孔体を挿
入する手段とを合わせ適用してもよく、一層優れた効果
が得られる。
Further, means for making the anode of FIG. 1 corrugated and FIG.
A means for inserting a rigid gas-permeable porous body may be applied together with the gas chamber of the gas diffusion electrode, and a more excellent effect can be obtained.

【0024】[0024]

【作用】本発明の電解槽では、陽極を波型の形状を有す
るものとすることにより、イオン交換膜とガス拡散電極
との間隔が狭くしても、陰極液中の苛性アルカリの分散
が良く行われ、苛性アルカリの濃度差が大きくならず、
イオン交換膜性能に対する最適濃度からあまり隔たるこ
とがなく、低い電解電圧で電解を行うことができる。ま
た、ガス拡散電極のガス室に剛性のガス透過性多孔体を
挿入することにより、ガス拡散電極を補強して陰極液の
液圧によりガス拡散電極がガス室側に変形することがな
く、それにより前記電極とイオン交換膜との距離が増大
することや、或いはガス拡散電極が破損することが生じ
ないようにすることができる。また、本発明の電解槽
は、極間距離が小さいので、薄型のものを構成すること
ができる。
In the electrolytic cell of the present invention, by making the anode have a corrugated shape, the caustic alkali is well dispersed in the catholyte even if the distance between the ion exchange membrane and the gas diffusion electrode is narrow. Is performed, the difference in the concentration of caustic does not increase,
It is possible to perform electrolysis at a low electrolysis voltage without being far from the optimum concentration for ion exchange membrane performance. Further, by inserting a rigid gas-permeable porous body into the gas chamber of the gas diffusion electrode, the gas diffusion electrode is reinforced and the gas diffusion electrode is not deformed toward the gas chamber side by the liquid pressure of the catholyte. This can prevent the distance between the electrode and the ion exchange membrane from increasing and the gas diffusion electrode from breaking. Further, since the electrolytic cell of the present invention has a small distance between the electrodes, it can be configured to be thin.

【0025】[0025]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこの実施例のみに限定されるもの
ではない。 実施例1 イオン交換膜として、デュポン社製のナフィオン膜を使
用し、陽極として下記の製品を曲げ加工して、表面が垂
直方向に波型の形状を有し、波形の高低差は13mm、
波形の間隔は25mmとしたものを用い、かつ陰極とし
て特開昭63−64265号により製造したガス拡散電
極を用いて、基本的には図1に近い構造の電解槽を構成
し、かつガス室に剛性のガス透過性多孔体として、住友
電気工業株式会社製セルメット#4(多孔率約95%)
をテフロンディスパージョンにて撥水処理をしたものを
挿入し、以下の条件にて電解した。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to this embodiment. Example 1 A Nafion membrane manufactured by DuPont was used as an ion exchange membrane, and the following product was bent as an anode, and the surface had a wavy shape in the vertical direction, and the height difference of the waveform was 13 mm,
Using an electrode having a corrugated space of 25 mm and using the gas diffusion electrode manufactured by JP-A-63-64265 as a cathode, an electrolytic cell having a structure basically similar to that shown in FIG. As a rigid gas permeable porous body, Celmet # 4 (porosity about 95%) manufactured by Sumitomo Electric Industries, Ltd.
What was subjected to water repellent treatment with Teflon dispersion was inserted, and electrolysis was performed under the following conditions.

【0026】電極面積 : 1dm2 電流密度 :30A/dm2 陽極 :チタンを基材として、RuO2 /Ti
Oを主体とする物質をコーティングした電極、DSE
(登録商標)、ペルメレック電 極
(株)製 陰極 :特開昭63−64265号により製造
したガス拡散電極 極間距離 :陽極/膜=0mm、膜/陰極=最大1
5mm、最小2mm(イオン交換膜は、陰極液の液圧に
より陽極に密着した状態となるので、膜と陰極との距離
は上記のようになる。) 苛性ソーダ濃度:32% 温度 :90℃ 陽極液濃度 :NaCl 200g/リットル 供給ガス :酸素ガス 理論量の2.0倍 圧力 :陽極室─常圧 陰極室─1.0kg/cm2 ゲージ ガス室─常圧 電解は48時間行ったが、電圧は2.35Vで変化はな
かった。そして、解体後のガス拡散電極は変形が見られ
なかった。 比較例1 実施例1のガス室に何も入れない外は、実施例1と同様
にして電解した。48時間後の性能は、電圧が150m
V上昇した。解体後のガス拡散電極は、湾曲していた。
Electrode area: 1 dm 2 Current density: 30 A / dm 2 Anode: Using titanium as a base material, RuO 2 / Ti
Electrode coated with O-based material, DSE
(Registered trademark), manufactured by Permelek Electrode Co., Ltd. Cathode: Gas diffusion electrode manufactured by JP-A-63-64265 Distance between electrodes: Anode / membrane = 0 mm, membrane / cathode = 1 maximum
5 mm, minimum 2 mm (The ion exchange membrane is brought into close contact with the anode due to the liquid pressure of the catholyte, so the distance between the membrane and the cathode is as described above.) Caustic soda concentration: 32% Temperature: 90 ° C Anolyte Concentration: NaCl 200 g / liter Supply gas: Oxygen gas 2.0 times theoretical amount Pressure: Anode chamber-normal pressure cathode chamber-1.0 kg / cm 2 gauge gas chamber-normal pressure Electrolysis was performed for 48 hours, but voltage was There was no change at 2.35V. No deformation was observed in the gas diffusion electrode after disassembly. Comparative Example 1 Electrolysis was performed in the same manner as in Example 1 except that nothing was put in the gas chamber of Example 1. After 48 hours, the voltage is 150m
V rose. The gas diffusion electrode after disassembly was curved.

【0027】[0027]

【発明の効果】本発明によれば、イオン交換膜法の電解
槽において、陽極表面を波型の形状とすることにより、
陰極室内の陰極液に苛性アルカリの濃度むらによる濃度
分布を生じることがなく、イオン交換膜性能に対する最
適濃度に近い濃度となって、低い電解電圧で電解を行う
ことができる。そして、極間距離を小さくすることがで
きるので、電解槽を薄型のものとすることができる。
According to the present invention, in the electrolytic cell of the ion exchange membrane method, by making the surface of the anode wavy,
The concentration distribution due to the uneven concentration of caustic alkali does not occur in the catholyte in the cathode chamber, the concentration is close to the optimum concentration for the performance of the ion exchange membrane, and electrolysis can be performed at a low electrolysis voltage. Since the distance between the electrodes can be reduced, the electrolytic cell can be made thin.

【0028】また、そのガス拡散電極のガス室に剛性の
ガス透過性多孔体を挿入することにより、液圧によるガ
ス拡散電極の変形を抑えることができ、その変形による
ガス拡散電極の破損を防止でき、あるいはその変形によ
る極間距離の増大と、それに基づく電解電圧の上昇を生
じることがない。このため、本発明は電解槽を薄型とし
ても電解電圧が低い条件で電解を行うことができる。
Further, by inserting a rigid gas permeable porous body into the gas chamber of the gas diffusion electrode, deformation of the gas diffusion electrode due to liquid pressure can be suppressed, and damage to the gas diffusion electrode due to the deformation can be prevented. Or, the deformation does not cause an increase in the inter-electrode distance and an increase in the electrolysis voltage based on it. Therefore, according to the present invention, electrolysis can be performed under the condition of low electrolysis voltage even if the electrolysis cell is thin.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面が波型形状である陽極を有する本発明の電
解槽の模式図を示す。
FIG. 1 shows a schematic view of an electrolytic cell of the present invention having an anode having a corrugated surface.

【図2】ガス室内全体に剛性のガス透過性多孔体を挿入
した本発明の電解槽の模式図を示す。
FIG. 2 shows a schematic view of an electrolytic cell of the present invention in which a rigid gas-permeable porous body is inserted into the entire gas chamber.

【図3】ガス室内の一部に剛性のガス透過性多孔体を挿
入した本発明の電解槽の模式図を示す。
FIG. 3 shows a schematic view of an electrolytic cell of the present invention in which a rigid gas-permeable porous body is inserted in a part of a gas chamber.

【図4】ガス拡散電極を有する従来のイオン交換膜法電
解槽の模式図を示す。
FIG. 4 shows a schematic view of a conventional ion-exchange membrane method electrolytic cell having a gas diffusion electrode.

【符号の説明】[Explanation of symbols]

1 電解槽 11 ガス出口 2 ガス拡散電極 12 陰極液入口 3 イオン交換膜 13 陰極液出口 4 陽極 14 塩水入口 5 陰極室 15 塩水出口 6 陽極室 7 ガス室 8 ガスケット及び分散板 9 ガスケット 10 ガス入口 1 Electrolyzer 11 Gas outlet 2 Gas diffusion electrode 12 Catholyte inlet 3 Ion exchange membrane 13 Catholyte outlet 4 Anode 14 Salt water inlet 5 Cathode chamber 15 Salt water outlet 6 Anode chamber 7 Gas chamber 8 Gasket and dispersion plate 9 Gasket 10 Gas inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古屋 長一 山梨県甲府市中村町2番14号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Choichi Furuya 2-14 Nakamuracho, Kofu City, Yamanashi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス拡散電極を用いるイオン交換膜法電
解槽において、ガス拡散電極からなる陰極とイオン交換
膜との間をできるだけ近接せしめるとともに、該イオン
交換膜の他面側にある陽極として表面が波型形状の電極
を用いることを特徴とするガス拡散電極を用いるイオン
交換膜法電解槽。
1. In an ion exchange membrane electrolytic cell using a gas diffusion electrode, the cathode formed of the gas diffusion electrode and the ion exchange membrane are brought as close as possible to each other, and a surface is formed as an anode on the other side of the ion exchange membrane. An ion-exchange membrane method electrolytic cell using a gas diffusion electrode, characterized in that a corrugated electrode is used.
【請求項2】 ガス拡散電極を用いるイオン交換膜法電
解槽において、ガス拡散電極からなる陰極とイオン交換
膜との間を出来るだけ近接せしめるとともに、前記ガス
拡散電極のガス室内に剛性のガス透過性多孔体が挿入さ
れていることを特徴とするガス拡散電極を用いるイオン
交換膜法電解槽。
2. In an ion-exchange membrane electrolytic cell using a gas diffusion electrode, the cathode composed of the gas diffusion electrode and the ion-exchange membrane are brought as close as possible, and a rigid gas permeation into the gas chamber of the gas diffusion electrode. An ion exchange membrane electrolytic cell using a gas diffusion electrode, characterized in that a porous material is inserted.
JP4098483A 1992-03-26 1992-03-26 Electrolytic cell for ion-exchange membrane process using gas diffusion electrode Pending JPH05271974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4098483A JPH05271974A (en) 1992-03-26 1992-03-26 Electrolytic cell for ion-exchange membrane process using gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4098483A JPH05271974A (en) 1992-03-26 1992-03-26 Electrolytic cell for ion-exchange membrane process using gas diffusion electrode

Publications (1)

Publication Number Publication Date
JPH05271974A true JPH05271974A (en) 1993-10-19

Family

ID=14220900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4098483A Pending JPH05271974A (en) 1992-03-26 1992-03-26 Electrolytic cell for ion-exchange membrane process using gas diffusion electrode

Country Status (1)

Country Link
JP (1) JPH05271974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011242A1 (en) * 1998-08-25 2000-03-02 Toagosei Co., Ltd. Soda electrolytic cell provided with gas diffusion electrode
WO2000060140A1 (en) * 1999-03-31 2000-10-12 Toagosei Co., Ltd. Electrolytic cell using gas diffusion electrode and power distribution method for the electrolytic cell
JP2010059514A (en) * 2008-09-05 2010-03-18 Waterware:Kk Water electrolytic apparatus and water electrolytic system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663572A (en) * 1979-10-30 1981-05-30 Yamaha Motor Co Ltd Autobicycle
JPS59100278A (en) * 1982-08-26 1984-06-09 エルテック・システムズ・コーポレーション Narrow gap gas electrode type electrolytic cell
JPS60221595A (en) * 1984-04-18 1985-11-06 Japan Storage Battery Co Ltd Method for operating alkali chloride electrolytic cell provided with air electrode as cathode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663572A (en) * 1979-10-30 1981-05-30 Yamaha Motor Co Ltd Autobicycle
JPS59100278A (en) * 1982-08-26 1984-06-09 エルテック・システムズ・コーポレーション Narrow gap gas electrode type electrolytic cell
JPS60221595A (en) * 1984-04-18 1985-11-06 Japan Storage Battery Co Ltd Method for operating alkali chloride electrolytic cell provided with air electrode as cathode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011242A1 (en) * 1998-08-25 2000-03-02 Toagosei Co., Ltd. Soda electrolytic cell provided with gas diffusion electrode
US6368473B1 (en) 1998-08-25 2002-04-09 Nagakazu Furuya Soda electrolytic cell provided with gas diffusion electrode
WO2000060140A1 (en) * 1999-03-31 2000-10-12 Toagosei Co., Ltd. Electrolytic cell using gas diffusion electrode and power distribution method for the electrolytic cell
US6383349B1 (en) 1999-03-31 2002-05-07 Toagosei Co., Ltd. Electrolytic cell using gas diffusion electrode and power distribution method for the electrolytic cell
JP2010059514A (en) * 2008-09-05 2010-03-18 Waterware:Kk Water electrolytic apparatus and water electrolytic system

Similar Documents

Publication Publication Date Title
KR100797062B1 (en) Electrolytic cell and method for electrolysis
US5437771A (en) Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide
RU97100560A (en) METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID
US7211177B2 (en) Electrode for electrolysis in acidic media
JPS599185A (en) Electrolytic cell of ion exchange membrane method
EP0383243A2 (en) Electrolyser for chlor-alkali electrolysis, and anode
JP3421021B2 (en) Electrolysis method of alkali chloride
JPH07126880A (en) Method for electrolyzing brine and electrolytic cell
US4444631A (en) Electrochemical purification of chlor-alkali cell liquor
WO2015108115A1 (en) Anode for ion exchange membrane electrolysis vessel, and ion exchange membrane electrolysis vessel using same
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JPH1081987A (en) Gas diffusion cathode and brine electrolyzing cell using this gas diffusion cathode
JPH05271974A (en) Electrolytic cell for ion-exchange membrane process using gas diffusion electrode
CA1314836C (en) Process for the electrolysis of alkali metal chloride solutions
JP3596997B2 (en) Electrode feeder, method for producing the same, and electrolytic cell for producing hydrogen peroxide
JP4498740B2 (en) Electrolysis of alkali metal chloride aqueous solution
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
JP2001020089A (en) Protective method of alkali chloride electrolytic cell and protective device therefor
US6113757A (en) Electrolytic cell for alkali hydroxide production
CN109055966A (en) A kind of chemical combined method for preparing chlorine dioxide of electrochemistry-
GB1567274A (en) Electrolytic production of hypochloites
JP2670935B2 (en) Electrolysis method
JPH0978279A (en) Hydrochloric acid electrolysis device
JPH10121281A (en) Method and device for controlling concentration of aqueous alkaline hydrogen peroxide solution
JP3236693B2 (en) Electrolyzer using gas electrode and electrolysis method