JPS5816039A - Manufacture of electrical contact material - Google Patents

Manufacture of electrical contact material

Info

Publication number
JPS5816039A
JPS5816039A JP11464581A JP11464581A JPS5816039A JP S5816039 A JPS5816039 A JP S5816039A JP 11464581 A JP11464581 A JP 11464581A JP 11464581 A JP11464581 A JP 11464581A JP S5816039 A JPS5816039 A JP S5816039A
Authority
JP
Japan
Prior art keywords
internal oxidation
low
alloy
temperature
oxidation treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11464581A
Other languages
Japanese (ja)
Other versions
JPS6227143B2 (en
Inventor
Atsushi Kuroishi
黒石 農士
Shigeki Ochi
越智 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11464581A priority Critical patent/JPS5816039A/en
Publication of JPS5816039A publication Critical patent/JPS5816039A/en
Publication of JPS6227143B2 publication Critical patent/JPS6227143B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture a silver-oxide type electrical contact material with superior thermal stability and low contact resistance by subjecting the whole of an alloy to internal oxidation treatment at a low temp. under a low pressure of atmospheric oxygen, raising the temp. or the pressure of oxygen, and carrying out internal oxidation treatment >=1 time. CONSTITUTION:The whole of an alloy such as an Ag-Sn-In-Ni alloy is subjected to internal oxidation treatment at a low temp. such as 450-700 deg.C under a low pressure of atmospheric oxygen such as <=5 atm. After raising the oxidation temp. and/or the pressure of oxygen, internal oxidation treatment is carried out >=1 time. Thus, by repeating internal oxidation >=2 times under different conditions, the hardness distribution, heat resistance, etc. are considerably improved.

Description

【発明の詳細な説明】 本発明は銀−酸化物系接点材料の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silver-oxide contact material.

電気接点材料の要件としては耐溶着性に富むこと、耐溶
損性に富むこと、低接触抵抗を維持すること、耐アーク
耐消耗性に富むことなどである。
Requirements for electrical contact materials include high welding resistance, high erosion resistance, maintaining low contact resistance, and high arc wear resistance.

従来、これらの要件を満たす電気接点を製造する方法と
しては、銀合金を酸化雰囲気中で加熱する内部酸化法が
広く採用されている。
Conventionally, as a method for manufacturing electrical contacts that meet these requirements, an internal oxidation method in which a silver alloy is heated in an oxidizing atmosphere has been widely adopted.

内部酸化合金の特性は酸化条件によって著しく左右され
る。特に酸素圧および酸化温度により析出反応、析出す
る酸化物粒子の形状、大きさ、分布状態が変化し、合金
の機械的強度、耐熱性、電気的特性は大きく影響される
。− 電気接点材料は耐熱性耐消耗性などの点から内部酸化域
に析出する酸化物粒子が最′適の大きさ・形状で均一に
分布することが望ましい。また通電性・低接触抵抗性の
点から接点が適切な硬度を有し、導電率が高いことが必
要である。
The properties of internally oxidized alloys are significantly influenced by the oxidation conditions. In particular, the precipitation reaction and the shape, size, and distribution of the precipitated oxide particles change depending on the oxygen pressure and oxidation temperature, and the mechanical strength, heat resistance, and electrical properties of the alloy are greatly affected. - In terms of heat resistance and wear resistance, it is desirable for electrical contact materials to have oxide particles precipitated in the internal oxidation region uniformly distributed in an optimal size and shape. In addition, from the viewpoint of electrical conductivity and low contact resistance, it is necessary that the contacts have appropriate hardness and high electrical conductivity.

従来、電気接点材料を内部酸化処理する場合、酸化温度
・雰囲気酸素圧を一定或いは変化させて合金全域を一回
のみ内部酸化処理することが行われていた。
Conventionally, when internally oxidizing electrical contact materials, the oxidation temperature and atmospheric oxygen pressure were kept constant or varied, and the entire alloy was internally oxidized only once.

この方法では酸化が内部に進行すると酸化物が粗大化し
、酸化物粒子の分散状態が不均一になったり、酸化物粒
子の形状、大きさが調整できず、高い硬度、低い導電率
になったりする欠点がある。
With this method, when oxidation progresses internally, the oxide becomes coarse, the dispersion state of the oxide particles becomes uneven, and the shape and size of the oxide particles cannot be adjusted, resulting in high hardness and low conductivity. There are drawbacks to doing so.

本発明は以上の点に鑑みてなされたものであり、機械加
工性がよく耐溶着耐熱性に優れ導電率のよい銀−酸化物
系電気接点材料を製造する方法を供給するものである。
The present invention has been made in view of the above points, and provides a method for manufacturing a silver-oxide electrical contact material that has good machinability, excellent welding and heat resistance, and good electrical conductivity.

すなわち合金を450℃〜700℃の低温度でかつ、 
約5 atm、までの低い雰囲気酸素圧下で全体に内部
酸化処理し、その後、酸化温度と雰囲気酸素圧の両方或
いはいずれか一方のみを第一回目の酸化温度・雰囲気酸
素圧よりも高めて2回以上の内部酸化処理を行なうこと
を特徴とする電気接点材料の製造方法である。
That is, the alloy is heated to a low temperature of 450°C to 700°C, and
The whole is subjected to internal oxidation treatment under a low atmospheric oxygen pressure of up to about 5 atm, and then the oxidation temperature and/or the atmospheric oxygen pressure are raised twice to higher than the first oxidation temperature and atmospheric oxygen pressure. This is a method of manufacturing an electrical contact material, characterized by performing the above internal oxidation treatment.

次に本発明の特徴につき述べる。本発明は、接点の硬度
分布、高温硬度などの機械的特性、耐熱性、接触抵抗性
に検討を加えた結果;内部酸化を異なる条件で2回以上
することKよって硬度分布耐熱性などを大巾に改善する
ことがわかったのである。つまり酸化物粒子を均一に分
布させるためには450℃〜700℃の低温度で内部酸
化すると粒子の分布は高温酸化に比較して良好になり酸
化域での硬度分布は平均化してくる。しかしながら低温
酸化であ゛るため合金の硬度は高く、析出反応が十分に
進行せず、導電率は低椿い。      ・一方高温高
圧で内部酸化すると析出する酸化物粒子は粗大化しやす
いため酸化物粒子の分布は不均一となる。
Next, the features of the present invention will be described. The present invention was developed as a result of considering the hardness distribution of the contact, mechanical properties such as high-temperature hardness, heat resistance, and contact resistance; It was found that there was a significant improvement. In other words, in order to uniformly distribute the oxide particles, internal oxidation at a low temperature of 450° C. to 700° C. results in better particle distribution than in high temperature oxidation, and the hardness distribution in the oxidation region becomes average. However, due to the low temperature oxidation, the hardness of the alloy is high, the precipitation reaction does not proceed sufficiently, and the electrical conductivity is low. -On the other hand, when internal oxidation is performed at high temperature and high pressure, the precipitated oxide particles tend to become coarse, so the distribution of the oxide particles becomes uneven.

酸化物粒子の分布を均一化し、かつ適切な硬度と高い導
電率をもつために2回以上の内部酸化処理をすることが
有効であることがわかった。即ち450℃〜700℃の
低温度で酸化することにより溶質元素の拡散をおさえて
均一に析出酸化物゛粒子を分布させ、耐消耗耐溶着性の
基本的要件を満足させる。次に酸化温度と酸素圧を高め
た条件で内部酸化させ、酸化物析出反応を充分に行なう
こと、低温酸化で析出した粒子を成長させ粒子の形状お
よび大きさを調整することによって導電率を高め、硬度
分布の均一化適正化する。
It has been found that it is effective to perform internal oxidation treatment two or more times in order to homogenize the distribution of oxide particles and to obtain appropriate hardness and high conductivity. That is, by oxidizing at a low temperature of 450 DEG C. to 700 DEG C., the diffusion of solute elements is suppressed and the precipitated oxide particles are uniformly distributed, thereby satisfying the basic requirements of wear resistance and welding resistance. Next, internal oxidation is carried out under conditions of elevated oxidation temperature and oxygen pressure to sufficiently carry out the oxide precipitation reaction, and the conductivity is increased by growing the particles precipitated by low-temperature oxidation and adjusting the shape and size of the particles. , to make the hardness distribution uniform and appropriate.

内部酸化処理を組合せることによって分散強化型内部酸
化合金の特徴を発揮させ耐溶着耐消耗低接触抵抗のすぐ
れた電気接点材料を得ることができる。
By combining the internal oxidation treatments, the characteristics of the dispersion-strengthened internal oxidation alloy can be exhibited, and an electrical contact material with excellent welding resistance, wear resistance, and low contact resistance can be obtained.

2回以上の内部酸化も理を組合せる効果を有効に発揮さ
せるためには450℃〜700℃の低温度でかつ酸素圧
を〜約5 atzOsまでkして低温度酸化における反
応促進と酸化物凝集防止をはかり、次に第2回目の内部
酸化処理においては酸素圧よりむしろ酸化温度を高くし
た方が析出粒子を調整したり析出反応を促進するのに望
ましい。ここで第一回目の内部酸化処理で、酸化温度の
下限を450℃としたのは、これ以下になると酸化時間
が非常に長くなり、実用性を欠くからである。又上限を
700℃としたのは第2回目の効果がこれ以上あげると
小さくなるからである。酸素圧を一約5 atm。
In order to effectively exhibit the effect of combining two or more internal oxidations, the temperature should be as low as 450°C to 700°C and the oxygen pressure should be reduced to about 5 atzOs to accelerate the reaction in the low-temperature oxidation and to remove the oxides. In order to prevent agglomeration, and then to increase the oxidation temperature rather than the oxygen pressure in the second internal oxidation treatment, it is desirable to adjust the precipitated particles and promote the precipitation reaction. The reason why the lower limit of the oxidation temperature was set at 450° C. in the first internal oxidation treatment is that if the temperature is lower than this, the oxidation time becomes extremely long and is impractical. The upper limit was set at 700°C because the effect of the second time becomes smaller if the temperature is increased any higher. Oxygen pressure is about 5 atm.

02  としたのもこれ以上あげると第2回目の効果が
小さくなるからである。
The reason why it is set at 02 is because if it is increased more than this, the effect of the second time will be smaller.

2回目の内部酸化も理を数回に分けて温度のみあるいは
酸素圧供に順次高めてもよい。
The second internal oxidation may also be carried out in several steps, and the temperature may be increased only or by increasing oxygen pressure.

次に本衰明を実施例により具体的に説明する。Next, the present invention will be specifically explained using examples.

合金組成Ag−5,O5n−8,0I n−0,1Ni
  を溶解゛鋳造してインゴットとした後、このインゴ
ットからl0XIOXl#LILの試片を切り出し、し
かる後、第1′表に示すごとき酸化条件で内部酸化させ
た。この合金の硬度分布・導電率(%IAC9)を測定
した結果は第1表に併記する通やである。なお本発明品
の高温特性を調べるため、高温硬度を測定した。結果を
第1図に示す。lが第1表のAであり、2が第1表のD
である。
Alloy composition Ag-5,O5n-8,0I n-0,1Ni
After melting and casting to form an ingot, specimens of 10XIOX1#LIL were cut out from the ingot, and then internally oxidized under the oxidation conditions shown in Table 1'. The results of measuring the hardness distribution and electrical conductivity (%IAC9) of this alloy are shown in Table 1. In order to investigate the high-temperature properties of the products of the present invention, high-temperature hardness was measured. The results are shown in Figure 1. l is A in Table 1, 2 is D in Table 1
It is.

第1表に示す結果から明らかな如く、2回以上の内部酸
化処理した接点合金(A−C)は全て導電率が向上し、
硬度分布が均一化することが確認された。
As is clear from the results shown in Table 1, all contact alloys (A-C) that have undergone internal oxidation treatment two or more times have improved conductivity.
It was confirmed that the hardness distribution became uniform.

次に本発明品の耐溶着性低接触抵抗性を調べるため接点
試験を行なった。表1の合金組成・内部酸化条件で作成
した合金を加工し、銅ビスへり一付して5J’x 1.
4x2.5*x2.5x80Rの接点を得た。
Next, a contact test was conducted to examine the welding resistance and low contact resistance of the product of the present invention. The alloy made with the alloy composition and internal oxidation conditions shown in Table 1 was processed and a copper screw was attached to form a 5J'x 1.
4x2.5*x2.5x80R contacts were obtained.

この複合接点を市販の安全ブレーカに組み込み、次に示
す条件で温度試験・短絡試験を行ない、耐溶着性・低接
触抵抗性を評価した。この結果は第8表に示す通りであ
る。
This composite contact was incorporated into a commercially available safety breaker, and temperature tests and short circuit tests were conducted under the following conditions to evaluate its welding resistance and low contact resistance. The results are shown in Table 8.

温度試験 ■電圧AC220V、電流150A、力率α8.開閉回
数50回 ■電圧AC220V、電流20A、カ率o、8.開閉回
数5000回 ■電圧AC220V、電流20A通電し、接点部の温度
上昇測定 短絡試験          、、、、、゛■電圧AC
220V、電流150A、力率o、8.開閉回数50回 ■電圧AC21V、電流1500A、力率0.751極
0−C〔今2極0−CCキ2極Co を溶着するまで繰
返えす、又同時にアーク発生量を観察 上記第8表より明らかな如く、2回以上の内部酸化処理
を行なうことにより、1回のみのものに比べて温度上昇
値は下がり、優れた耐溶着性を示すことが確認された。
Temperature test ■Voltage AC220V, current 150A, power factor α8. 50 times of opening and closing ■Voltage AC 220V, current 20A, power rate o, 8. 5000 times of opening/closing ■ Voltage AC 220V, current 20A, temperature rise measurement of contact part Short circuit test
220V, current 150A, power factor o, 8. 50 times of opening and closing Voltage AC 21V, current 1500A, power factor 0.751 pole 0-C [now 2 poles 0-CC key 2 poles Co] Repeat until welded, and at the same time observe the amount of arc generation above Table 8 As is clearer, it was confirmed that by performing the internal oxidation treatment two or more times, the temperature rise value was lower than that when the internal oxidation treatment was performed only once, and excellent welding resistance was exhibited.

以上説明した如く、本発明電気接点材料は十分に内部酸
化処理した接点材料であるため、熱的安定性に優れてい
ると共に接触抵抗が低く、シかも優れた耐溶着性を示す
など、その工業的価値は大きいものである。
As explained above, since the electrical contact material of the present invention is a contact material that has been sufficiently internally oxidized, it has excellent thermal stability, low contact resistance, and excellent welding resistance. The value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の合金と本願発明の合金の高温における硬
度を示す図であり、第2図、第8図は本発明に係る合金
断面の各々100倍及び1,000倍の顕微鏡写真であ
る。 l二本発明合金 2:従来の合金 岸1図
Figure 1 is a diagram showing the hardness at high temperatures of a conventional alloy and the alloy of the present invention, and Figures 2 and 8 are micrographs of cross sections of the alloy according to the present invention magnified 100 times and 1,000 times, respectively. . l2 Invention alloy 2: Conventional alloy shore 1

Claims (1)

【特許請求の範囲】[Claims] (1)銀−酸化物系電気接点材料の製造方法において、
合金を先づ450℃〜700℃の低温度でかつ5気圧以
下の低い雰囲気酸素圧の条件で合金全体を内部酸化処理
を行い、その後酸化温度と酸素圧の両方またはいずれか
一方のみを、−回目の温度、酸素圧よ沙も高めて1回以
上の内部酸化処理を行うことを特徴とする電気接点材料
の製造方法。
(1) In the method for producing a silver-oxide-based electrical contact material,
The alloy is first subjected to internal oxidation treatment at a low temperature of 450°C to 700°C and a low atmospheric oxygen pressure of 5 atm or less, and then the oxidation temperature and/or oxygen pressure are changed to - A method for producing an electrical contact material, characterized by performing internal oxidation treatment at least once at elevated temperature and oxygen pressure.
JP11464581A 1981-07-21 1981-07-21 Manufacture of electrical contact material Granted JPS5816039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11464581A JPS5816039A (en) 1981-07-21 1981-07-21 Manufacture of electrical contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11464581A JPS5816039A (en) 1981-07-21 1981-07-21 Manufacture of electrical contact material

Publications (2)

Publication Number Publication Date
JPS5816039A true JPS5816039A (en) 1983-01-29
JPS6227143B2 JPS6227143B2 (en) 1987-06-12

Family

ID=14642980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11464581A Granted JPS5816039A (en) 1981-07-21 1981-07-21 Manufacture of electrical contact material

Country Status (1)

Country Link
JP (1) JPS5816039A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173226A (en) * 1988-12-26 1990-07-04 Tanaka Kikinzoku Kogyo Kk Electrical contact material and its manufacture
US5358585A (en) * 1990-06-28 1994-10-25 Akira Shibata Process of producing silver-or silver-copper alloy-metal oxide composite material
WO2004087972A1 (en) * 2003-04-04 2004-10-14 Metalor Technologies International S.A. Method of producing a silver alloy part and alloy used for same
JP2008152971A (en) * 2006-12-14 2008-07-03 Tokuriki Honten Co Ltd Ag-oxide based electric contact material and its manufacturing method
WO2008149666A1 (en) * 2007-06-07 2008-12-11 Tanaka Kikinzoku Kogyo K.K. Method for production of electric contact material, electric contact material, and thermal fuse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144966A (en) * 1975-06-06 1976-12-13 Tanaka Precious Metal Ind Electric contact material manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144966A (en) * 1975-06-06 1976-12-13 Tanaka Precious Metal Ind Electric contact material manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173226A (en) * 1988-12-26 1990-07-04 Tanaka Kikinzoku Kogyo Kk Electrical contact material and its manufacture
US5358585A (en) * 1990-06-28 1994-10-25 Akira Shibata Process of producing silver-or silver-copper alloy-metal oxide composite material
WO2004087972A1 (en) * 2003-04-04 2004-10-14 Metalor Technologies International S.A. Method of producing a silver alloy part and alloy used for same
JP2008152971A (en) * 2006-12-14 2008-07-03 Tokuriki Honten Co Ltd Ag-oxide based electric contact material and its manufacturing method
WO2008149666A1 (en) * 2007-06-07 2008-12-11 Tanaka Kikinzoku Kogyo K.K. Method for production of electric contact material, electric contact material, and thermal fuse
US8641834B2 (en) 2007-06-07 2014-02-04 Tanaka Kikinzoku Kogyo K.K. Method for manufacturing electric contact material, electric contact material, and thermal fuse

Also Published As

Publication number Publication date
JPS6227143B2 (en) 1987-06-12

Similar Documents

Publication Publication Date Title
JPH06104873B2 (en) Silver-metal oxide contact material and manufacturing method thereof
CN110885937B (en) Cu-Ti-Ge-Ni-X copper alloy material and preparation method thereof
JPS5816039A (en) Manufacture of electrical contact material
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
CN115029580B (en) Tellurium copper alloy and preparation method thereof
CN114657410B (en) High-strength high-conductivity copper-iron alloy and preparation method thereof
JPS6333563A (en) Production of pt-ni alloy for sputtering
US1731267A (en) Resistance alloy
JP4947850B2 (en) Method for producing Ag-oxide based electrical contact material
CN106521229B (en) The method that the Cu-Cr-Zr alloy containing rare earth is prepared using Cu-La intermediate alloys
Rogers Dispersion-strengthened copper alloys with useful electrical and mechanical properties
KR960015216B1 (en) Making method of cu-zr-ce-la-nb-pd alloy
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
KR960015217B1 (en) Making method of cu-cr-zr-mg-ce-la-nd-pd alloy
US2778725A (en) Method for making powdered vanadium metal
JPS63250431A (en) Material for silver-metal oxide base contact and its production
JPH0353036A (en) Copper-iron-cobalt-titanium alloy having high mechanical and electric characteristics and preparation thereof
JP2849663B2 (en) Electrical contact material and manufacturing method thereof
KR960015515B1 (en) Method for making cu-cr-mg-ce-nd-pr alloy
JPH04354A (en) Production of high-conductivity copper alloy rolled material
US3383204A (en) Nickel-lithium alloy preparation
JPS61201708A (en) Manufacture of molybdenum powder
KR960014951B1 (en) Making method cu-cr-ce-la-nd-pr alloy and heat-treatment
JPH04285137A (en) Spring constituted of beryllium copper alloy and its manufacture
JPH01138094A (en) Filler metal