JPS58160041A - Numerical controlled machining method - Google Patents

Numerical controlled machining method

Info

Publication number
JPS58160041A
JPS58160041A JP57040451A JP4045182A JPS58160041A JP S58160041 A JPS58160041 A JP S58160041A JP 57040451 A JP57040451 A JP 57040451A JP 4045182 A JP4045182 A JP 4045182A JP S58160041 A JPS58160041 A JP S58160041A
Authority
JP
Japan
Prior art keywords
fillet
curved surface
intersection
curved
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57040451A
Other languages
Japanese (ja)
Other versions
JPH0767658B2 (en
Inventor
Sumio Kikuchi
菊池 純男
Hirobumi Uenishi
上西 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57040451A priority Critical patent/JPH0767658B2/en
Publication of JPS58160041A publication Critical patent/JPS58160041A/en
Publication of JPH0767658B2 publication Critical patent/JPH0767658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34098Slope fitting, fairing contour, curve fitting, transition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35114Generation of connection between two or more surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To obtain the machining data of fillet curved surface by a method wherein circular arcs, the radius of each of which is the radius of the fillet curve to machine and each of which is circumscribed with two curved surfaces, are generated and the ends of the circular arcs contacting with on curved surface are connected with a curved line in order to employ said curved line as the boundary line of the fillet curved surface for the numerical controlled machining of the fillet curved surface to be formed between two free curved surfaces. CONSTITUTION:Firstly the equation of a section 8 normal to a line of intersection 7 between the curved surfaces 1 and 2 at a point 18 on the line of intersection 7 is obtained. The position, at the joint of which said equation is formed, is successively shifted from one end point 16 to the other end point 17 on the line of intersection 7. Secondly, the lines of intersection 9 and 10 made between the section 8 and the curved surfaces 1 and 2 respectively are offset normal to the lines of intersection 9 and 10 on the section 8. In the case, the amount of offset R is the radius of the fillet curved surface determined in response to the position of the section 8. The intersection 13 of the offset lines of intersection 11 and 12 is the position of the center of the circular arc to generate. Because the points 14 and 15 on the lines of intersection 9 and 10 corresponding to the intersection 13 difine both end points of the circular arc, the equation of the circular arc is determined uniquely, resulting in enabling to generate the controlling data for machining.

Description

【発明の詳細な説明】 本発明は2つの曲面を指定された半径で滑らかに接続す
る、フィレット曲面を作成して、その曲面に基づき数値
制御工作機械を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of creating a fillet curved surface that smoothly connects two curved surfaces at a specified radius and controlling a numerically controlled machine tool based on the curved surface.

従来、自由曲面形状の2曲面間に付加する、半径が一定
あるいは可変のフィレット曲面は、数値データであられ
すことができなかったために数値制御工作機械で加工す
ることができなかった。そのために倣い加工や放電加工
に頼らざるを得す、加工Wfが悪いとか加工工数が大き
いという問題点があった。
Conventionally, a fillet curved surface with a constant or variable radius, which is added between two curved surfaces of a free-form surface shape, could not be processed using numerically controlled machine tools because numerical data could not be obtained. For this reason, it is necessary to rely on copy machining or electrical discharge machining, and there are problems such as poor machining Wf and a large number of machining steps.

本発明の目的は、2つの自由曲面形状を半径が一定ある
いは可変の半径で滑らかに接続するためのフィレット曲
面に基づき、加工を行うことができる数値制御機械の制
御方法にある。
An object of the present invention is to provide a control method for a numerically controlled machine that can perform machining based on a fillet curved surface for smoothly connecting two free-form surfaces with a constant or variable radius.

前記目的を達成するために、本発明ではフィレット曲面
を付加する2曲面に接する円弧を発生させ、円弧の端点
を順次接続することによりフィレット曲面を生成する方
法を案出した。通常、図面上ではフィレット曲面の半径
は複数箇所の位置での半径を指示される。そのため、本
発明では発生させる円弧の位置で円弧半径を連続的に変
化させることにより、可変のフィレット曲面を数値デー
タであられし、数値制御工作機械で加工することを可能
にした。
In order to achieve the above object, the present invention has devised a method of generating a fillet curved surface by generating a circular arc that touches two curved surfaces to which a fillet curved surface is to be added, and sequentially connecting the end points of the circular arcs. Usually, on a drawing, the radius of the fillet curved surface is indicated as the radius at multiple positions. Therefore, in the present invention, by continuously changing the radius of the circular arc at the position of the generated circular arc, the variable fillet curved surface can be prepared with numerical data and machined using a numerically controlled machine tool.

以下、本発明の一実施例を第1.2,3,4゜5.6,
7.8図?こより説明する。
Hereinafter, one embodiment of the present invention will be described as 1.2, 3, 4°5.6,
7.8 figure? I will explain from here.

第1図は全体構成を示しており、c、pu3の入力デー
タとして、フィレット曲面を付加する2曲面データを与
える。この曲面データは解析曲面の場合にはS (x、
y、z)=o、8  (x、y、z)−oと2 して与え、自由曲面の場合には、第2図に示すように曲
面パラメータu、vが整数値をとるu、vの格子点、た
とえば6での位置座標×+ ’l r zとU。
FIG. 1 shows the overall configuration, and two curved surface data to which a fillet curved surface is added is given as input data for c and pu3. This surface data is S (x,
y, z) = o, 8 (x, y, z) - o and 2. In the case of a free-form surface, the surface parameters u, v take integer values as shown in Figure 2. The position coordinates at the grid point, e.g. 6, ×+'l r z and U.

■方向の接−ベクトルで与える。cpu3では、曲面デ
ータ1,2に基づき第3図に示す処理の流れによりフィ
レット曲面データを得る。フィレット曲面データは、第
2図と同一形式をとる。次にこのフィレット曲面データ
に基づき数値制御工作機械(以下、NCと略す。)4を
駆動するために、cpua内ではNCのカッタの動きを
制御するデータ5をNCAに掃き出す。
■The tangent of the direction - given as a vector. The CPU 3 obtains fillet curved surface data based on the curved surface data 1 and 2 through the processing flow shown in FIG. The fillet surface data takes the same format as in FIG. Next, in order to drive a numerically controlled machine tool (hereinafter abbreviated as NC) 4 based on this fillet surface data, the CPU outputs data 5 for controlling the movement of the NC cutter to the NCA.

以上が全体構成である。次にフィレット曲面データを得
る方法を第4,5図を用いて述べる。
The above is the overall configuration. Next, a method for obtaining fillet surface data will be described using FIGS. 4 and 5.

なお、第4図はわかり易くするために曲面l。In addition, in FIG. 4, the curved surface l is shown for ease of understanding.

2の裏側からみた図である。This is a diagram seen from the back side of 2.

まず、曲面1.2の相貫線7土の点18で7に垂直な平
面(切断面)8の方程式を得る。切断面8の作成間隔は
7の曲率変化に応じて決め、相貫線7上で端点16から
17方向(またはこの逆方向)に順次16,24,25
・・・と作成位置を決める。次に7と曲面1.2との交
線9,10を切断面7上で交線9,10の法線方向へオ
フセットする。
First, obtain the equation of the plane (cut plane) 8 perpendicular to 7 at the point 18 of the intersection line 7 of the curved surface 1.2. The interval at which the cut planes 8 are created is determined according to the change in the curvature of the cut plane 7, and the cut planes 8 are cut in the direction 16, 24, 25 from the end point 16 to the direction 17 (or in the opposite direction) on the intersecting line 7.
...and decide the creation position. Next, the intersection lines 9 and 10 between 7 and the curved surface 1.2 are offset on the cut surface 7 in the normal direction of the intersection lines 9 and 10.

オフセット式は、交線9をc(t)、toをC(tt+
2 オフセット量R1パラメータtに対応するC(t))。
In the offset formula, the intersection line 9 is c(t) and to is C(tt+
2 C(t)) corresponding to the offset amount R1 parameter t.

C(t)上の点における切断面上の単位法線ペクトルを
N1(t)、N2(りとおくと01(す、C2(りを各
々オフセットした曲#C(す、C(t)は2 C”(t)−C,(t)+R,Nj(t)   (1=
1.2)」 で与えられる。オフセット量Rは切断面7の位置より決
められる、フィレット曲面の半径である。
If we set the unit normal vector on the cut plane at the point on C(t) as N1(t) and N2(ri), the song #C(su, C(t) with offsets of 01(su, C2(ri) is 2 C"(t)-C,(t)+R,Nj(t) (1=
1.2)”. The offset amount R is determined from the position of the cut surface 7 and is the radius of the fillet curved surface.

今、指定されたフィレットの半径が相貫@7上の端点1
6で几、17で几 とすると相貫線上の2 ある点18におけるフィレット曲面の半径はR=R□+
f(1)  。
Now, the radius of the specified fillet is the end point 1 on the intersection @7
If 6 is 几 and 17 is 几, then the radius of the fillet curved surface at a certain point 18 on the intersecting line is R=R□+
f(1).

ここで、lは端点16から点18までの相貫曲線長、f
(Iりは端16.17間の全相貫線長りとするとf(o
)=o 、 f(幻=R−几を満足する、関1 数である。
Here, l is the reciprocity curve length from end point 16 to point 18, f
(If I is the total phase penetration line length between ends 16 and 17, then f(o
) = o, f (phantom = R - 几, which is a function 1).

関数をあげることができる。I can give you a function.

こうしてオフセットした曲線11.12の交点13が発
生させる円弧の中心位置となる。この交点13に対応す
る交線9,10上の点14.15が円弧の両端点となる
ため、円弧の方程式は1意lこ定まる。
The intersection point 13 of the curves 11 and 12 thus offset becomes the center position of the generated circular arc. Since points 14 and 15 on the intersection lines 9 and 10 corresponding to this intersection 13 are both end points of the circular arc, the equation of the circular arc is uniquely determined.

以上の手順を位置の異なる、複数の切断面について繰返
すことにより第6図に示すように曲面l。
By repeating the above procedure for a plurality of cut surfaces at different positions, a curved surface l is obtained as shown in FIG.

2側で各々円弧端点列26,27.28・・・を滑らか
に接続するB−スプライン曲線を作成し、フィレット曲
面の境界面[19,20の式を祷る。
Create a B-spline curve that smoothly connects the arc end point rows 26, 27, 28, etc. on the second side, and calculate the equations [19, 20] for the boundary surface of the fillet surface.

フィレット曲面の他の境界曲線21.22は円弧である
。境界曲軸19,20,21,22をC(u)、CM、
C(uJ  C(”iとしたとき、フィ1      
 2       3       4レット曲面式S
(u、v)はよく知られているC15bns式により次
式で与えられる。
The other boundary curves 21, 22 of the fillet surface are circular arcs. The boundary curved axes 19, 20, 21, 22 are C(u), CM,
C(uJ C("When i, fi 1
2 3 4let curved surface type S
(u, v) is given by the following equation using the well-known C15bns equation.

S(u 、V )=C(ul 1−φ(V丹十〇  (
v)(1−φ(U))2 +C(u)φ(u)+C(v)φ(u)4 −P[−φ(u))(1−φ(V)) 人 −P φ(u) (1−φ(V)) −P φ(u) (1−φ(V)) −P (1−φ(U))φ(v) ここで P  =C(o)=C(o) 人     12 P  =C(1)=C(ol Bl        4 P  =C(1)=C(11 C34 P  =’C(1)=C(o) 02      3 φ(幻はブレンティング関数 8(u、v)はx、y、z座標値で得られる。
S(u,V)=C(ul 1-φ(Vtanju〇(
v) (1-φ(U))2 +C(u)φ(u)+C(v)φ(u)4 -P[-φ(u))(1-φ(V)) Person-P φ( u) (1-φ(V)) -P φ(u) (1-φ(V)) -P (1-φ(U))φ(v) where P =C(o)=C(o ) Person 12 P =C(1)=C(ol Bl 4 P =C(1)=C(11 C34 P ='C(1)=C(o) 02 3 φ(Illusion is Brenting function 8(u , v) are obtained as x, y, and z coordinate values.

このようにして得られたフィレット曲面式に基づき、数
値制御工作機械で加工するための制御データを得る方法
を第8図で説明する。
A method for obtaining control data for machining with a numerically controlled machine tool based on the fillet surface equation obtained in this way will be explained with reference to FIG.

U方向にカッタを動かして曲面を切削するにはu=u、
v=v  に対応する点Pの位置からU−】     
     】 U+Δu 、 v = v  に対応する点Qまでカッ
タを動1               1 かすここにより可能である。Cbons式により、u、
vを与えたときの位置座標値x、y、zは求められるか
ら、点P(x、y 、Z  )から点Q(X。
To cut a curved surface by moving the cutter in the U direction, u=u,
From the position of point P corresponding to v=v U-]
] It is now possible to move the cutter 1 1 to a point Q corresponding to U+Δu, v = v. According to the Cbons formula, u,
Since the position coordinate values x, y, and z can be found when v is given, from point P (x, y, Z) to point Q (X.

11                2y  z)へ
の偏差Δx=x −x  Δ)””)’ 2  Y 1
 +212                 211
Δz=z −z  を数値制御工作機械へ掃き出すこと
1 により、カッタ位置を制御する。以下、同様に△Uずつ
Uを変化させv = v  曲線上でカッタを移動! させ、次にVをΔVだけ変化させた、v=v+ΔV! 曲線上でカッタを動かすことによりフィレット曲面を切
削する。
11 2y z) deviation Δx=x −x Δ)””)' 2 Y 1
+212 211
The cutter position is controlled by sweeping Δz=z −z to the numerically controlled machine tool. Hereafter, similarly change U by △U and move the cutter on the v = v curve! Then, V was changed by ΔV, v=v+ΔV! The fillet curved surface is cut by moving the cutter on the curve.

以上述べたように本発明により、指定された自白面形状
に対し、複数筒所で指定された半径をもつフィレット曲
面が数値データで表わすことができるので従来、倣い加
工によっていたフィレット曲面が多用される家’を製品
の外形状などの金型加工が数値制御工作機械を用いて加
工可能になった。
As described above, according to the present invention, a fillet curved surface having specified radii at multiple tube locations can be expressed by numerical data for a specified plain surface shape, so that the fillet curved surface, which was conventionally processed by copying, is often used. It has become possible to process molds such as the external shape of products using numerically controlled machine tools.

さらに これによって加工上の制御的からくるデザイン
上の匍」約が解消され、金型製作期間の15〜40チ短
縮、加工′#度の1桁向上、材料費の20〜35%節減
の効果がある。
In addition, this eliminates design constraints caused by processing control, shortens mold production time by 15 to 40 inches, improves processing efficiency by an order of magnitude, and reduces material costs by 20 to 35%. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は全体構成図、第2図は曲面の表現方法の説明図
、第3図はフィレット曲面の作成方法の処理の流れ、第
4図はフィレット曲面作成方法の概略図、第5図は切断
面上での円弧発生方法の説明図、第6図は発生した円弧
端点の接続説明図、第7図はフィレット曲面の数値表現
方法の説明図、第8図はフィレット曲面の加工方法の説
明図であるO 1・・・・・・フィレット曲面を付加する曲面2・・・
・・・同 上 3・・・・・・cpu 4・・・・・・数値制御工作機械 5・・・・・・4を制御するデータ 6・・・・・・曲面パラメータu、vの格子点7・・・
・・・曲面1と2との相貫線 8・・・・・・切断面 9・・・・・・曲面1と切断面8との相貫線10・・・
・・・ 〃 2     〃11・・・・・・交線9を
オフセットした曲線12・・・・・・交線10をオフセ
ットした曲線13・・・・・・オフセットした曲線11
.12の欠点14・・・・・・発生した円弧の曲面1側
の端点15・・・・・・    〃    2  〃1
6・・・・・・相X線7の端点 17・・・・・・同 上 18・・・・・・切断面8か通る、相貫線7上の点19
・・・・・・フィレット曲面の境界面ic (u)20
・・・・・・      tt      CM21・
・・・・・      u      C(u122・
・・・・・      u      CM23・・・
・・・円弧 24.25・・相頁I!i17上の切断面作成点26.
27.28・・・円弧端点列 代理人弁理士 博田オロ幸 I □j;i、、’L 、i、−4 r7l西C)浄書(内容に変更なし) 第 1 回 卑 2 圀 、/6 嵩 3 目 亮 4 フ β 第 5 フ 変 15  図 手続補正書tケ或) 小作の表示 昭和 57年特許願第 40451  号発明の名称 数値制御加工法 補正をする者 ・1”L    ’5101株式会ン![]   立 
製 作 所1(2)  M−:、[Jl   勝  茂
代   理   人 補正の内容 1.委任状を別紙のとおりに補充する。
Figure 1 is an overall configuration diagram, Figure 2 is an explanatory diagram of how to express a curved surface, Figure 3 is a process flow of the method for creating a fillet curved surface, Figure 4 is a schematic diagram of the method for creating a fillet curved surface, and Figure 5 is an illustration of the method for creating a fillet curved surface. An explanatory diagram of the method of generating an arc on a cut surface, Fig. 6 is an explanatory diagram of the connection of the generated arc end points, Fig. 7 is an explanatory diagram of the numerical expression method of the fillet curved surface, and Fig. 8 is an explanation of the processing method of the fillet curved surface. O1...Curved surface 2 to which fillet curved surface is added...
...Same as above 3...CPU 4...Numerically controlled machine tool 5...Data for controlling 4 6...Grid of surface parameters u, v Point 7...
... Interchangeable line 8 between curved surfaces 1 and 2 ... Cut surface 9 ... Interchangeable line 10 between curved surface 1 and cut surface 8 ...
...〃 2 〃11...Curve 12 offset from intersection line 9...Curve 13 offset from intersection 10...Curve 11 offset
.. Defect 14 of 12... End point on the curved surface 1 side of the generated arc 15... 〃 2 〃 1
6...End point 17 of phase X-ray 7...Same as above 18...Point 19 on phase penetration line 7 passing through cut plane 8
...Boundary surface of fillet surface ic (u)20
・・・・・・ tt CM21・
... u C (u122・
... u CM23...
...Arc 24.25... Phase page I! Cut plane creation point 26 on i17.
27.28...Circular end point series agent Patent attorney Hakuta Oroyuki I □j;i,,'L,i,-4 r7lnishiC) Engraving (no change in content) 1st Bi 2 Kuni, / 6 Takashi 3 Me Ryo 4 Fuβ 5th Fu Variation 15 Drawing procedure amendment tke) Indication of tenancy Showa 57 Patent Application No. 40451 Title of invention Numerical control processing method Person making amendments 1”L '5101 stock Meeting! [] Standing!
Manufacturer 1 (2) M-:, [Jl Katsu Shigeyo Ri Person correction contents 1. Supplement the power of attorney as attached.

Claims (1)

【特許請求の範囲】 指定された自由曲面形状の2曲面間に指定され救゛ た半径をもつフィレット曲面を生嫌する場合に、フィレ
ット曲面を付加する2曲面に接する円弧を発生させ、同
一曲面上の円弧端を1−次階らかに接続することにより
できる曲線をフィレット曲面の境界線とし、発生させる
円弧の半径を円弧の位置により制御することにより、半
径が可変のフィレット曲面を生成した後、このフィレッ
ト曲面にもとづいて数値制御工作機械を駆動することを
特徴とする、数値制御加工法。
[Claims] When a fillet curved surface with a specified saved radius is created between two curved surfaces of a specified free-form surface shape, a circular arc is generated that is in contact with the two curved surfaces to which the fillet curved surface is added, and the same curved surface is created. The curve created by linearly connecting the upper arc ends is the boundary line of the fillet surface, and the radius of the generated arc is controlled by the position of the arc to generate a fillet surface with a variable radius. Then, a numerically controlled machining method is characterized in that a numerically controlled machine tool is driven based on this fillet curved surface.
JP57040451A 1982-03-15 1982-03-15 Curved surface generation method and numerical control machining method Expired - Lifetime JPH0767658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57040451A JPH0767658B2 (en) 1982-03-15 1982-03-15 Curved surface generation method and numerical control machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040451A JPH0767658B2 (en) 1982-03-15 1982-03-15 Curved surface generation method and numerical control machining method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3257469A Division JPH056442A (en) 1991-10-04 1991-10-04 Circular arc generating method

Publications (2)

Publication Number Publication Date
JPS58160041A true JPS58160041A (en) 1983-09-22
JPH0767658B2 JPH0767658B2 (en) 1995-07-26

Family

ID=12580997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040451A Expired - Lifetime JPH0767658B2 (en) 1982-03-15 1982-03-15 Curved surface generation method and numerical control machining method

Country Status (1)

Country Link
JP (1) JPH0767658B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111809A (en) * 1984-06-26 1986-01-20 Fanuc Ltd Formation of composite curved surface
JPS61292705A (en) * 1985-06-20 1986-12-23 Fanuc Ltd Rounding method
JPS6263307A (en) * 1985-09-13 1987-03-20 Fanuc Ltd Method for producing composite curved surface
JPS6265105A (en) * 1985-09-17 1987-03-24 Fanuc Ltd Production of composite curved surface
JPS6359601A (en) * 1986-08-29 1988-03-15 Hitachi Ltd Numerical control working method
JPS6391705A (en) * 1986-10-06 1988-04-22 Fanuc Ltd Generating method for nc data for machining fillet surface
JPS63129403A (en) * 1986-11-19 1988-06-01 Fanuc Ltd Fillet surface generating method
WO1988006311A1 (en) * 1987-02-20 1988-08-25 Fanuc Ltd Method of entering profile information
JPH0322101A (en) * 1989-06-20 1991-01-30 Sodick Co Ltd Offset taper quantity changing method
JPH0496805A (en) * 1990-08-13 1992-03-30 Yutaka Sangyo Kk Data generating device for curved surface generation
WO1993001535A1 (en) * 1991-07-05 1993-01-21 Fanuc Ltd Method for specifying position where fillet curved surface is located
US5793373A (en) * 1994-11-29 1998-08-11 Honda Giken Kogyo Kabushiki Kaisha Method of generating shape data

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111809A (en) * 1984-06-26 1986-01-20 Fanuc Ltd Formation of composite curved surface
JPS61292705A (en) * 1985-06-20 1986-12-23 Fanuc Ltd Rounding method
WO1986007645A1 (en) * 1985-06-20 1986-12-31 Fanuc Ltd Method of producing compound curved surfaces
JPS6263307A (en) * 1985-09-13 1987-03-20 Fanuc Ltd Method for producing composite curved surface
JPS6265105A (en) * 1985-09-17 1987-03-24 Fanuc Ltd Production of composite curved surface
JPS6359601A (en) * 1986-08-29 1988-03-15 Hitachi Ltd Numerical control working method
JPS6391705A (en) * 1986-10-06 1988-04-22 Fanuc Ltd Generating method for nc data for machining fillet surface
JPS63129403A (en) * 1986-11-19 1988-06-01 Fanuc Ltd Fillet surface generating method
WO1988006311A1 (en) * 1987-02-20 1988-08-25 Fanuc Ltd Method of entering profile information
JPH0322101A (en) * 1989-06-20 1991-01-30 Sodick Co Ltd Offset taper quantity changing method
JPH0496805A (en) * 1990-08-13 1992-03-30 Yutaka Sangyo Kk Data generating device for curved surface generation
WO1993001535A1 (en) * 1991-07-05 1993-01-21 Fanuc Ltd Method for specifying position where fillet curved surface is located
US5410489A (en) * 1991-07-05 1995-04-25 Fanuc Ltd. Method of specifying position to create fillet curved surface
US5793373A (en) * 1994-11-29 1998-08-11 Honda Giken Kogyo Kabushiki Kaisha Method of generating shape data

Also Published As

Publication number Publication date
JPH0767658B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
Koc et al. Smoothing STL files by Max‐Fit biarc curves for rapid prototyping
JPS58160041A (en) Numerical controlled machining method
Tournier et al. A surface based approach for constant scallop heighttool-path generation
JPH0373883B2 (en)
Giri et al. Selection of master cutter paths in sculptured surface machining by employing curvature principle
JPH0373882B2 (en)
EP0240569B1 (en) Method of forming compposite curved surface
JPH0152141B2 (en)
CN113486414A (en) Method for obtaining accurate manufacturing process diagram of flow surface horizontal steel bifurcated pipe through three-dimensional modeling
JPH067363B2 (en) Compound surface generation method
US4855921A (en) Complex curved surface creation method
Yuen et al. An octree approach to rough machining
Zietarski System integrated product design, CNC programming and postprocessing for three-axis lathes
JPH0664486B2 (en) 3D curve creation method
Kruth et al. Steps towards an integrated CAD/CAM system for mould design and manufacture: anisotropic shrinkage, component library and link to NC machining and EDM
JP2638851B2 (en) Numerical control processing method
JPH056442A (en) Circular arc generating method
Tournier et al. The concept of the machining surface in 5-axis milling of free-form surfaces
JPH01120675A (en) Production of free curved surface
Tam et al. Iso-planar interpolation for the machining of implicit surfaces
JPH01120674A (en) Production of free curved surface
CN112859734B (en) Airthoid curve and motion planning smoothing method based on same
JPS62235606A (en) Nc data originating method for composite curved surface
Kabir Development of computer aided process planning (CAPP) for rotational parts
Vergeest Connecting arbitrary surfaces under geometric constraints