JPS58159519A - Manufacture of liquid crystal display device - Google Patents

Manufacture of liquid crystal display device

Info

Publication number
JPS58159519A
JPS58159519A JP57043486A JP4348682A JPS58159519A JP S58159519 A JPS58159519 A JP S58159519A JP 57043486 A JP57043486 A JP 57043486A JP 4348682 A JP4348682 A JP 4348682A JP S58159519 A JPS58159519 A JP S58159519A
Authority
JP
Japan
Prior art keywords
crystal display
ultraviolet rays
liquid crystal
display device
liq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57043486A
Other languages
Japanese (ja)
Inventor
Kazuyuki Okano
和之 岡野
Hiroshi Hasegawa
洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57043486A priority Critical patent/JPS58159519A/en
Publication of JPS58159519A publication Critical patent/JPS58159519A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Abstract

PURPOSE:To obtain a liq. crystal display device with enhanced durability and reliability, by irradiating far ultraviolet rays having a specified wavelength or below on orienting films on the surfaces of glass substrates at the peripheral sealing parts to enhance the tightly sealing performance of a sealing resin. CONSTITUTION:Far ultraviolet rays having <=250nm wavelengths are irradiated on a liq. crystal orienting agent on the surfaces of a pair of opposite glass substrates at the peripheral sealing parts to which a sealing resin is stuck. The lamp of an ultraviolet irradiator to be used is an ozone genertion type lamp emitting light having <=about 200nm wavelengths, and a conventional ozoneless type lamp which is used in the ultraviolet curing of resin, etc. is not effective. When ultraviolet rays are irradiated, it is required to use a mask corresponding to a liq. crystal display pattern on the glass substrate and to mask the parts where the orienting films are allowed to remain.

Description

【発明の詳細な説明】 本発明はゲスト・ホス]・型のポジカラーの液晶表示装
置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a positive color liquid crystal display device of the Guest-Hos type.

従来、ゲスト・ホスト型ポジカラーの液晶表示装置の製
造においては、対向する二枚のガラス基板上に透明電極
被膜を形成し、さらにその上に、5102絶縁被膜?コ
ーテイングした後、液晶の基板に対する垂直配向を行う
ために、ラビング処理音節し、有機シラン系カップリン
グ剤で処理した後、加熱乾燥して配向被膜を形成させる
方法が用いら扛ている。
Conventionally, in manufacturing a guest-host type positive color liquid crystal display device, a transparent electrode film is formed on two opposing glass substrates, and a 5102 insulating film is further applied thereon. After coating, in order to vertically align the liquid crystal with respect to the substrate, a method is used in which the liquid crystal is rubbed, treated with an organic silane coupling agent, and then heated and dried to form an alignment film.

このような製造方法において、有機シラン系カ2ベーソ ソブリング剤による処理には、従来、良質の被膜が得ら
扛、量産に適した浸漬法が用いらtている。
In such a manufacturing method, the treatment with an organosilane-based carbonate soaking agent has conventionally been carried out using a dipping method, which is suitable for mass production and provides a high-quality coating.

この方法では、ガラス基板全面に配向被膜が形成さnる
ことになるが、この配向被膜表面は、界面化学的に低エ
ネルギーの表面であるので、ガラス基板面一ヒの周辺の
シール部に付着さするシール樹脂がはしか扛、その接着
性や密封性が著るしく低下させらrしるという問題点が
生じる。従って、一対のガラス基板上のシール部で、こ
の配向被膜が除去さnているか、またはそ扛を構成する
有機シラン系カップリング剤の濃度が、シール樹脂の性
能を損わない程度に低いことが望ましい。
In this method, an alignment film is formed on the entire surface of the glass substrate, but since the surface of this alignment film has a low energy surface chemically, it adheres to the sealing area around the glass substrate surface. A problem arises in that the applied sealing resin is susceptible to measles and its adhesion and sealing properties are significantly reduced. Therefore, in the sealing area on the pair of glass substrates, this alignment coating must be removed, or the concentration of the organic silane coupling agent that makes up the coating must be low enough not to impair the performance of the sealing resin. is desirable.

不発明はこのような従来の問題点を排除した液晶表示装
置の製造方法を提供すること全目的とするものである。
The entire purpose of the present invention is to provide a method of manufacturing a liquid crystal display device that eliminates such conventional problems.

配向処理剤として用いらnる有機シラン系カップリング
剤は、ガラス基板上において、第1図のような状態で存
在すると考えら牡る。なお、第1図において、1はガラ
ス基板、Rはアルキル基である。
It is thought that the organic silane coupling agent used as the alignment agent exists on the glass substrate in a state as shown in FIG. In addition, in FIG. 1, 1 is a glass substrate, and R is an alkyl group.

3ベーン 従来、このような有機配向被膜の除去には、プラズマ灰
化法などが用いらnているが、1o〜10  Torr
という低圧条件が要求さ扛、量産化には好1しくない。
Conventionally, a plasma ashing method has been used to remove such an organic alignment film.
This requires low pressure conditions, which is not favorable for mass production.

不発明者らは、この化合物が短波長(25onm以下)
の紫外線全吸収する性質金有し、その波長の紫外線によ
って分解さfること全見出したもので、本発明において
は、ガラス基板面上の周辺のシール部の配向被膜全遠紫
外線の照射によって除去するか、その配向剤濃度を低下
させる方法である。この不発明によって、シール樹脂に
よる密封性能が向上し、液晶表示装置の耐久信頼性が向
上することとなる。
The inventors believe that this compound has a short wavelength (25 onm or less)
It has been discovered that the metal has the property of completely absorbing ultraviolet rays and is decomposed by ultraviolet rays of that wavelength.In the present invention, the alignment film of the peripheral sealing area on the glass substrate surface is completely removed by irradiation with far ultraviolet rays. Alternatively, the concentration of the alignment agent can be lowered. This invention improves the sealing performance of the seal resin and improves the durability and reliability of the liquid crystal display device.

なお、不発明の方法で用いる紫外線照射装置のランプは
、20onm付近までの波長の光を出すオゾン発生タイ
プのランプであり、従来、樹脂などの紫外硬化に用いら
扛るオゾンレスタイプのランプでは効果は望めない。ま
た、後述の実施例では、適当な照射時間は、3分以上で
あるが、こnは光源と被照射物の距離を小さくすること
によって短縮することができる。なお、紫外線照射にあ
たっては、ガラス基板上の液晶表示パターンに対応した
マスクを用い、配向被膜?残したい部分にマスクをする
必要がある。
The lamp of the ultraviolet irradiation device used in the uninvented method is an ozone-generating type lamp that emits light with a wavelength of up to around 20 onm. No effect can be expected. Further, in the examples described later, a suitable irradiation time is 3 minutes or more, but this can be shortened by reducing the distance between the light source and the object to be irradiated. In addition, when irradiating ultraviolet rays, a mask corresponding to the liquid crystal display pattern on the glass substrate is used, and an alignment coating is applied. You need to mask the parts you want to keep.

以下、具体的な実施例を用いて本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail using specific examples.

(実施例1) 有機シラン系カスプリング剤として、0DYES(オク
タデシルトリエトキシラン、チッソ■製)?用い、この
0DTESの0,3%プロピルアルコール溶液に2分間
浸漬した後、加熱乾燥して配向被膜全形成したガラス基
板に、0分間、1分間、3分間、5分間および10分間
だけ、そnぞ扛紫外線全照射した試料全作成した。なお
、使用した紫外線ランプは、1.6iKWの高圧水銀灯
(オゾン発生タイプ)で、照射時の光源と試料間の距離
は13.6律であった。
(Example 1) As an organic silane case springing agent, 0DYES (octadecyltriethoxylane, manufactured by Chisso ■) was used. After immersing this 0DTES in a 0.3% propyl alcohol solution for 2 minutes, the glass substrate on which the alignment film was completely formed was heated and dried for 0 minutes, 1 minute, 3 minutes, 5 minutes, and 10 minutes. All samples were prepared after being fully irradiated with ultraviolet rays. The ultraviolet lamp used was a 1.6 iKW high-pressure mercury lamp (ozone generation type), and the distance between the light source and the sample during irradiation was 13.6 m.

こnらの試料の表面の「・・ジキ」の程度を調べるため
、水滴を滴下した時の接触角を測定した。
In order to investigate the degree of "jiki" on the surface of these samples, the contact angle when a water droplet was dropped was measured.

この結果を第2図に示す。The results are shown in FIG.

6ベーS゛ 第2図から明らかなように、マスクさnた部分の接触角
(図中白丸)は、84 dog 〜87 digで一定
であるのに対し、紫外線の照射さf’lた部分の接触角
(図中黒丸)は、3分〜6分の照射で急激に減少し、表
面のぬnが良くなることがわかる。
As is clear from Figure 2, the contact angle of the masked part (white circle in the figure) is constant at 84 dog to 87 dig, whereas the contact angle of the part exposed to ultraviolet irradiation is It can be seen that the contact angle (black circle in the figure) rapidly decreases after 3 to 6 minutes of irradiation, and the surface roughness improves.

この結果から、0DTIC8が遠紫外線によって分解、
除去さnていることが示さ′nた。
From this result, 0DTIC8 is decomposed by far ultraviolet rays,
It was shown that it had been removed.

さらに、同様な試料をシール樹脂を用いて貼り合わせて
試験片を作成し、この試験片を用いて第3図a、  b
のような引張せん断試験を行い、シール樹脂の性能向上
を評価した。第3図に示すような試験片を各紫外線照射
時間について各10個作成し、かつ各々の接着面積は0
.13C−とした。なお、第3図において、2は接着部
である。この結果を表1じ示した。なお、表の名称中、
YとEはシール樹脂の種類であり、Yは酸無水物系硬化
剤を用いたエポキシ樹脂、Eはアミン系硬化剤ヶ用いた
エポキシ樹脂である。また、BLは配向処理を行ってい
ない累ガラス、各数字は配向処理を行ったものに施した
紫外線照射の時間(分)をそ扛6ベージ ぞ扛示している。また、試験片はかn数は、実質的に接
着がなさnなかったものの数、ガラス破断数は、接着部
分の引張せん断強さが、ガラスの破壊強度以上であった
ものの数を示している。
Furthermore, similar samples were pasted together using sealing resin to create a test piece, and this test piece was used to create the test pieces shown in Figures 3a and b.
A tensile shear test was conducted to evaluate the performance improvement of the sealing resin. Ten test pieces as shown in Figure 3 were prepared for each UV irradiation time, and each adhesive area was 0.
.. 13C-. In addition, in FIG. 3, 2 is an adhesive part. The results are shown in Table 1. In addition, in the name of the table,
Y and E are the types of sealing resins, Y is an epoxy resin using an acid anhydride curing agent, and E is an epoxy resin using an amine curing agent. Further, BL indicates the laminated glass which has not been subjected to an orientation treatment, and each number indicates the time (minutes) of ultraviolet irradiation applied to the glass which has undergone an orientation treatment. In addition, the number of test pieces indicates the number of test pieces in which there was no substantial adhesion, and the number of glass breaks indicates the number of test pieces in which the tensile shear strength of the bonded part was greater than or equal to the breaking strength of the glass. .

表 1 この表1の結果J:T)、3分間程度の紫外線照射7ペ
ージ′ に工って、シール樹脂の接着強度が、非常に増大させら
nることがわかる。
Table 1 The results of Table 1 show that the adhesive strength of the sealing resin can be greatly increased by applying ultraviolet irradiation for about 3 minutes.

(実施例2) 前記実施例1と同様な配向処理金箔したガラス基板7作
成し、このガラス基板の表示パターン上でシール部以外
全マスクして、実施例1と同様の紫外線照射全6分間行
った。このガラス基板全シール樹脂によって貼り合せ、
液晶表示装置の容器全作成し、剥離強度試験を行った結
果、全てガラスの破壊強度以上の強度を示した。
(Example 2) A glass substrate 7 with oriented gold foil similar to that in Example 1 was prepared, and the display pattern of this glass substrate was masked entirely except for the seal portion, and ultraviolet rays were irradiated for a total of 6 minutes in the same manner as in Example 1. Ta. This glass substrate is fully bonded with sealing resin,
All containers for liquid crystal display devices were made and a peel strength test was conducted. As a result, all of the containers showed strength greater than the breaking strength of glass.

(実施例3) チタネート系カップリング剤として、TTS(イソプロ
ピルトリイソステアロイルチタネート。
(Example 3) TTS (isopropyl triisostearoyl titanate) was used as a titanate coupling agent.

味の素■製)を用い、このTTSの1.6%プロピルア
ルコール溶液全調製し、実施例1と同様の試料全作成し
た。この試料について、水滴との接触角全測定した結果
全第4図に示す。
A 1.6% propyl alcohol solution of this TTS was prepared using Ajinomoto Co., Ltd.), and all samples were prepared in the same manner as in Example 1. For this sample, all contact angles with water droplets were measured and the results are shown in FIG.

この第4図から明らかなように、6分間程度の照射に工
って非常にぬ扛が良くなり、TTSが遠紫外線によって
分解、除去さnていることが示さn、た。
As is clear from FIG. 4, the irradiation for about 6 minutes resulted in very good removal, indicating that the TTS was decomposed and removed by the deep ultraviolet rays.

(比較例1) 実施例1,2で用いたオゾン発生タイプのランプの代わ
りに、オゾンレスタイプのランプを用いて、同様な評価
を行ったが、こ扛によると、20分間の紫外線照射時間
でも、接触角に変化は見らtず、シール樹脂の接着強度
向上も見らnなかった0 (比較例2) 従来の製造法によって作成した液晶表示装置の容器につ
いて、実施例2と同様な剥離強度試験を行った結果、0
.6〜1.okgで全てが剥離した。
(Comparative Example 1) A similar evaluation was conducted using an ozone-less type lamp instead of the ozone generating type lamp used in Examples 1 and 2, but according to this company, the UV irradiation time was 20 minutes. However, no change was observed in the contact angle, and no improvement in the adhesive strength of the sealing resin was observed. As a result of the peel strength test, 0
.. 6-1. Everything peeled off with OK.

ここで、以上の説明では、シラン系、チタネート系のカ
ップリング剤について説明したが、表2に示すように波
長260nm以下(エネルギーは114 Kcal/m
o1以上)の紫外線によって殆んどの有機結合を切るこ
とができ、前述のものだけに限定さnるものではない。
Here, in the above explanation, silane-based and titanate-based coupling agents were explained, but as shown in Table 2, the wavelength is 260 nm or less (the energy is 114 Kcal/m
Almost all organic bonds can be broken by ultraviolet rays (o1 or higher), and are not limited to those mentioned above.

9べ 表 2 (化学便覧基礎編11による) 以上のように不発明の製造方法によnば、ガラス基板面
上の周辺のシール性全向上させることができ、こtによ
って液晶表示装置の耐久信頼性を向上させることができ
る。
Table 2 (according to Chemical Handbook Basic Edition 11) As described above, by using the uninvented manufacturing method, it is possible to completely improve the sealing performance around the glass substrate surface, thereby increasing the durability of the liquid crystal display device. Reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシラン系カップリング剤により配向処理金箔し
たガラス基板表面の状態ケ示す模型図、第2図は不発明
の製造方法の一実施例における結10ページ 果として、紫外線照射時間と水滴の接触角との関係を示
す図、第3図a、  bは不発明の製造方法の効果全確
認するために行った引張せん断強度試験の状態を示す側
面図および上面図、第4図は本発明の製造方法の他の実
施例における結果として、紫外線照射時間と水滴の接触
角との関係を示す図である。
Figure 1 is a model diagram showing the state of the surface of a glass substrate coated with oriented gold foil using a silane-based coupling agent. Figure 2 is a 10-page diagram showing the results of an embodiment of the uninvented manufacturing method, showing the UV irradiation time and water droplets. Figures 3a and 3b are side views and top views showing the state of a tensile shear strength test conducted to fully confirm the effects of the non-inventive manufacturing method, and Figure 4 is a diagram showing the relationship with the contact angle. FIG. 3 is a diagram showing the relationship between the ultraviolet irradiation time and the contact angle of water droplets as a result of another example of the manufacturing method.

Claims (1)

【特許請求の範囲】[Claims] 対向する一対のガラス基板面上の周辺のシール樹脂が付
着させらnるシール部の液晶配向剤に、波長250nm
以下の遠紫外線を照射すること全特徴とする液晶表示装
置の製造方法。
A wavelength of 250 nm is applied to the liquid crystal aligning agent in the sealing area where the sealing resin around the opposing glass substrate surfaces is attached.
A method for manufacturing a liquid crystal display device characterized by irradiation with far ultraviolet rays as described below.
JP57043486A 1982-03-17 1982-03-17 Manufacture of liquid crystal display device Pending JPS58159519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043486A JPS58159519A (en) 1982-03-17 1982-03-17 Manufacture of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043486A JPS58159519A (en) 1982-03-17 1982-03-17 Manufacture of liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS58159519A true JPS58159519A (en) 1983-09-21

Family

ID=12665044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043486A Pending JPS58159519A (en) 1982-03-17 1982-03-17 Manufacture of liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS58159519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211824A (en) * 1985-06-28 1987-01-20 Stanley Electric Co Ltd Manufacture of color liquid crystal display element
JPH0519265A (en) * 1991-07-16 1993-01-29 Stanley Electric Co Ltd Method for forming liquid crystal oriented film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211824A (en) * 1985-06-28 1987-01-20 Stanley Electric Co Ltd Manufacture of color liquid crystal display element
JPH0519265A (en) * 1991-07-16 1993-01-29 Stanley Electric Co Ltd Method for forming liquid crystal oriented film

Similar Documents

Publication Publication Date Title
TWI466974B (en) Film adhering apparatus and polarizing plate manufacturing apparatus
KR100970791B1 (en) Method of manufacturing semiconductor device
US8168511B2 (en) Display device manufacturing method and laminated structure
US20110026236A1 (en) Glass laminate, display panel with support, method for producing glass laminate and method for manufacturing display panel with support
JP2002122872A (en) Liquid crystal display device and method of manufacturing the same
JP2010197448A (en) Method of manufacturing polarizing plate
TW201204557A (en) Connected structure and manufacturing method
JPS58159519A (en) Manufacture of liquid crystal display device
KR20060082787A (en) Photoresist composition, method for forming a photoresist pattern and method for forming a protection layer of a semiconductor device using the photoresist composition
US8101519B2 (en) Mold, manufacturing method of mold, method for forming patterns using mold, and display substrate and display device manufactured by using method for forming patterns
JP2006219610A (en) Method and apparatus for forming dense thin film
TW200947152A (en) Pellicle
JP4742833B2 (en) Method for joining glass members for optical communication
KR100300461B1 (en) How to remove the liquid crystal alignment film
JP3104703B1 (en) Manufacturing method of liquid crystal element
JP2007293143A (en) Method of manufacturing liquid crystal panel and liquid crystal panel
JPH09281474A (en) Liquid crystal device and production of liquid crystal device
JP2017024947A (en) Laminated body and method for manufacturing the same, and electronic device and method for manufacturing the same
JPS60207117A (en) Manufacture of liquid-crystal display element
JPH0769543B2 (en) Liquid crystal display manufacturing method
JP2000321585A (en) Method for sealing injection port of liquid crystal cell
JP2001264778A (en) Liquid crystal display device
JPH03197028A (en) Adhesion of polyphenylene sulfide molding
JPH0695132A (en) Liquid crystal display element and its production
JP2020165996A (en) Method for manufacturing organic electronic device