JPS5815935A - Preparation of benzaldehyde - Google Patents

Preparation of benzaldehyde

Info

Publication number
JPS5815935A
JPS5815935A JP56112977A JP11297781A JPS5815935A JP S5815935 A JPS5815935 A JP S5815935A JP 56112977 A JP56112977 A JP 56112977A JP 11297781 A JP11297781 A JP 11297781A JP S5815935 A JPS5815935 A JP S5815935A
Authority
JP
Japan
Prior art keywords
chloride
acid
catalyst
reaction
benzal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56112977A
Other languages
Japanese (ja)
Other versions
JPS629576B2 (en
Inventor
Takeshi Kondo
剛 近藤
Hiroshi Okazaki
岡崎 弘志
Yutaka Katsuhara
豊 勝原
Masaaki Matsuoka
松岡 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP56112977A priority Critical patent/JPS5815935A/en
Priority to GB08218612A priority patent/GB2103208B/en
Priority to IT22211/82A priority patent/IT1157289B/en
Priority to DE3226490A priority patent/DE3226490C2/en
Priority to US06/400,011 priority patent/US4450298A/en
Priority to FR8212665A priority patent/FR2510101B1/en
Publication of JPS5815935A publication Critical patent/JPS5815935A/en
Publication of JPS629576B2 publication Critical patent/JPS629576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a benzaldehyde continuously in a very short time, by hydrolyzing a benzal chloride which may be substituted by a halogen or CF3, in the vapor phase in the presence of an inexpensive active carbon treated with an acid as a catalyst. CONSTITUTION:A benzal chloride expressed by formulaI(X is halogen or CF3; n is 0, 1 or 2) in the vapor phase is hydrolyzed in the presence of active carbon treated with an acid, e.g. sulfuric acid, as a catalyst to prepare a benzaldehyde expressed by formula II. The catalyst is capable of advancing the hydrolysis in a very short time even in the case of the benzal chloride having a strong electron attractive group, e.g. CF3, as a raw material , and the activity thereof is not deteriorated by hydrogen fluoride generated by the hydrolysis of part of the CF3. Thus, the activity can be maintained for a long time.

Description

【発明の詳細な説明】 料として有用なベンズアルデヒド類を製造する方法に関
し、更に詳しくはハロゲン原子又はトリフルオロメチル
基で置換された、又は置換されていないペンザルクロラ
イド類を加水分解L”’C ヘ’y スアルデヒド類を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for producing benzaldehydes useful as raw materials, and more specifically, a method for producing benzaldehydes useful as raw materials, and more specifically, hydrolysis of penzal chlorides substituted or unsubstituted with halogen atoms or trifluoromethyl groups. The present invention relates to a method for producing hesaldehydes.

一般に、ペンザルクロライド類を単に水と混合して加熱
するたけではベンズアルデヒド類への加水分解速度が遅
いため、従来は種々の触媒を用いてペンザルクロライド
類を加水分解し、ベンズアルデヒド類を製造する方法が
知られている。
In general, if penzal chlorides are simply mixed with water and heated, the rate of hydrolysis to benzaldehydes is slow, so conventionally, various catalysts have been used to hydrolyze penzal chlorides to produce benzaldehydes. method is known.

例えば (1)  酸又はアルカリ水溶液を用いてヘンザルクロ
ライド類乞加水分解し、ベンズアルデヒド類会製造する
方法〔オーガニツクシンセシス( Organic S
inthesis )コレクティブ第1巻155頁、ア
ナリチカ・ケミ力・アクタ(  Analytica 
 Chimica  Acta  )  vol  4
0,P4ろ〕、(2)  塩化第一銅又は塩化第二銅の
存在下、ペンザルクロライドを加水分解し、ベンズアル
デヒド分製造する方法(特公昭4 6−7 9 2 7
号、同51−6’l29号)、 (3)  ベンザルクロライド類に鉄塩の水溶液?添加
し、加水分解してベンズアルデヒド類を製造する方法(
特公昭4B−695号)、(4)  無水塩化亜鉛の存
在下、へ/ザルクロライド類を加水分解し、ベンズアル
デヒド類を製造する方法(特公昭5B−766号)、(
5)  酸化亜鉛の存在下、ベンザルクロライド類を加
水分解し、ベンズアルデヒド類を製造する方法(特開昭
52−257ろろ号)、等の方法がある。
For example, (1) a method for producing benzaldehyde compounds by hydrolyzing henzal chloride using an acid or alkaline aqueous solution [Organic S
inthesis) Collective Volume 1, page 155, Analytica Chemiriki Acta (Analytica
Chimica Acta) vol 4
0, P4ro], (2) A method for producing benzaldehyde by hydrolyzing penzal chloride in the presence of cuprous chloride or cupric chloride (Japanese Patent Publication No. 46-792-7)
(No. 51-6'l29), (3) An aqueous solution of iron salts in benzal chlorides? A method for producing benzaldehydes by adding and hydrolyzing (
(4) A method for producing benzaldehydes by hydrolyzing he/zalchlorides in the presence of anhydrous zinc chloride (Japanese Patent Publication No. 5B-766);
5) There is a method of producing benzaldehydes by hydrolyzing benzal chlorides in the presence of zinc oxide (Japanese Unexamined Patent Publication No. 52-257 Roro).

しかし、以上の方法は次に述べるような欠点がある。However, the above method has the following drawbacks.

(1)の酸又はアルカリ水溶液を用いる方法は、副反応
が進行し易く、かつトリフルオロメチル基等の電子吸引
基を有するベンザルクロライド類に対しては殆んど作用
しない。また、この方法を工業的に実施する場合、原料
に対してかなり大きな反応容器を必要とし、かつ廃アル
カリ又は廃酸の処理が厄介である。
The method (1) using an aqueous acid or alkali solution is likely to cause side reactions and has little effect on benzal chlorides having an electron-withdrawing group such as a trifluoromethyl group. In addition, when this method is carried out industrially, a considerably large reaction vessel is required for the raw materials, and treatment of waste alkali or waste acid is troublesome.

(21、(3) 、 (4)の金属塩を触媒とする方法
は、一般に、反応速度が遅く、特に電子吸引基を有する
ベンザルクロライド類の場合は非常に遅くなるし、触媒
量2増やすと重合反応等の副反応が増大する。
(21, (3), (4) methods using metal salts as catalysts generally have a slow reaction rate, especially in the case of benzal chlorides having electron-withdrawing groups, and the catalyst amount is increased by 2. and side reactions such as polymerization reactions increase.

(5)の酸化亜鉛を触媒とする方法は、トリフルオロ置
換ベンザルクロライド類?原料とする場合、反応が殆ん
ど進行しないばかりでなく、酸化亜鉛と反応生成物の分
離工程か含まれ、連続式の反応方法には適していない。
Is the method using zinc oxide as a catalyst in (5) trifluoro-substituted benzal chloride? When used as a raw material, not only does the reaction hardly proceed, but it also involves a step of separating zinc oxide and the reaction product, making it unsuitable for continuous reaction methods.

以上のように、従来の方法は、副生物の生成、容器効率
の低さ、連続処理が不pJ能、反応残渣の後処理、トリ
フルオロ置換ベンザルクロライド類に対する反応速度が
極めて遅い等の欠点があり、工業的に適した方法とは言
い難い。
As described above, the conventional methods have drawbacks such as generation of by-products, low container efficiency, inability to perform continuous processing, post-treatment of reaction residues, and extremely slow reaction rate for trifluoro-substituted benzal chlorides. Therefore, it is difficult to say that it is an industrially suitable method.

また、以上の液相での加水分解のほかに、二酸化珪素又
は酸化アルミニウム単独、もしくはこれに塩化第ゴ銅又
は塩化第二銅?担持させた触媒を用いて気相にてベンザ
ルクロライド類を加水分解する方法が提案されている(
特開昭48−5755号)。
In addition to the above hydrolysis in the liquid phase, silicon dioxide or aluminum oxide alone, or cupric chloride or cupric chloride? A method of hydrolyzing benzal chlorides in the gas phase using a supported catalyst has been proposed (
Japanese Patent Publication No. 48-5755).

しかし、この方法は連続処理には適するものの、特にト
リフルオロメチル基のように強い電子吸引基を有するベ
ンザルクロライド類を原料とする場合、初期の反応速度
も極めて遅い上、トリフルオロメチル基の一部が加水分
解を受けて副生ずる弗化水素により二酸化珪素又は酸化
アルミニウムが弗素化されて、更に急激に活性が低下し
てしまい、トリフルオロメチル基置換ベンザルクロライ
ド類には全く適用できない。
However, although this method is suitable for continuous processing, the initial reaction rate is extremely slow, especially when benzal chlorides with strong electron-withdrawing groups such as trifluoromethyl groups are used as raw materials, and the Silicon dioxide or aluminum oxide is fluorinated by the hydrogen fluoride produced as a by-product when a portion undergoes hydrolysis, and the activity further decreases rapidly, so that it cannot be applied to trifluoromethyl group-substituted benzal chlorides at all.

本発明者らは、トリフルオロメチル基のような強い電子
吸引基を有するベンザ7レクロライド類を原料とする場
合でも極めて短時間に反応分進行させ、しかも連続処理
の可能なベンズ了ルデヒド類の製造方法について鋭意検
討を重ねた結果、触媒として硫酸等の酸で処理した活性
炭を用いることにより、この目的を達成できることを見
い出し、本発明に至った。
The present inventors have demonstrated the ability to produce benzyloldehydes that can be reacted in an extremely short time even when benzylchlorides having strong electron-withdrawing groups such as trifluoromethyl groups are used as raw materials, and that can be processed continuously. As a result of extensive research into the method, it was discovered that this object could be achieved by using activated carbon treated with an acid such as sulfuric acid as a catalyst, leading to the present invention.

すなわち本発明は、酸処理した活性炭の存在下で、一般
式 (Xはハロゲン原子又はトリフルオロメチル基2表わし
、n = 01112 k示す)で示されるベンザルク
ロライド類を気相にて加水分解して一般式 (X、nは上述の通り) で示されるベンズアルデヒド類分製造することを特徴と
するベンズアルデヒド類の製造法に関するものである。
That is, the present invention hydrolyzes benzal chlorides represented by the general formula (X represents a halogen atom or a trifluoromethyl group 2, and n = 01112 k) in the gas phase in the presence of acid-treated activated carbon. The present invention relates to a method for producing benzaldehydes, characterized by producing benzaldehydes represented by the general formula (X and n are as described above).

本発明は、酸処理された活性炭を触媒として用いろもの
であり、この酸としてはフッ素、リン酸等があり、これ
らの酸が活性炭に吸着担持された形で触媒活性を示し、
良好な結果を得ることができる。また本反応は気相反応
であり、原料のベンザルクロライド類の種類にもよるが
大略200°C程度の温度で反応が行われるため、その
沸点が反応温度より高い酸を選ぶことがより好ましく、
この−例として硫酸があげられ、また硫酸は、汎用性、
取扱い易さ等からも硫酸が最も好ましい酸と言える。か
かる酸にて処理された活性炭触媒は、加水分解において
極めて高い活性を示し、またトリフルオロメチル基のよ
うな強い電子吸引基を有するベンザルクロライド類を原
料とする場合にも極めて短時間に加水分解を進行させ、
かつ連続的に反応を行うことができ、あわせて長時間に
わたってその活性を維持するものである。すなわち、本
発明における酸処理活性炭触媒は、トリフルオロメチル
基ノ一部の加水分解で発生する弗化水素によっても活性
が低下せず、長時間にわたって極めて高い活性を持続す
るものである。
The present invention uses acid-treated activated carbon as a catalyst, and examples of this acid include fluorine, phosphoric acid, etc., and these acids exhibit catalytic activity in the form of being adsorbed and supported on activated carbon.
Good results can be obtained. Furthermore, this reaction is a gas phase reaction, and the reaction takes place at a temperature of approximately 200°C, although it depends on the type of benzal chloride used as the raw material. Therefore, it is more preferable to select an acid whose boiling point is higher than the reaction temperature. ,
An example of this is sulfuric acid;
Sulfuric acid is said to be the most preferable acid from the viewpoint of ease of handling. Activated carbon catalysts treated with such acids show extremely high activity in hydrolysis, and can be hydrolyzed in an extremely short time even when benzal chlorides, which have strong electron-withdrawing groups such as trifluoromethyl groups, are used as raw materials. Allow the decomposition to proceed,
Moreover, the reaction can be carried out continuously, and the activity can be maintained for a long period of time. That is, the acid-treated activated carbon catalyst of the present invention maintains extremely high activity for a long period of time without decreasing its activity even by hydrogen fluoride generated by hydrolysis of a portion of the trifluoromethyl group.

また、本発明で用いる活性炭は、その種類、形状、粒径
等について特に限定されるものではなく、通常用いられ
る市販の活性炭でよい。酸処理についても、活性炭表面
VC酸が充分浸漬される条件であれば特に限定されない
が、例えば硫酸を用いる場合は、表面活性の面からは硫
酸濃度は高い方が好ましく、一般に95重量%以上の濃
度のものが使用され、浸漬温度、時間についても特に限
定されず、室温から、用いる硫酸濃度による沸点までの
範囲、数時間程度で充分である。酸処理された活性炭は
、扱い易くするために水洗し、80〜ion°C程度で
乾燥して反応に供される。
Furthermore, the activated carbon used in the present invention is not particularly limited in its type, shape, particle size, etc., and may be any commonly used commercially available activated carbon. Acid treatment is not particularly limited as long as the activated carbon surface is sufficiently immersed in VC acid. For example, when using sulfuric acid, a high sulfuric acid concentration is preferable in terms of surface activity, and generally 95% by weight or more. The immersion temperature and time are not particularly limited, and a range from room temperature to the boiling point depending on the sulfuric acid concentration used for several hours is sufficient. The acid-treated activated carbon is washed with water to make it easier to handle, dried at about 80 to ion°C, and then subjected to the reaction.

本発明で用いられる代表的なベンザルクロライド類とし
ては、ベンザルクロライド、0−2m−、またはp−ク
ロルベンザルクロライド、o + m  + ”または
p−ブロムベンザルクロライド、o−、m−、またはp
−フルオロベンザルクロライド、o−、m−、またはp
−)リフルオロメチルベンザルクロライド、2,4−ジ
クロルベンザルクロライド、2,5−ジクロルベンザル
クロライド、2,6−ジクロルベンザルクロライド、2
,4−ジブロムベンザルクロライド、2.5−ジブロム
ベンザルクロライド、2,6−ジブロムベンザルクロラ
イド等をあげることができる。
Typical benzal chlorides used in the present invention include benzal chloride, 0-2m-, or p-chlorobenzal chloride, o + m + '' or p-brombenzal chloride, o-, m- , or p
-fluorobenzal chloride, o-, m-, or p
-) Lifluoromethylbenzal chloride, 2,4-dichlorobenzal chloride, 2,5-dichlorobenzal chloride, 2,6-dichlorobenzal chloride, 2
, 4-dibromobenzal chloride, 2,5-dibromobenzal chloride, 2,6-dibromobenzal chloride and the like.

次に、本発明を硫酸処理した活性炭と触媒として用い連
続方法で実施する場合について、より具体的に説明する
Next, a case in which the present invention is carried out in a continuous manner using activated carbon treated with sulfuric acid as a catalyst will be described in more detail.

先ず、加熱した気化器に水と原料のベンザルクロライド
類、を定量ポンプにより夫々定置的に送り込み気化させ
る。この場合の温度は、当然、用いるベンザルクロライ
ド類の沸点以上であればよく、反応全体を通じて気相状
態が保持でき、しかも活性炭に担持されている硫酸が気
化逸散しない温度範囲とすることが効率的であり、この
ようにして温度を決定すればよい。一般には200〜5
00 ’Cに加熱した気化器に水とベンザルクロライド
類を上記のようにして送り込み、加熱された雨音の混合
気体を度る。この混合気体は、160〜200 ’Cに
加熱した硫酸処理活性炭触媒の充填層に通過させ、該触
媒と接触して加水分解反応を生起する。この連続方法に
おけるヘンザルクロライド類と水蒸気との使用モル比は
、化学量論的には−C,HCl2  基1個に対してほ
ぼ1モルの水蒸気とするのが好ましいが、通常は5〜1
0倍モル過剰量の水蒸気とし、また触媒充填層を通過す
る速度は(L、 )(、s、v、 (液空間速度)で0
.+ 5〜+、5 hr ’  が好ましく、反応時間
は通常数秒〜数十秒、好ましくは2秒〜20秒程度で充
分である。生成したベンズアルデヒド類および未反応水
蒸気は反応管下部のクーラーにより冷却凝縮され受器に
貯えられる。
First, water and raw material benzal chloride are sent into a heated vaporizer stationary using a metering pump and vaporized. The temperature in this case need only be above the boiling point of the benzal chloride used, and should be within a temperature range that allows the gas phase to be maintained throughout the reaction and at the same time does not allow the sulfuric acid supported on the activated carbon to vaporize and escape. It is efficient and the temperature can be determined in this way. Generally 200-5
Water and benzal chloride are fed into the vaporizer heated to 00'C as described above, and the heated rain-sound mixture gas is heated. This gas mixture is passed through a packed bed of sulfuric acid-treated activated carbon catalyst heated to 160-200'C, and contacted with the catalyst to cause a hydrolysis reaction. In this continuous process, the molar ratio of Henzal chloride to water vapor used is preferably approximately 1 mole of water vapor per -C,HCl2 group, but usually 5 to 1 mole.
The water vapor has a 0-fold molar excess, and the velocity passing through the catalyst packed bed is (L, )(, s, v, (liquid hourly space velocity), which is 0.
.. The reaction time is preferably from +5 to +5 hr', and the reaction time is usually several seconds to several tens of seconds, preferably about 2 seconds to 20 seconds. The generated benzaldehydes and unreacted water vapor are cooled and condensed by a cooler at the bottom of the reaction tube and stored in a receiver.

このようにして連続して生成するベンズアルデヒド類の
多くは水と分離した状態で得られるが、いくつかのアル
デヒド類は水と懸濁した状態で得られる。後者の場合は
適当な有機溶媒にて抽出し単離することができ、更に真
空蒸留で精製することができる。
Most of the benzaldehydes continuously produced in this way are obtained in a state separated from water, but some aldehydes are obtained in a state suspended in water. In the latter case, it can be isolated by extraction with a suitable organic solvent, and further purified by vacuum distillation.

以上のように、本発明は、酸処理された活性炭という極
めて安価な触媒を用い、気相法にて長時間にわたり連続
してベンズアルデヒド類を製造でき、しかもトリフルオ
ロメチル基のような従来加水分解を受は難いとされてい
た強い電子吸引基を有するベンザルクロライド類に対し
ても高活性を示し、かつトリフルオロメチル基の一部の
加水分解による弗化水素の影響を受け難いという、工業
的に優れた方法である。
As described above, the present invention makes it possible to continuously produce benzaldehydes over a long period of time by a gas phase method using an extremely inexpensive catalyst called acid-treated activated carbon. It is an industrial product that shows high activity against benzal chlorides, which have strong electron-withdrawing groups, which were thought to be difficult to absorb, and is not easily affected by hydrogen fluoride due to hydrolysis of a part of the trifluoromethyl group. This is an excellent method.

以下、本発明を実施例により更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 250°Cに加熱した気化器に、水を0.57i/分、
ベンザルクロライドを0.65!j/分の割合で夫々定
量ポンプで送入した。気化したベンザルクロライドと水
蒸気の混合気体を、180°Cに加熱した触媒充填層(
4〜10メツシユの活性炭を95%濃硫酸に室温で2時
間浸漬した後、水洗し、80℃で5時間空気乾燥したも
のを25M充填)K導入し、接触反応させた。生成した
気体をクーラーにて冷却し、得られた懸濁液よりエーテ
ル抽出を行ない、乾燥後、エーテルを留去し、窒素気流
下で減圧蒸留を行った。
Example 1 Water was added at 0.57 i/min to a vaporizer heated to 250°C.
0.65 benzal chloride! Each metering pump was used at a rate of J/min. A gas mixture of vaporized benzal chloride and water vapor was heated to 180°C in a catalyst packed bed (
4 to 10 meshes of activated carbon were immersed in 95% concentrated sulfuric acid at room temperature for 2 hours, washed with water, and air-dried at 80° C. for 5 hours, followed by introduction of 25 M (filling with 25M) K and contact reaction. The generated gas was cooled in a cooler, and the resulting suspension was extracted with ether. After drying, the ether was distilled off, and vacuum distillation was performed under a nitrogen stream.

以上の要領でベンザルクロライドi 0agを連続反応
させたところ、タールの副生は全く認められず、ベンズ
アルデヒド64.Ojiが得られた。生成物の収率は理
論量の97.2%であった。
When benzalchloride i 0ag was continuously reacted in the manner described above, no tar by-product was observed, and benzaldehyde 64. Oji was obtained. The yield of product was 97.2% of theory.

実施例2 イドa、21g/分を250°Cの気化器で連続的に気
化し、200°Cの触媒充填層(4〜10メツシユの活
性炭を95%硫酸に150°Cで5時間浸漬し、その後
水洗、100°Cで5時間空気乾燥したものを25mZ
充填)に通して反応させた。
Example 2 Id a, 21 g/min was continuously vaporized in a vaporizer at 250 °C, and a catalyst packed bed at 200 °C (4 to 10 meshes of activated carbon was immersed in 95% sulfuric acid at 150 °C for 5 hours). , then washed with water and air-dried at 100°C for 5 hours.
(filling) to react.

この要領でm−クロルヘンザルクロライド100!jを
連続反応させた結果、69゜1gのm−クロルベンズア
ルデヒドを得た。生成物の収量は理論量の96゜2%で
あった。なお、この場合もタールの副生は全く認められ
なかった。
In this way, m-chlorhensal chloride 100! As a result of continuous reaction of j, 69.1 g of m-chlorobenzaldehyde was obtained. The product yield was 96.2% of theory. In this case as well, no tar by-product was observed.

実施例ろ o −) ’)フルオロメチルベンザルクロライド0゜
26g/分、水o、is、9/分の供給割合とする以外
は実施例2と同一の条件で、0−トリフルオロメチルベ
ンザルクロライド1oogTh連続的に加水分解した結
果、71.0 gの0−トリフルオロメチルベンズアル
デヒドを得た。生成物の収率は理論量の95.5%であ
った。なお、生成物の沸点は82〜b た。また、この場合にもタールの副生は認められなかっ
た。
Example 2 0-trifluoromethylbenzal chloride was supplied under the same conditions as in Example 2, except that the supply rate was 0.26 g/min of fluoromethylbenzal chloride and 9 g/min of water. As a result of continuous hydrolysis of 10gTh of chloride, 71.0 g of 0-trifluoromethylbenzaldehyde was obtained. The yield of product was 95.5% of theory. Note that the boiling point of the product was 82-b. Also, no tar by-product was observed in this case.

比較例1 o −) ’)フルオロメチルベンザルクロライド0.
2391分、水0゜18g/分の供給量で、触媒として
400℃で5時間焼成処理したγ−k120550 m
lを充填した以外は実施例5と同一の条件で連続的に反
応を行った。この場合の0−トリフルオロメチルベンザ
ルクロライドの転化率は、1時間後で約25%、6時間
後で約5%であった。
Comparative Example 1 o-)') Fluoromethylbenzal chloride 0.
γ-k120550 m calcined at 400°C for 5 hours as a catalyst with a water supply rate of 0°18g/min for 2391 minutes.
The reaction was carried out continuously under the same conditions as in Example 5 except that 1 was charged. The conversion rate of 0-trifluoromethylbenzal chloride in this case was about 25% after 1 hour and about 5% after 6 hours.

比較例2 0−トリフルオロメチルベンザルクロライドo、2sE
/分、水o、+8,97分の供給量で、触媒として4〜
10メツシユの未処理活性炭を用いた以外は、実施例6
と同一の条件で0−トリフルオロメチルベンザルクロラ
イド1oo9に連続的に反応させた。この場合の0−ト
リフルオロメチルベンザルクロライドの転化率は 1.
5合は、転化率は54.7%と若干高くなったが、反応
湿度が高いためフタル酸の副生がみられた。
Comparative example 2 0-trifluoromethylbenzal chloride o, 2sE
/min, water o, +8,97 min supply rate, 4~ as catalyst
Example 6 except that 10 meshes of untreated activated carbon was used.
It was made to react continuously with 0-trifluoromethylbenzal chloride 1oo9 under the same conditions as above. The conversion rate of 0-trifluoromethylbenzal chloride in this case is 1.
In case 5, the conversion rate was slightly higher at 54.7%, but due to the high reaction humidity, phthalic acid was produced as a by-product.

代理人  内 1)  明 代理人   萩  原  亮  −Agent: 1) Akira Agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】 酸処理した活性炭の存在下で、一般式 (Xはハロゲン原子又はトリフルオロメチル基と表わし
、n・0.i、2を示す) で示されるベンザルクロライド類分気相にて加水分解し
て一般式 (x、nは前述の通り) で示されるベンズアルデヒド類を製造することを特徴と
するベンズアルデヒド類の製造法。
[Claims] In the presence of acid-treated activated carbon, a benzal chloride compound represented by the general formula (X represents a halogen atom or a trifluoromethyl group, and represents n.0.i, 2) is separated into a gas phase. 1. A method for producing benzaldehydes, which comprises producing benzaldehydes represented by the general formula (x and n are as described above) by hydrolysis.
JP56112977A 1981-07-21 1981-07-21 Preparation of benzaldehyde Granted JPS5815935A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56112977A JPS5815935A (en) 1981-07-21 1981-07-21 Preparation of benzaldehyde
GB08218612A GB2103208B (en) 1981-07-21 1982-06-28 Vapor phase catalytic hydrolysis of benzal chloride or its halogen- or trifluoromethyl-substitute to form benzaldehyde or substitute
IT22211/82A IT1157289B (en) 1981-07-21 1982-07-02 CATALYTIC HYDROLYSIS IN FAS OF PETROL CHLORIDE VAPOR OR ITS HALOGEN OR TRIFLUOROMETHY-SUBSTITUTE TO FORM BENZALDEHYDE OR SUBSTITUTE
DE3226490A DE3226490C2 (en) 1981-07-21 1982-07-15 Process for the preparation of benzaldehyde or its halogen or trifluoromethyl compounds by catalytic vapor phase hydrolysis of benzal chloride or the correspondingly substituted compounds
US06/400,011 US4450298A (en) 1981-07-21 1982-07-20 Vapor phase catalytic hydrolysis of benzal chloride or its halogen- or trifluoromethyl-substitute to form benzaldehyde or substitute
FR8212665A FR2510101B1 (en) 1981-07-21 1982-07-20 PROCESS FOR CATALYTIC VAPOR HYDROLYSIS OF BENZAL CHLORIDE OR ITS SUBSTITUTE WITH A HALOGEN OR A TRIFLUOROMETHYL, TO FORM BENZALDEHYDE OR ITS SUBSTITUTE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112977A JPS5815935A (en) 1981-07-21 1981-07-21 Preparation of benzaldehyde

Publications (2)

Publication Number Publication Date
JPS5815935A true JPS5815935A (en) 1983-01-29
JPS629576B2 JPS629576B2 (en) 1987-02-28

Family

ID=14600299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112977A Granted JPS5815935A (en) 1981-07-21 1981-07-21 Preparation of benzaldehyde

Country Status (1)

Country Link
JP (1) JPS5815935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045095A (en) * 2004-08-03 2006-02-16 Central Glass Co Ltd 3-formyl-5-trifluoromethylbenzonitrile derivative and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045095A (en) * 2004-08-03 2006-02-16 Central Glass Co Ltd 3-formyl-5-trifluoromethylbenzonitrile derivative and method for producing the same

Also Published As

Publication number Publication date
JPS629576B2 (en) 1987-02-28

Similar Documents

Publication Publication Date Title
US4016208A (en) Acid production
JPS62114922A (en) Production of phenol together with acetone ad methyl ethyl ketone
JPS5815935A (en) Preparation of benzaldehyde
JPS5865241A (en) Carbonylation of secondary benzylhalide
US4694110A (en) Process for production of m-phenoxybenzyl alcohol
JPH01203339A (en) Production of hexafluoroacetone or hydrate thereof
US4945186A (en) Method of producing 3-bromobenzaldehyde
JPH026414A (en) Preparation of isobutylene
US4647695A (en) Method of preparing trifluoroacetic acid from trichlorotrifluoroethane
JPH0161091B2 (en)
JP2514368B2 (en) Method for producing hexafluoroacetone or its hydrate
JPS5829735A (en) Preparation of enzaldehydes
US4199527A (en) Removal of ketene impurities in the preparation of alpha-cyano-aryloxybenzyl alcohols
US3979432A (en) Preparation of nitriles
JPH0688928B2 (en) Fluorine-containing carboxylic acids and their salts
JPH0597757A (en) Production of trifluoroacetaldehyde
JPS5917087B2 (en) Hexafluoropropylene epoxide
JPS58120507A (en) Continuous manufacture of hydrazine
JPH06279350A (en) Production of adipic acid
JPS60199855A (en) Production of benzoic acid
JPH0291039A (en) Preparation of sorbic acid or ester thereof
JPS60199846A (en) Production of glyoxal
JPS5835170B2 (en) Methyl ethyl ketone
JP3188519B2 (en) Method for producing tert-butyl chloride
JPS621938B2 (en)