JPS58158807A - Method of producing strand insulated conductor - Google Patents

Method of producing strand insulated conductor

Info

Publication number
JPS58158807A
JPS58158807A JP4129782A JP4129782A JPS58158807A JP S58158807 A JPS58158807 A JP S58158807A JP 4129782 A JP4129782 A JP 4129782A JP 4129782 A JP4129782 A JP 4129782A JP S58158807 A JPS58158807 A JP S58158807A
Authority
JP
Japan
Prior art keywords
conductor
wire
copper oxide
twisting
insulated conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4129782A
Other languages
Japanese (ja)
Other versions
JPS6031048B2 (en
Inventor
忠之 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4129782A priority Critical patent/JPS6031048B2/en
Publication of JPS58158807A publication Critical patent/JPS58158807A/en
Publication of JPS6031048B2 publication Critical patent/JPS6031048B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電カケープル導体特に大容量送電に使用され石
、表皮効果を低減した素線絶縁導体の製造方法に関すゐ
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a power cable conductor, particularly a strand insulated conductor which is used for large-capacity power transmission and which reduces stone and skin effects.

通常、電カケープル導体には直径2〜3■の銅線を撚シ
合せた撚線が使用されている。撚)合せ後、ロール等で
圧縮成形して素線間の9隙を少なくシ、コンパクトにす
ることも広く行われている。さらに、大容量導体では、
分割導体と称して素線を撚シ合せた稜、断面形状を層形
に圧縮成形したセグメントを所要数用いて断面円形に組
合せて使用されている。このような分割導体においては
、各セグメント間け、各セグメントに紙やグラスチ、ク
テーグを巻いて絶縁している場合が多い。
Usually, stranded wires made by twisting together copper wires having a diameter of 2 to 3 cm are used for power cable conductors. After twisting, compression molding with rolls or the like is widely used to reduce the gaps between the strands and make them more compact. Furthermore, in large capacity conductors,
A required number of segmented conductors, which are formed by twisting strands of strands and compression-molded into a layered cross-sectional shape, are used in combination to form a circular cross-section. In such a divided conductor, each segment is often insulated by wrapping paper, Glasti, or Cteig between each segment.

近年、交流送電の大容量化とともに導体サイズが巨大化
されつつあるが、導体サイズが巨大化すると、急激に表
皮効果及び近接果効に起因する送電損失が顕著化してく
る6%に表皮幼果による損失は重大で1.1導体を多分
割化し各セグメント間を上記の如く絶縁し、さらにそれ
とともに各素線をも絶縁して導体の表層部への電流集中
を防止することが本質的な対策とされている。
In recent years, as the capacity of AC power transmission has increased, the size of conductors has become enormous. However, as the size of conductors increases, transmission losses due to the skin effect and proximity effect suddenly become more prominent, increasing to 6%. 1.1 It is essential to divide the conductor into multiple segments, insulate each segment as described above, and also insulate each strand to prevent current concentration on the surface of the conductor. It is considered a countermeasure.

従来、かかる素線絶縁方法としてエナメル被覆をした銅
素線を使用する例があるが、素線の撚り合せ及び撚り合
せ後の圧縮成形の加工工程に耐え得るには、20〜30
μ鴬以上の膜厚のエナメル被覆を必要とするため極めて
コスト高となシ、実際には使用されていない。
Conventionally, there is an example of using enamel-covered copper wires as a method of insulating wires, but in order to withstand the processing steps of twisting the wires and compression molding after twisting, it is necessary to
It is not actually used because it requires an enamel coating with a thickness greater than 100 μm, making it extremely costly.

このため、よシ安価な絶縁物として酸化鋼を表面に形成
した銅素線を利用する試みがある。
For this reason, attempts have been made to use copper wires with oxidized steel formed on their surfaces as a cheaper insulator.

酸化鋼は銅素線を大気中で高温、例えば300℃以上で
酸化されることKよりて容易にその表面に生成できるが
、かくして得られた酸化銅皮膜は脆弱で密着性に乏しく
実用的でない、これに代わってアルカリ性の水溶液中で
亜塩素酸などの酸化剤の助けをかシて化学的に処理する
湿式的な方法によれば、生成した酸化銅は微結晶体から
なシ、比較的加工性及び密着性に富む特性を有している
Oxidized steel can be easily formed on the surface of copper wire by oxidizing it in the atmosphere at high temperatures, e.g., 300°C or higher, but the copper oxide film thus obtained is fragile and has poor adhesion, making it impractical. Instead, a wet method of chemical treatment in an alkaline aqueous solution with the aid of an oxidizing agent such as chlorous acid produces copper oxide, which does not consist of microcrystals and is relatively small. It has characteristics of excellent workability and adhesion.

しかし、かかる酸化銅皮膜でも、撚)合せや圧縮成形の
加工に耐え得るには、2〜3μm以上の膜厚が必要であ
如、湿式的方法でこのような厚膜を形成するには多大の
化学薬品と長時間を要するため、や#′i夛コスト高と
なることは不可避であった。
However, even with such a copper oxide film, a film thickness of 2 to 3 μm or more is required in order to withstand processing such as twisting and compression molding, and forming such a thick film using a wet method takes a lot of effort. Since the process requires many chemicals and a long time, it is inevitable that the process will be expensive.

これを改善するために酸化銅皮膜を形成していない通常
の鋼索線を撚シ合せや、さらにこれを圧縮成形等の必要
な加工を行った後に、これを上鮎の如き湿式的処理を行
なうことも提案されている。この方法#iub合せや圧
縮成形後に酸化銅皮膜を形成するので膜厚は、撚り合せ
や圧縮成形前に酸化銅皮膜を形成する場合に比べて薄く
てもよいが、それでも平均0.5^嵩以上の膜厚になる
まで酸化銅皮膜形成処理をしなければならない、その理
由は、素線絶縁で最とも重要な上下隣接素線間の絶縁を
完全に行う必要があるからであゐ、すなわち、撚υ合せ
加工や圧縮成形加工によって素線同志は、特に導体の上
下隣接する素線同志は、密に接触しているので、かかる
接触部分の接触界面に酸化銅皮膜を形成して、完全に電
気絶*をするには、超音波の作用などによシ、素線間へ
の処理液の浸入を促進するなどの工夫をしても平均膜厚
が0.5声m以上になる壕で処理を続けなければならず
、平均膜厚0.5JllI1以上の酸化銅皮膜を湿式法
で形成するには、やはり多大の化学薬品と長時間を要し
コスト高となる欠点があった。
To improve this, ordinary steel cables without a copper oxide coating are twisted together, and then subjected to necessary processing such as compression molding, and then subjected to wet processing such as Kamiayu. It is also proposed that This method #iub Since the copper oxide film is formed after joining or compression molding, the film thickness may be thinner than when forming the copper oxide film before twisting or compression molding, but it still has an average bulk of 0.5^ The reason why the copper oxide film must be formed until the film thickness reaches the above value is that it is necessary to completely insulate the upper and lower adjacent wires, which is the most important step in wire insulation. Since the wires are in close contact with each other through twisting and compression molding, especially the wires that are adjacent to each other above and below the conductor, a copper oxide film is formed on the contact interface of the contact area to ensure complete contact. In order to electrically disconnect* the wires, it is necessary to use the action of ultrasonic waves, etc., and even if measures such as promoting the infiltration of the treatment liquid between the strands are used, trenches with an average film thickness of 0.5 m or more must be used. In order to form a copper oxide film with an average thickness of 0.5 JllI1 or more using a wet method, it still requires a large amount of chemicals and a long time, resulting in high costs.

本発明は、かかる現状IIcfI/iみて鋭意研究した
結果なされたものであ夛、素線絶縁効果の大きい高性能
の素線絶縁導体を経済的でかつ高生産性で製造すゐ方法
を提供するものである。
The present invention was made as a result of intensive research in view of the current situation IIcfI/i, and provides an economical and highly productive method for manufacturing high-performance strand insulated conductors with great strand insulation effects. It is something.

即ち、本発明は、鋼索線を撚シ合せた導体を湿潤状態下
で60〜100℃に保持した後、アンモニアガスに接触
させて素線表面に酸化鋼を形成することを特徴とする素
線絶縁導体の製造方法:T@ある。
That is, the present invention provides a stranded wire characterized in that a conductor made of twisted steel cables is maintained at 60 to 100°C in a wet state and then brought into contact with ammonia gas to form oxidized steel on the surface of the strand. Manufacturing method of insulated conductor: T@Yes.

本発明において、鋼索線、を撚り合せた導体とは、撚り
合せ方法には限定されないが例えば、同心交互撚り、同
心同方向撚?)Kよる多層撚)導体、集合撚り導体など
があ〕、また1、かかる撚)合せ導体をさらに、断面扇
形などの所望形状に圧縮成形したものも含む。
In the present invention, a conductor made by twisting steel cables is not limited to the twisting method, but may include, for example, concentric alternate twisting, concentric codirectional twisting, etc. ) A multi-layer twisted) conductor, a collective twisted conductor, etc.], and also includes one in which such twisted) combined conductor is further compression-molded into a desired shape such as a fan-shaped cross section.

髭夛合せ導体を湿潤状態下で60〜100℃に保持する
と、銅素線表面に親水性の酸化物層が形成され、湿潤状
態では、この親水性の酸化物層が銅素線表面を一様に濡
らすことになシ、次にアンモニアとの接触によシアンモ
ニアが急速に銅素線表面の水分中に溶解し、銅表面に〔
Cu(NH3)4)  の錯イオンが形成され、酸化銅
皮膜の生成反応が促進されるものと考えられる。
When the laminated conductor is held at 60 to 100°C in a wet state, a hydrophilic oxide layer is formed on the surface of the copper wire. Cyanmonia rapidly dissolves in the moisture on the surface of the copper wire, and when it comes into contact with ammonia, it quickly dissolves into the moisture on the surface of the copper wire, causing
It is thought that complex ions of Cu(NH3)4) are formed and the formation reaction of the copper oxide film is promoted.

撚り合せ導体を湿潤状態で60〜100℃に保持するK
は、60〜100℃の水蒸気中に保持するか、または、
撚夛合せ導体を一度水に濡らした後60〜100℃に加
温保持するかのいずれでもよいが、60〜100℃の水
蒸気中に保持する前者の方が好ましい、かかる処理は一
般にチャンバー内にコルク状にした撚シ合せ導体を収容
して行われるので、水蒸気及びアンモニアガスの導入が
両者とも気体で行えるため操作上も簡単であるカラであ
る。その上、アンモニアガスを導入してbるときも、水
蒸気を共存させておくのが一層酸化鋼皮膜生成反応が促
進されるからである。
K to maintain stranded conductor at 60-100℃ in wet condition
is kept in steam at 60-100°C, or
The twisted conductor may be wetted with water and then heated and held at 60 to 100°C, but the former method of holding it in water vapor at 60 to 100°C is preferable. Such treatment is generally carried out in a chamber. Since it is carried out by accommodating a cork-shaped twisted conductor, both water vapor and ammonia gas can be introduced in the form of gases, making it easy to operate. Furthermore, even when ammonia gas is introduced and removed, it is better to allow water vapor to coexist in order to further promote the oxidized steel film formation reaction.

特に60〜100℃の飽和水蒸気を用いれば、銅素線表
面は、常に湿潤状態が保たれるので好ましい。
In particular, it is preferable to use saturated steam at a temperature of 60 to 100° C., since the surface of the copper wire is always kept moist.

湿潤状態で撚シ合せ導体を保持するときの温度を60〜
100℃としたのは、この温度範囲内で、後の酸化銅皮
膜生成反応に有効な親水性酸化物層が生成されるからで
ある。す彦わち、60℃以下及び100℃以上のいずれ
の場合も有効な親木性酸化物が形成されない。
The temperature when holding the twisted conductor in a wet state is 60~
The temperature was set at 100°C because within this temperature range, a hydrophilic oxide layer effective for the subsequent copper oxide film formation reaction is generated. In other words, effective wood-philic oxides are not formed at either temperatures below 60°C or above 100°C.

本発明によれば、銅素線表面に親水性酸化物層が薄く形
成され、この層の存在によってアンモニアガスの吸着が
素線同志の接触界面間にも急速にしかも一様に行われる
のでかかる接触界面間にも、電気絶縁に必要な0.5〜
2μ調厚の酸化銅皮膜が容易に形成される。また素線撚
り合せ時や圧縮成形時に導体に潤滑油などが付着するが
、かかる付着物が付着物が付着したままで本発明処理が
できる。
According to the present invention, a thin hydrophilic oxide layer is formed on the surface of the copper wire, and the presence of this layer causes the adsorption of ammonia gas to occur rapidly and uniformly between the contact interfaces of the wires. 0.5 to 0.5 required for electrical insulation between contact interfaces.
A copper oxide film with a thickness of 2μ can be easily formed. Furthermore, lubricating oil and the like adhere to the conductor during twisting of the wires and compression molding, but the present invention process can be performed with such adherents remaining.

次に本発明を実施例と比較例で説明する。Next, the present invention will be explained using Examples and Comparative Examples.

実施例1 直径2.3−の軟鋼線88本を撚り合せ、こtを断面扇
形に圧縮成形して、素線表面に少量潤滑油か付着したま
まの6分割導体用未処理セグメントを得た。この未処理
セグメ7 ) 1h 120 mをコイル状に巻き、チ
ャン・々−に入れた稜、温度80℃の飽和水蒸気K 3
0分間保持した。次に、アンモニアガスを注入し、チャ
ンバー内のアンモニア濃度を5%にした状態で24時間
保持した。
Example 1 88 mild steel wires with a diameter of 2.3 mm were twisted together and compression molded into a fan-shaped cross section to obtain an untreated segment for a 6-part conductor with a small amount of lubricating oil still attached to the surface of the wires. . This untreated segment 7) was wound into a coil of 1h 120 m and placed in a chan-chan, saturated steam K3 at a temperature of 80°C.
It was held for 0 minutes. Next, ammonia gas was injected, and the ammonia concentration in the chamber was maintained at 5% for 24 hours.

次にかくして得たセグメントの1部を切断し、カソード
還元法(電解液0. I N−KCl、’at流tat
O,5ws Jy’cs2)により平均酸化銅皮膜厚を
測定した結果1.32μ解であった。
Next, a portion of the segment thus obtained was cut and subjected to a cathodic reduction method (electrolyte solution 0.1N-KCl, 'at flow).
The average copper oxide film thickness was measured using O, 5ws Jy'cs2) and found to be 1.32μ.

また、上記で得たセグメント6本を撚シ合せて導体断面
積2000■2の6分割導体を造り、この導体について
日本W線工業規格JCB −168Cに定める測定法に
より、直流抵抗値(札C)と50 H,交流抵抗値(R
,c)とを各々測定し、訝皮効果係数、 :== :a
c  1を求めた結果を次表に示す。
In addition, the six segments obtained above were twisted together to make a six-divided conductor with a conductor cross-sectional area of 2000 x 2, and the direct current resistance value (tag C ) and 50 H, AC resistance value (R
, c) are measured respectively, and the skin effect coefficient is :== :a
The results of determining c1 are shown in the table below.

実施例2 実施例1で用いたと全く同じ未処理セグメント約120
 wzをコイル状に巻きチャンバーに入れた後、温度6
0℃飽和水蒸気に60分間保持した。
Example 2 Approximately 120 untreated segments identical to those used in Example 1
After winding wz into a coil and putting it into the chamber, the temperature is 6.
It was kept in saturated steam at 0°C for 60 minutes.

次にアンモニアガスを注入し、チャンバー内のアンモニ
ア濃度を2−にした状態で24時間保持した。
Next, ammonia gas was injected, and the ammonia concentration in the chamber was maintained at 2-2 for 24 hours.

以下、実施例1と同様にして平均酸化銅皮膜厚の測定を
行った結果1.05声mであった。また実施例2で得た
セグメントを用いた6分割導体の表皮効果係数rの測定
を行った結果を次表に示す。
Thereafter, the average copper oxide film thickness was measured in the same manner as in Example 1, and the result was 1.05 mm. The following table shows the results of measuring the skin effect coefficient r of a 6-segment conductor using the segments obtained in Example 2.

実施例3 実施例1で用いたと全く同じ未処理セグメント約120
mをコイル状に巻いた稜、水中に浸漬Ll* 次Kjの
コイルを60℃のチャンバー4C入れ120分間保持保
持子ンモニアガスを注入し、チャンバー内のアンモニア
濃度を101GkLり状態で48時間保持しえ。
Example 3 Approximately 120 untreated segments identical to those used in Example 1
The coil of m is immersed in water Ll .

以下、実施例1と同様にして平均酸化銅皮膜厚の測定を
行った結果1.01μmであった。また実施例3で得た
セグメントを用いた6分割導体の表皮効果係数rの測定
を行った結果を次表に示す。
Thereafter, the average copper oxide film thickness was measured in the same manner as in Example 1, and the result was 1.01 μm. In addition, the results of measuring the skin effect coefficient r of the six-segment conductor using the segments obtained in Example 3 are shown in the following table.

比較例 実施例1で用いたと全く同じ未処理セグメント約120
W1をコイル状に巻き、チャンバー内に入れた後、温度
60℃の飽和水蒸気とアンモニアガスとを同時に注入し
、チャンバー内のアンモニア濃度を3−にした状態で2
4時間保持した。
Comparative Example Approximately 120 untreated segments identical to those used in Example 1
After W1 was wound into a coil shape and placed in a chamber, saturated steam at a temperature of 60°C and ammonia gas were simultaneously injected, and the ammonia concentration in the chamber was set to 3-2.
It was held for 4 hours.

以下、実施例1と同様にして、平均酸化銅皮膜厚の測定
を行った結果、035坂でおった。またこの比較例で得
たセグメントを用いた6分割導体の表皮効果係数rの測
定を行った結果を次表に示す。
Thereafter, the average copper oxide film thickness was measured in the same manner as in Example 1, and the result was a slope of 035. The following table shows the results of measuring the skin effect coefficient r of a 6-segment conductor using the segments obtained in this comparative example.

尚、表中、裸導体とは実施例1で用いたと全く同じ未処
理セグメント6本をそのまま実施例1と同様に撚り合せ
て得た導体断面& 2000■2の6分割溝体である。
In the table, the bare conductor is a six-divided groove with a conductor cross section of &2000 x 2 obtained by twisting six untreated segments exactly the same as those used in Example 1 in the same manner as in Example 1.

本発明により、素線絶縁した分割導体を製造する場合に
は、実施例に示した如く、各セグメントを夫々素線絶縁
した後、このセグメントを所要本撚り合せて分割導体と
するのが一般であるが、未処理セグメントを撚シ合せて
分割導体とした後、本発明による処理を行って素線絶縁
をすることもできる。
When producing a segmented conductor with wire insulation according to the present invention, it is common to insulate each segment with wire and then twist the segments as required to form the segmented conductor, as shown in the embodiment. However, untreated segments may be twisted together to form segmented conductors and then treated according to the present invention to insulate the strands.

以上の如く、本発明によれば、撚シ合せ導体の素線同志
の接触部の接触界面間に本電気絶縁に必要な酸化銅皮膜
を効率よく容易に形成できるげか〕でなく、銅線表面の
有機皮膜の除却が不要であるため、有機溶剤の洗浄が不
要であり、そのまま処理ができる0通常の撚り合せ導体
やさらに圧縮成形した導体は銅素線に少量の潤滑油等の
有機物皮膜が付着しておシ、従来の湿式酸化処理法では
、この処理前にあらかじめトルエン等の有機溶剤で洗浄
しなければならず、大量の溶剤、人力などを要する欠点
があったが、本発明方法では実施例から明らかな如く、
撚シ合せ後又は圧縮成形後の導体をそのまま処理できる
利点がある。
As described above, according to the present invention, it is possible not only to efficiently and easily form a copper oxide film necessary for electrical insulation between the contact interfaces of the contact parts of the strands of the twisted conductor, but also to Since it is not necessary to remove the organic film on the surface, there is no need to clean with organic solvents, and the process can be processed as is.0 Ordinary twisted conductors and compression-molded conductors are coated with a small amount of organic film such as lubricating oil on the copper wire. In the conventional wet oxidation treatment method, it was necessary to wash with an organic solvent such as toluene beforehand, which had the disadvantage of requiring a large amount of solvent and human power. As is clear from the example,
There is an advantage that the conductor after twisting or compression molding can be processed as is.

しか本本発明によって得られる酸化銅皮膜は緻密でかつ
銅界面との帽着性に富むばかシか、酸化銅以外の物質の
付着・吸着が殆んどないことも、絶縁特性の低下をもた
らさない点で極めて有利なことである。
However, the copper oxide film obtained by the present invention is dense and has excellent adhesion to the copper interface, and also because there is almost no adhesion or adsorption of substances other than copper oxide, it does not cause a decrease in insulation properties. This is extremely advantageous in this respect.

Claims (4)

【特許請求の範囲】[Claims] (1)  銅素線を撚夛合せた導体を湿潤状態下で60
〜100℃に保持した後、アンモニアガスに接触させて
素線表面に酸化鋼を形成することを特命とする素線絶縁
導体の製造方法。
(1) A conductor made of twisted copper wires is heated at 60°C under wet conditions.
A method for producing an insulated wire conductor, which includes maintaining the wire at a temperature of ~100°C and then contacting it with ammonia gas to form oxidized steel on the surface of the wire.
(2)上記湿潤状態は水蒸気によって与えられることを
特徴とする特許請求の範囲第1項記載の素線絶縁導体の
製造方法。
(2) The method for manufacturing a wire insulated conductor according to claim 1, wherein the moist state is provided by water vapor.
(3)上記湿潤状態は導体と水とを接触させることによ
シ与えられる仁とを特徴とする特許請求の範囲第1項記
載の素線絶縁導体の製造方法。
(3) The method for manufacturing a wire insulated conductor according to claim 1, wherein the wet state is provided by bringing the conductor into contact with water.
(4)上記湿潤状態下で保持した彼の導体にアンモニア
ガスを接触させる際飽和水蒸気を共存させることを特徴
とする特許請求の範囲第1項記載の素線絶縁導体の製造
方法。
(4) A method for manufacturing a strand insulated conductor according to claim 1, characterized in that saturated water vapor is allowed to coexist when bringing ammonia gas into contact with the conductor held in the moist state.
JP4129782A 1982-03-16 1982-03-16 Manufacturing method of strand insulated conductor Expired JPS6031048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4129782A JPS6031048B2 (en) 1982-03-16 1982-03-16 Manufacturing method of strand insulated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4129782A JPS6031048B2 (en) 1982-03-16 1982-03-16 Manufacturing method of strand insulated conductor

Publications (2)

Publication Number Publication Date
JPS58158807A true JPS58158807A (en) 1983-09-21
JPS6031048B2 JPS6031048B2 (en) 1985-07-19

Family

ID=12604520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129782A Expired JPS6031048B2 (en) 1982-03-16 1982-03-16 Manufacturing method of strand insulated conductor

Country Status (1)

Country Link
JP (1) JPS6031048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014132A (en) * 2005-09-05 2008-01-24 Shigeki Nakamura Pipe coupling
JP2014207091A (en) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 Cluster of wires and production method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176751U (en) * 1985-04-24 1986-11-04

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014132A (en) * 2005-09-05 2008-01-24 Shigeki Nakamura Pipe coupling
JP2014207091A (en) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 Cluster of wires and production method of the same

Also Published As

Publication number Publication date
JPS6031048B2 (en) 1985-07-19

Similar Documents

Publication Publication Date Title
US4571453A (en) Conductor for an electrical power cable
JPH033322B2 (en)
JPS58158807A (en) Method of producing strand insulated conductor
JPS59808A (en) Method of producing strand insulated conductor
JPS6031047B2 (en) Method for manufacturing strand insulated cable conductor
JPS6011A (en) Method of producing twisted conductor
JPS6314446B2 (en)
JPS6031049B2 (en) Method for manufacturing strand insulated cable conductor
JPS5919612B2 (en) Method for manufacturing strand insulated cable conductor
JPH0530912B2 (en)
JPS6119460Y2 (en)
JPH11306882A (en) Electric power cable and manufacture thereof
JPS6057165B2 (en) cable conductor
JPS5979906A (en) Method of producing strand insulated conductor
JPH03173019A (en) Element-wire insulated conductor manufacture
JPS6250928B2 (en)
JPS62154415A (en) Manufacture of conductor with insulated strands
JPS6193508A (en) Cable conductor
JPS643131Y2 (en)
JPH0125450Y2 (en)
JPS58164111A (en) Method of producing strand insulated conductor
JPS60198010A (en) Method of producing strand insulated conductor for of cable
JPS6042413Y2 (en) Covered wire for overhead power distribution
JPS641884B2 (en)
JPS5838479A (en) Method of connecting power cable