JPS58158722A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS58158722A
JPS58158722A JP4136482A JP4136482A JPS58158722A JP S58158722 A JPS58158722 A JP S58158722A JP 4136482 A JP4136482 A JP 4136482A JP 4136482 A JP4136482 A JP 4136482A JP S58158722 A JPS58158722 A JP S58158722A
Authority
JP
Japan
Prior art keywords
control
potential
voltage
resonance
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4136482A
Other languages
Japanese (ja)
Inventor
Takashi Ikehara
池原 隆志
Takashi Miyahara
宮原 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4136482A priority Critical patent/JPS58158722A/en
Publication of JPS58158722A publication Critical patent/JPS58158722A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Stoves And Ranges (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To obtain a fast temperature rise and uniform temperature distribution, by designating the control voltage of a voltage controlled oscillator as a control signal of the trigger element of a control electrode, and controlling a fan mechanism and a heater through the conduction of the trigger element. CONSTITUTION:In setting a variable capacitor 7 of a table board 2 to a suitable value, a resonance frequency f0 is set. Further, a voltage controlled oscillator VCO3 is being in sweep oscillation, the signal is applied to a resonance circuit 8 and inputted to a detector 9. A comparator 12 compares resonance/ non-resonance, an output of the comparator 12 is fed to a P-UJT (PUT) 15 and a capacitor 14, and the anode potential of the PUT 15 is kept to a level corresponding to the frequency f0. this potential is supplied to the gate of a PUT 24 after applied with voltage division. A sawtooth wave potential is given to the anode of the PUT 24, and the PUT 24 is conductive when the anode potential of the PUT 24 is a gate potential or over, a pulse is generated in a pulse transformer 19B, and the power application of a motor M of the fan mechanism 38 and the amount of heat of a semiconductor heater 39 are controlled.

Description

【発明の詳細な説明】 本発明は温度制御手段の操作部と制御回路部を物理的に
分離して設けた場合の温度制御装置に関し、例えば電気
ヤグラコタツ(以下ヤグラコタツに実施した場合につい
て説明)の温度制御装置に於て、操作部に設けられた共
振回路の共振周波数を可変してヒータの発熱量を調節す
るに際し、上記共振回路の共振・非共振を検出して電圧
制御発振器の制御電圧を生成するとき該制御電圧を制御
極付トリガー素子の制御信号として印加し、該トリガー
素子の導通により、制御素子の導通角を決定し、該制御
素子の導通によりファン機構(ファン及びモータ)の回
転数を決定し、半導体ヒータの発熱量を決定したものに
係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device in which the operating section and the control circuit section of the temperature control means are physically separated. In a temperature control device, when adjusting the amount of heat generated by the heater by varying the resonant frequency of the resonant circuit provided in the operating section, the control voltage of the voltage controlled oscillator is adjusted by detecting resonance or non-resonance of the resonant circuit. When generating the control voltage, the control voltage is applied as a control signal to a trigger element with a control pole, the conduction angle of the control element is determined by the conduction of the trigger element, and the rotation of the fan mechanism (fan and motor) is determined by the conduction of the control element. This relates to determining the number and determining the amount of heat generated by the semiconductor heater.

以下本発明の実施例(電気ヤグラコタツに実施した例)
を図面に沿って詳細に説明する。
The following is an example of the present invention (example implemented in an electric Yagura Kotatsu)
will be explained in detail along the drawings.

第1図は本発明による温度制御装置の一実施例である電
気ヤグラコタフの電気回路図、第2図は同主要各部の信
号波形を示した波形図である。
FIG. 1 is an electric circuit diagram of an electric yagurakotuff which is an embodiment of the temperature control device according to the present invention, and FIG. 2 is a waveform diagram showing signal waveforms of each main part of the same.

第1図に於て、1は電熱部(ヒータ及びファン機構)等
を有するヤグラコタツ本体、2は操作部(省略)等を有
するテーブル板で、該テーブル板2とヤグラコタッ本体
10間には保温具としての布団等が介在して実用に供せ
られる。3は電圧制御発振器(以下VCOと略)で、P
UT(プログラマブルユニジャンクショントランジスタ
)15のアノード電位(弛張発振回路の出力第2図(ロ
))に応じてその発振周波数が変るo 4A乃至4Bは
ヤグラコタツ本体lに設けられた信号送・受用の電極、
5A乃至5Bはテーブル板2に設けられた信号送・受用
の電極で夫々上記4A、4Bと対をなし対向して設けら
れている。6はインダクタ、7は可変キャパシタで、操
作部(省略)に連動し操作部の操作により容量が変る。
In Fig. 1, 1 is the main body of the Yagura Kotatsu which has an electric heating part (heater and fan mechanism), etc., 2 is a table board which has an operation part (omitted), etc., and between the table board 2 and the main body 10 of the Yagura Kotatsu, there is a heat-retaining device. It is put into practical use with the help of futons and the like. 3 is a voltage controlled oscillator (hereinafter abbreviated as VCO), P
The oscillation frequency changes depending on the anode potential of the UT (programmable unijunction transistor) 15 (output of the relaxation oscillation circuit in Figure 2 (b)). 4A and 4B are electrodes for signal transmission and reception provided on the Yagura Kotatsu body l. ,
Reference numerals 5A to 5B are electrodes for signal transmission and reception provided on the table board 2, and are provided in pairs with and opposite to the above-mentioned 4A and 4B, respectively. 6 is an inductor, and 7 is a variable capacitor, which is linked to an operating section (not shown) and whose capacitance changes depending on the operation of the operating section.

そしてインダクタ6及び可変キャパシタ7により共振回
路8をなし、可変キャパシタの容量値を可変することに
より共振周波数が変化し、延いてはvcoaの制御電圧
のレベルが変化するとともにPLIT24の制御信号(
ゲート信号)のレベルも変化し、ファン機構のモータの
通電量即ちファン機構の回転数が変化し、従って半導体
ヒータの発熱量も変化する。9は検出器でvcoaの発
振信号が電極板4A−5A間の浮遊容量CAを介してテ
ーブル板2の共振回路8に供給され、そしてその信号は
電極板5 B−4B間の浮遊容量cBを介してこの検出
器9に入力される。
The inductor 6 and the variable capacitor 7 form a resonant circuit 8, and by varying the capacitance value of the variable capacitor, the resonant frequency changes, which in turn changes the level of the control voltage of VCOA, and the control signal of the PLIT24 (
The level of the gate signal (gate signal) also changes, the amount of current applied to the motor of the fan mechanism, that is, the rotational speed of the fan mechanism changes, and therefore the amount of heat generated by the semiconductor heater also changes. Reference numeral 9 denotes a detector, and the oscillation signal of vcoa is supplied to the resonant circuit 8 of the table board 2 via the stray capacitance CA between the electrode plates 4A and 5A, and the signal increases the stray capacitance cB between the electrode plates 5B and 4B. The signal is inputted to this detector 9 via.

そして共振回路8での共振・非共振状態を弁別する。1
0はアンプ(増幅器)で検出器9の出力信号を増幅して
出力する。11は検波器でアンプ10の出力を直流値に
変換する。12は比較器で、共振回路8が共振時はその
出力は■(低)、非共振時はその出力は■(高)となる
。13は抵抗、14はコンデンサ、15はPLIT、+
6.17.18は抵抗でこれらは弛張発振回路をなし、
そρ出力はPtJT I 5のアノード端子からとられ
、該出力電圧はvcosの制御電圧として、更にはPU
T24の制御信号となっている。19はパルストランス
(19Aは一次側、+ 9.は二次側)、20はダイオ
ード、21(dnpn)ランジスタ、22.28は抵抗
、24は制御極付トリガ素子の一例としてのPtJT、
25゜26.27,28は抵抗、29はコンデンサ、3
0はnpn トランジスタ、31.32は抵抗、33は
npnトランジスタ、:l、35は抵抗、36はダイオ
ード、37はトライアック等の制御素子(この場合はト
ライアックで説明)、38はファン機構(ファン及びモ
ータ)、39はヒータ(#導体ヒータ等)である。そし
て交流電源(省略)の全波整流信号が抵抗34.35に
より分割されてトランジスタ33のベースに印加される
如く接続され、該トランジスタ33は直流電源(+Vc
c、アース間)に接続された抵抗31.32の接続端と
アース間に接続されている。捷だ抵抗31.32の接続
端はトランジスタ30のベースに接続され、該トランジ
スタ30は抵抗28を介して、直流電源に接続された抵
抗27、コンデンサ29の接続端とアース間に接続され
ている。また、抵抗27とコンデンサ29の接続端はP
LIT24のアノードにも接続されている。PtJT2
4のカソードは抵抗23を介してトランジスタ210ベ
ースに接続されている。
Then, a resonant/non-resonant state in the resonant circuit 8 is discriminated. 1
An amplifier 0 amplifies the output signal of the detector 9 and outputs the amplified signal. A detector 11 converts the output of the amplifier 10 into a DC value. 12 is a comparator, and when the resonant circuit 8 is resonant, its output is ■ (low), and when it is not resonant, its output is ■ (high). 13 is a resistor, 14 is a capacitor, 15 is PLIT, +
6.17.18 are resistors, and these form a relaxation oscillation circuit.
The ρ output is taken from the anode terminal of the PtJT I 5, and the output voltage is used as the control voltage of vcos and also as the PU
This is the control signal for T24. 19 is a pulse transformer (19A is the primary side, +9. is the secondary side), 20 is a diode, 21 (dnpn) transistor, 22.28 is a resistor, 24 is PtJT as an example of a trigger element with control pole,
25゜26.27 and 28 are resistors, 29 are capacitors, 3
0 is an npn transistor, 31.32 is a resistor, 33 is an npn transistor, :l, 35 is a resistor, 36 is a diode, 37 is a control element such as a triac (in this case, a triac is used), and 38 is a fan mechanism (fan and motor), 39 is a heater (#conductor heater, etc.). The full-wave rectified signal of the AC power source (not shown) is divided by resistors 34 and 35 and connected to the base of the transistor 33, and the transistor 33 is connected to the DC power source (+Vc
c, between the ground) and the connecting end of the resistor 31 and 32 connected to the ground. The connecting ends of the resistors 31 and 32 are connected to the base of a transistor 30, and the transistor 30 is connected via a resistor 28 between the connecting ends of a resistor 27 and a capacitor 29 connected to a DC power source and the ground. . Also, the connection end of the resistor 27 and capacitor 29 is P
It is also connected to the anode of LIT24. PtJT2
The cathode of 4 is connected to the base of transistor 210 via resistor 23.

トランジスタ21はパルストランスの一次側コイル19
Aを介して直流電源に接続され、−次側コイル+9Aの
両端にはダイオード20が逆並列に接続され、トランジ
スタ2Iのベース−エミッタ間には抵抗22が接続され
ている。またPUT + 5の出力(アノード電位)は
抵抗25 、26により分割されてPUT24のゲート
に印加されるべく接続されている。そしてパルストラン
スの二次側コイル19Bはダイオード36を介して制御
素子(トライアック)37のG−Tl端子間に接続され
ている0 第2図に於て、(イ)はトランジスタ33のベースに印
加されるべき交流電源の全波整流波形、(ロ)は弛張発
振回路の出力即ちPLIT 15のアノード電位で、実
線(A)は共振時、一点鎖線(B)は非共振時であって
その出力の最低時は+2の周波数でVCO3は発振し、
最高時はflの周波数でvcoaは発振する。従ってv
co aはf1〜f2の範囲内で発振し、その範囲内で
共振周波数fo (f1≦fo≦fez)も可変可能で
ある。(ハ)はPLIT24のアノード電位、に)はパ
ルストランス19の入力(出力)信号、(ホ)はファン
機構38のモータの通電波形(制御素子37の導通波形
)で、導通角αで導通(通電)している。(へ)は交流
電源波形である。
The transistor 21 is the primary coil 19 of the pulse transformer.
A diode 20 is connected in antiparallel to both ends of the negative side coil +9A, and a resistor 22 is connected between the base and emitter of the transistor 2I. Further, the output (anode potential) of PUT + 5 is divided by resistors 25 and 26 and connected to be applied to the gate of PUT 24. The secondary coil 19B of the pulse transformer is connected between the G and Tl terminals of the control element (TRIAC) 37 via the diode 36. In Fig. 2, (A) is the voltage applied to the base of the transistor 33. (b) is the output of the relaxation oscillation circuit, that is, the anode potential of PLIT 15, the solid line (A) is at resonance, and the dashed line (B) is at non-resonance, and its output is At the lowest time, VCO3 oscillates at a frequency of +2,
At the highest time, vcoa oscillates at the frequency of fl. Therefore v
coa oscillates within the range of f1 to f2, and the resonant frequency fo (f1≦fo≦fez) can also be varied within that range. (c) is the anode potential of the PLIT 24, (b) is the input (output) signal of the pulse transformer 19, (e) is the energization waveform of the motor of the fan mechanism 38 (conduction waveform of the control element 37), and conduction ( Power is on). (f) is the AC power waveform.

以上構成のヤグラコタツの温度制御装置に於て、その動
作態様を説明すると、先ずテーブル板2の操作部3(省
略)を操作することにより可変キャパシタ7が適当な値
に設定され、ある共振周波数fo<J+≦fo≦f2)
が設定される。そして■CO3の発振が周波数11〜f
2でスイープ発振されており、その信号が電極板4A−
5A間の浮遊容量CAを介して共振回路8に印加される
。そしてまた電極板5F3−413間の浮遊容量cBを
介して検出器9に入力される。検出器9では共振信号は
非共振信号に比してレベル的に高であることを検出して
いるものとする。その信号はアンプ10で増幅されて検
波器11で直流に変換される。そして比較器I2により
共振・非共振か比較され、非共振時比較器11の出力は
■(高)、共振時比較器12の出力は■(低)である。
To explain the operation mode of the Yagura Kotatsu temperature control device having the above configuration, first, by operating the operating section 3 (omitted) of the table board 2, the variable capacitor 7 is set to an appropriate value, and a certain resonance frequency fo is set. <J+≦fo≦f2)
is set. ■The oscillation of CO3 has a frequency of 11~f
2 is sweep oscillated, and the signal is sent to the electrode plate 4A-
It is applied to the resonant circuit 8 via a stray capacitance CA of 5A. It is also input to the detector 9 via the stray capacitance cB between the electrode plates 5F3-413. It is assumed that the detector 9 detects that the resonant signal is higher in level than the non-resonant signal. The signal is amplified by an amplifier 10 and converted to direct current by a detector 11. Then, the comparator I2 compares whether it is resonant or non-resonant, and the output of the comparator 11 is (high) when there is no resonance, and the output of the comparator 12 is (low) when it is resonant.

そして非共振時比較器12の出力は■である為コンデン
サ14は抵抗13を介して充電される。従ってPLOT
 15のアノード電位は上昇し、ある値(抵抗17.1
8等によって決定される)になるとコンデンサー4の電
荷はP[JT15を介して放電し、そして低電位まで下
降する。
Since the output of the comparator 12 at the time of non-resonance is -, the capacitor 14 is charged via the resistor 13. Therefore, PLOT
The anode potential of 15 rises to a certain value (resistance 17.1
8 etc.), the charge on the capacitor 4 discharges through P[JT15 and drops to a low potential.

このくり返しによってP’tJT15のアノード電位(
コンデンサー4の電位)は第2図仲)の(B)(一点鎖
線)の如く鋸歯状電位となる。ところが共振信号が検出
器9で検出されると比較器12の出力は■となり、コン
デンサー4の電荷は充電が停止されるOそしてvcoa
の制御電圧も停止されるのでVCO3の発振周波数はそ
のときの周波数(共振周波数fo)でいったん固定され
る。しかしコンデンサー4の電荷が放電されコンデンサ
ー4の電位が下降するビ とVCO3の制御重圧す低下しVCO3の発振も共振周
波数fo からずれる。すると非共振となり比較器12
の出力は■となり、コンデンサー4は充電して電位は上
昇し共振周波数IOに対応はレベルでまた停止する(基
振となシ比較器12の出力が0となる為)0このくり返
しによってコンデンサー4の電位即ちPLIT15のア
ノード電位は第2図(ロ)(A)の如く、共振周波数f
Oに対応したレベルaQでほぼ一定に保たれる。従って
vcoaに印加される制御電圧が一定(第2図(ロ)(
A) )の為vcoaの発振周波数も一定(fo )で
、この状態が持続−する。そしてPUT+5のアノード
電位(第2図(ロ))をまた抵抗25.26により分圧
して(第2図(ハ)の点線ao′の信号として) PT
JT24のゲートに印加している。そしてトランジスタ
33は略0.7V以上でONする(交流電源のゼロクロ
ス時のみ0FF)為トランジスタ30は交流電源のゼロ
クロス時のみ(トランジスタ33のOFF時のみ)ON
する。
By repeating this process, the anode potential of P'tJT15 (
The potential of the capacitor 4) becomes a sawtooth potential as shown in (B) (dotted chain line) in Figure 2 (middle). However, when the resonance signal is detected by the detector 9, the output of the comparator 12 becomes ■, and the charge of the capacitor 4 is stopped.O and vcoa
Since the control voltage of VCO 3 is also stopped, the oscillation frequency of VCO 3 is temporarily fixed at the frequency at that time (resonant frequency fo). However, as the electric charge of the capacitor 4 is discharged and the potential of the capacitor 4 decreases, the control pressure on the VCO 3 decreases, and the oscillation of the VCO 3 also deviates from the resonant frequency fo. Then, the comparator 12 becomes non-resonant.
The output becomes ■, the capacitor 4 is charged, the potential rises, and the response to the resonance frequency IO stops again at the level (because the output of the comparator 12 becomes 0, which is not the fundamental frequency) 0 By repeating this, the capacitor 4 The potential of PLIT15, that is, the anode potential of PLIT15, is at the resonance frequency f, as shown in FIG.
It is kept almost constant at the level aQ corresponding to O. Therefore, the control voltage applied to vcoa is constant (Fig. 2 (b)) (
A) Because of this, the oscillation frequency of vcoa is also constant (fo), and this state continues. Then, the anode potential of PUT+5 (Figure 2 (B)) is divided again by the resistor 25.26 (as the signal indicated by the dotted line ao' in Figure 2 (C)).
It is applied to the gate of JT24. Transistor 33 turns on at approximately 0.7V or more (turns OFF only when the AC power supply zero crosses), so transistor 30 turns ON only when the AC power supply zero crosses (only when transistor 33 turns OFF).
do.

従ってコンデンサ29の電位(PLIT24のアノード
電位)は第2図(ハ)の如く交流電源に同期した鋸歯状
電位となる。そしてPLOT 24のアノード電位かゲ
ート電位(第2図(ハ)ao′電位)以上となった時点
でPUT24はワンショットとして導通し、従ってトラ
ンジスタ21もワンショット的に導通する。従ってパル
ストランス19Bには第2図に)の如くの信号が誘起さ
れ制御素子(トライアック)37のゲートにゲート信号
として印加される。そしてトライアック37は導通しフ
ァン機構38のモータは通電される。但し、タイミング
的にはPtJT24が導通した時点で、導通角αで通電
さえ1゜る。そしてこの導通角α即ち実効印加電力に見
合った回転数でモータ(及びファン)は回転し半導体ヒ
ータ39に送風し、半導体ヒータ39は該送風量と対応
した発熱量を発熱する。そして上記導通角α即ちモータ
への実効印加電力、延いては半導体ヒータ39の発熱量
は、共振回路8の可変キャパシタ7の容量を可変し、共
振回路8の共振周波数fO延いてはPtJT I 5の
アノード電位(第2図(ロ)(A)のレベルaO)を可
変することにより変えることができる。
Therefore, the potential of the capacitor 29 (the anode potential of the PLIT 24) becomes a sawtooth potential synchronized with the AC power source as shown in FIG. 2(c). When the anode potential of the PLOT 24 becomes equal to or higher than the gate potential (ao' potential in FIG. 2(c)), the PUT 24 becomes conductive in a one-shot manner, and therefore the transistor 21 also becomes conductive in a one-shot manner. Therefore, a signal as shown in FIG. 2 is induced in the pulse transformer 19B and applied to the gate of the control element (TRIAC) 37 as a gate signal. Then, the triac 37 is brought into conduction and the motor of the fan mechanism 38 is energized. However, in terms of timing, when the PtJT 24 becomes conductive, the conduction angle α is 1°. The motor (and the fan) rotates at a rotational speed commensurate with the conduction angle α, that is, the effective applied power, and blows air to the semiconductor heater 39, which generates a heat amount corresponding to the amount of air blown. The conduction angle α, that is, the effective power applied to the motor, and by extension the amount of heat generated by the semiconductor heater 39 changes the capacitance of the variable capacitor 7 of the resonant circuit 8, and the resonant frequency fO of the resonant circuit 8, which in turn changes the PtJT I 5 This can be changed by varying the anode potential (level aO in FIG. 2(B) and (A)).

以上の如く、本発明によれば、簡単な回路構成で操作部
と制御回路が分離されてなる温風による温度制御装置が
可能で、それを例えばブグラコタツに応用することによ
り非常に温度上昇の早いしかも温度分布の均一な、使用
勝手の良いヤグラコタツの温度制御装置を提供できる0
As described above, according to the present invention, it is possible to create a temperature control device using hot air in which the operation part and the control circuit are separated with a simple circuit configuration, and by applying it to, for example, a Bugura Kotatsu, the temperature can rise very quickly. In addition, we can provide a temperature control device for Yagura Kotatsu that is easy to use and has a uniform temperature distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による温度制御装置の一実施例である電
気ヤグラコタツの電気回路図、第2図は同主要各部の信
号波形を示した波形図である。 3:電圧制御発振器、8:共振回路、24:制御極付ト
リガー素子、37:制御素子、38:ファン機構、39
:半導体ヒータ。
FIG. 1 is an electric circuit diagram of an electric roof kotatsu, which is an embodiment of the temperature control device according to the present invention, and FIG. 2 is a waveform diagram showing signal waveforms of each main part of the same. 3: Voltage controlled oscillator, 8: Resonant circuit, 24: Trigger element with control pole, 37: Control element, 38: Fan mechanism, 39
: Semiconductor heater.

Claims (1)

【特許請求の範囲】[Claims] 1 温度に対応してその抵抗値の変化する半導体ヒータ
と、該半導体ヒータの発熱量をコントロールする為のフ
ァン及びモータとからなるファン機構と、該モータへの
通電を制御する制御素子と、電圧制御発振器、及び共振
回路とを具備し、該共振回路の共振周波数を可変するこ
とにより電圧制御発振器の制御電圧を可変し、該電圧制
御発振器の発振周波数を可変するとともに、上記モータ
の通電を可変するに際し、↓配電圧制御発振器の制御電
圧を制御極付トリガー素子の制御信号として印加し、該
制御極付トリガー素子の導通により上記制御素子の導通
を制御し、上記モータの通電を制御し、延いては上記半
導体ヒータの発熱量をコントロールするようにしたこと
を特徴とする温度制御装置。
1. A semiconductor heater whose resistance value changes depending on the temperature, a fan mechanism consisting of a fan and a motor for controlling the amount of heat generated by the semiconductor heater, a control element that controls energization to the motor, and a voltage A controlled oscillator and a resonant circuit are provided, the control voltage of the voltage controlled oscillator is varied by varying the resonant frequency of the resonant circuit, the oscillation frequency of the voltage controlled oscillator is varied, and the energization of the motor is varied. In doing so, applying a control voltage of a voltage distribution control oscillator as a control signal to a trigger element with a control pole, controlling conduction of the control element by conduction of the trigger element with a control pole, and controlling energization of the motor; Furthermore, a temperature control device is characterized in that the amount of heat generated by the semiconductor heater is controlled.
JP4136482A 1982-03-15 1982-03-15 Temperature controller Pending JPS58158722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4136482A JPS58158722A (en) 1982-03-15 1982-03-15 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4136482A JPS58158722A (en) 1982-03-15 1982-03-15 Temperature controller

Publications (1)

Publication Number Publication Date
JPS58158722A true JPS58158722A (en) 1983-09-21

Family

ID=12606406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4136482A Pending JPS58158722A (en) 1982-03-15 1982-03-15 Temperature controller

Country Status (1)

Country Link
JP (1) JPS58158722A (en)

Similar Documents

Publication Publication Date Title
JPH01246787A (en) Cooking apparatus
US4724291A (en) Variable output microwave oven
US5091617A (en) High frequency heating apparatus using inverter-type power supply
US4595814A (en) Induction heating apparatus utilizing output energy for powering switching operation
JP2002075629A (en) Microwave oven and its control method
JP2799052B2 (en) High frequency cooking device
JPS58158722A (en) Temperature controller
US2570798A (en) Regulation of high-frequency oscillators
JPH06105636B2 (en) High frequency heating device
JPS6341837Y2 (en)
JPS58175028A (en) Temperature controller
JPS58165116A (en) Temperature controller
JP3011482B2 (en) Power supply for microwave oven
JPH0124353B2 (en)
JP2757226B2 (en) Gas laser device
JPH0837086A (en) Induction-heating cooking device
JPH0735352A (en) Microwave oven
JPS5918339A (en) Kotatu frame
JPH06104079A (en) High frequency heating device
JPH0632292B2 (en) High frequency heating device
JP3036127B2 (en) rice cooker
JPH06105638B2 (en) High frequency heating device
JPS6052664B2 (en) switching power supply
JPH0690953B2 (en) High frequency heating device
JPH06105635B2 (en) High frequency heating device