JPS58157741A - Production of cyclohexanone - Google Patents
Production of cyclohexanoneInfo
- Publication number
- JPS58157741A JPS58157741A JP57040580A JP4058082A JPS58157741A JP S58157741 A JPS58157741 A JP S58157741A JP 57040580 A JP57040580 A JP 57040580A JP 4058082 A JP4058082 A JP 4058082A JP S58157741 A JPS58157741 A JP S58157741A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- copper
- potassium
- chromium
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はシクロヘキサノンの製造法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cyclohexanone.
シクロヘキサノンは通常、シクロヘキサノールを触媒の
存在下、脱水素反応させて製造されるが、この反応では
例えば、フェノールなどの副生物が多量に生成する傾向
がある。そのため、この反応に用いる触媒としては、単
に、活性が高いのみならず、副生物の生成が低いものを
選ぶ必要がある。しかしながら、従来より知られている
代表的な触媒である鋼−クロム系触媒を用いた場合には
、触媒としての活性は高いが、やはり相当量の副生物の
生成は避けられない。Cyclohexanone is usually produced by dehydrogenating cyclohexanol in the presence of a catalyst, but this reaction tends to produce large amounts of by-products such as phenol. Therefore, it is necessary to select a catalyst for use in this reaction that not only has high activity but also produces low levels of by-products. However, when a steel-chromium catalyst, which is a typical conventionally known catalyst, is used, although the catalytic activity is high, the production of a considerable amount of by-products is still unavoidable.
本出願人は先に、このような銅−クロム系触媒の欠点を
改良するだめの方法を提案した。The present applicant has previously proposed a method for improving the drawbacks of copper-chromium catalysts.
(特開昭36−.20J + /号)この提案は銅−ク
ロム系酸化物を特定温度で加熱処理した後、還元処理し
て得られる触媒を用いる方法であり、触媒としての活性
の向上及び副生物の生成迎割にかなりの効果が得られる
が、未だ、十分なものとは言えず、活性向及び触媒ライ
フの面で更に改善の余地があった。(Japanese Unexamined Patent Publication No. 36-20J+/No.) This proposal uses a catalyst obtained by heating a copper-chromium oxide at a specific temperature and then reducing it, which improves its activity as a catalyst and Although a considerable effect on the production rate of by-products can be obtained, it is still not sufficient, and there is still room for further improvement in terms of activity and catalyst life.
本発明者等は上記実情に鑑み、上述の銅−クロム系触媒
を更に、改良するために種々検討を行なった結果、ある
特定の処理法により特定量のカリウムを担持させた銅−
クロム系触媒をシクロヘキサノールの脱水素反応に使用
した場合には、よシ一段と反応内容が改善されることを
見い出し本発明を児成した0
すなわち、本発明の要旨は、シクロヘキサノールを脱水
素してシクロヘキサノンを製造する方法において、触媒
として、
■ 銅−クロム系酸化物を4!50−900℃の温度で
熱処理し、
■ 硝酸カリウム又は炭酸カリウムの水浴液への浸漬処
理により酸化物に対しカリウムとして0.0 / −0
,3重量%の該カリウム化合物を付着させ、
■ 300−!r00℃の温度で焼成し、■ 還元処理
する
ことによって得られる、銅ニクロムの原子比がg:2〜
λ:gの銅−クロム系触媒を用いることを特徴とするシ
クロヘキサノンの製造法に存する。In view of the above circumstances, the present inventors conducted various studies to further improve the above-mentioned copper-chromium catalyst.
The present invention was created by discovering that when a chromium-based catalyst is used in the dehydrogenation reaction of cyclohexanol, the reaction content is further improved. In the method for producing cyclohexanone, as a catalyst, (1) heat-treating a copper-chromium oxide at a temperature of 450-900°C; (2) immersing the oxide in a water bath solution of potassium nitrate or potassium carbonate to convert the oxide into potassium; 0.0 / -0
, 3% by weight of the potassium compound is deposited, ■ 300-! The atomic ratio of copper nichrome obtained by firing at a temperature of r00℃ and reduction treatment is g:2 ~
The present invention relates to a method for producing cyclohexanone characterized by using a copper-chromium catalyst with λ: g.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明はシクロヘキサノールを触媒の存在下、脱水素し
てシクロヘキサノンを製造する方法であるが、原料とし
て使用するシクロヘキサノールはどのような製法により
得たものでもよく、通常、シクロヘキサンの液相空気酸
化又はフェノールの水添反応により得られるシクロヘキ
サノールが使用される。The present invention is a method for producing cyclohexanone by dehydrogenating cyclohexanol in the presence of a catalyst, but the cyclohexanol used as a raw material may be obtained by any production method, and is usually obtained by liquid phase air oxidation of cyclohexane. Alternatively, cyclohexanol obtained by hydrogenation reaction of phenol is used.
本発明では銅−クロム系酸化物を後述する方法で処理し
て得られる銅−クロム系触媒を用いるが、銅−クロム系
触媒の銅ニクロムの比率は原子比としてざ:二〜:l:
g、好ましくは7:3〜3ニアである。クロムの含有量
かあ−t、b少ない場合には、触媒の耐久性が劣シ、ま
た、逆にあまり多い場合には、触媒活性が劣る。In the present invention, a copper-chromium catalyst obtained by treating a copper-chromium oxide by the method described below is used, and the ratio of copper dichrome in the copper-chromium catalyst is in the range of: 2 to 1:1 as an atomic ratio.
g, preferably 7:3 to 3 nia. If the chromium content is too low, the durability of the catalyst will be poor, and if it is too high, the catalytic activity will be poor.
触媒の調製に使用する銅−クロム系酸化物は例えば、下
記■〜■に示すような公知の方法に= 3−
より容易に得ることができる。The copper-chromium oxide used in the preparation of the catalyst can be easily obtained by, for example, the known methods shown in (1) to (3) below.
■ 銅およびクロムの水溶性化合物、具体的には、硝酸
塩、硫酸塩、塩化物のような無機塩、ギ酸塩、酢酸塩、
シュウ酸塩のような有機塩などを用い、所定の銅ニクロ
ム比の水溶液を調製し、これと苛性ソーダ、苛性カリの
ような苛性アルカリ、炭酸ソーダ、炭酸カリのような炭
酸アルカリ、アンモニア水、炭酸アンモニウムなどの沈
澱剤と混合して、銅−クロムの水酸化物を沈澱させ、こ
の沈澱を通常の触媒調製の方法に従って乾燥、200〜
SθO℃程度の温度で焼成する。■ Water-soluble compounds of copper and chromium, specifically inorganic salts such as nitrates, sulfates, chlorides, formates, acetates,
An aqueous solution with a predetermined copper-nichrome ratio is prepared using an organic salt such as oxalate, and this is combined with caustic soda, a caustic alkali such as caustic potash, soda carbonate, an alkali carbonate such as potassium carbonate, aqueous ammonia, and ammonium carbonate. Copper-chromium hydroxide is precipitated by mixing with a precipitant such as
It is fired at a temperature of about SθO°C.
■ 重クロム酸ソーダ、重クロム酸アンモニウムのよう
な重クロム酸塩の水溶液にアンモニア水を加えた溶液に
、銅塩の水溶液を加え、得られた沈澱を上記■における
と同様に乾燥、焼成する。■ An aqueous solution of a copper salt is added to an aqueous solution of a dichromate such as sodium dichromate or ammonium dichromate with aqueous ammonia, and the resulting precipitate is dried and calcined in the same manner as in (■) above. .
■ 銅塩の水溶液に酸化クロムを浸漬して、酸化クロム
上に銅塩を付着させ、上記■におけると同様に乾燥、焼
成する。(2) Dip chromium oxide in an aqueous solution of copper salt to adhere the copper salt to the chromium oxide, and dry and bake in the same manner as in (2) above.
■ クロム塩の水溶液に酸化鋼を浸漬して、酸化鋼の上
にクロム塩を付着させ、上記■におけると同様に乾燥、
焼成する。■ Immerse oxidized steel in an aqueous solution of chromium salt to adhere the chromium salt to the oxidized steel, dry as in above ■,
Fire.
■ 上記■の方法に準じて、銅の水酸化物およびクロム
の水酸化物を、それぞれ別個に調製し、内水酸化物を混
合して上記■におけると同様に乾燥、焼成する。(2) Copper hydroxide and chromium hydroxide are prepared separately according to the method (2) above, and the hydroxides are mixed and dried and fired in the same manner as in (2) above.
■ 銅およびクロムの塩を混合し、通常の触媒調整の方
法に従ってλθθ〜5θO℃程度の温度で焼成する。(2) Copper and chromium salts are mixed and calcined at a temperature of about λθθ to 5θ0°C according to a conventional catalyst preparation method.
■ 酸化鋼および酸化クロムを混合する。■ Mix oxidized steel and chromium oxide.
本発明では、上記のような方法で得られる銅−クロム系
酸化物をまず熱処理するが、この温度は6Sθ〜90θ
℃、好ましくは700〜tSO℃である。熱処理の温度
があまり低いと副反応の少ない触媒を得ることができず
、逆に、あまり高いと活性及び耐久性の高い触媒が得ら
れない。In the present invention, the copper-chromium oxide obtained by the above method is first heat-treated, and the temperature is 6Sθ to 90θ.
℃, preferably 700 to tSO ℃. If the heat treatment temperature is too low, a catalyst with few side reactions cannot be obtained; on the other hand, if the heat treatment temperature is too high, a catalyst with high activity and durability cannot be obtained.
熱処理は通常、銅−クロム系酸化物の比表面積が0.!
; −20tr?7 g、好1しくは/ 〜/ !r
rr?/ gとなる迄行なわれる。このための所要時間
は例えば、o、s〜30時間、好ましくは7〜20時間
8度である。また、熱処理は通常空気などの酸素含有ガ
ス中で実施されるが、窒素のような不活性ガス中で行っ
てもよい。Heat treatment is usually performed until the specific surface area of the copper-chromium oxide is 0. !
;-20tr? 7 g, preferably / ~ /! r
rr? / g. The time required for this is, for example, 8°C for 30 hours, preferably 7 to 20 hours. Further, although the heat treatment is usually carried out in an oxygen-containing gas such as air, it may also be carried out in an inert gas such as nitrogen.
熱処理を終えた鍋−クロム系酸化物は次いでカリウム付
着処理に供される。After the heat treatment, the pot-chromium oxide is then subjected to a potassium deposition treatment.
カリウム付着処理は、前8d酸化物を、硝酸カリウム又
は炭酸カリウムの、通常数%程度の稀薄水溶液中に数時
間〜数ノO時間程度、通常室温で浸漬し、常法によすF
遇し、70〜730℃程度の温匿で乾燥することによっ
て行なわれる。For the potassium adhesion treatment, the pre-8d oxide is immersed in a dilute aqueous solution of potassium nitrate or potassium carbonate, usually about a few percent, for several hours to several hours, usually at room temperature, and then subjected to F treatment using a conventional method.
It is carried out by drying at a temperature of about 70 to 730°C.
カリウム付着量は、前記濾過ないし乾燥後の酸化物に付
着している硝酸カリウム又は炭酸カリウムの量として、
酸化物に対しカリウムとしてo、oi〜o、 t 11
L量チ、好ましくはθ、Oコ〜θ、lI重′Ikチであ
る。The amount of potassium attached is the amount of potassium nitrate or potassium carbonate attached to the oxide after the filtration or drying.
o, oi~o, t 11 as potassium for oxide
The amount of L is preferably θ, O to θ, lI, Ik.
カリウム付着量が前記範囲よりも少ないと、所期の効果
が得られず、また、多いと、得られる触媒の活性が低下
する。If the amount of potassium deposited is less than the above range, the desired effect cannot be obtained, and if it is more than the above range, the activity of the resulting catalyst will be reduced.
かくして、カリウム付着処理を施された銅−クロム系酸
化物は次いで、30θ〜SθO℃、好ましくは330−
1’ &θ℃の温夏で、通常、/−20時間、焼成処理
される。この焼成温度があまり低くすぎる場合又はあま
り高すぎる場合には、カリウムを担持させた効果が発揮
されなくなるので好ましくない。Thus, the copper-chromium oxide subjected to the potassium deposition treatment is then heated to a temperature of 30θ to SθO°C, preferably 330-
The baking process is usually carried out for /-20 hours in a warm summer temperature of 1'& θ°C. If this firing temperature is too low or too high, the effect of supporting potassium will not be exhibited, which is not preferable.
焼成処理後の銅−クロム系酸化物は最後に還元処理され
、本発明のカリウムを担持した銅−クロム系触媒が得ら
れる。還元処理は、例えば、水素、−酸化炭素、メタノ
ール、ホルマリンなどを使用して、周知の手段によって
行うことができる。通常、水素または窒素、アルゴン、
二酸化炭素などの不活性ガスで希釈した水素を用い、1
0θ〜Sθθ℃、好ましくは15θ〜グθO℃程度の温
度で、還元に伴う発熱が認められなくなるまで還元処理
を行うのがよい。The copper-chromium based oxide after the calcination treatment is finally subjected to a reduction treatment to obtain the potassium-supported copper-chromium based catalyst of the present invention. The reduction treatment can be carried out by well-known means using, for example, hydrogen, carbon oxide, methanol, formalin, or the like. Usually hydrogen or nitrogen, argon,
Using hydrogen diluted with an inert gas such as carbon dioxide, 1
It is preferable to carry out the reduction treatment at a temperature of about 0θ to Sθθ°C, preferably about 15θ to 0°C, until heat generation accompanying the reduction is no longer observed.
本発明の銅−クロム系触媒は、粉末のまま、または打錠
、押し出しあるいは転動力どの方法によって成形して使
用する。成形は上記した触 7−
媒調製の任意の段階で行うことができる。The copper-chromium catalyst of the present invention may be used as a powder or after being molded by tabletting, extrusion, or rolling force. Shaping can be carried out at any stage of the catalyst preparation described above.
また、本発明では触媒成分中にその他の金属、例えばナ
トリウム、カルシウム、バリウム、亜鉛、マンガンなど
の金属を含有していてもよいが、該触媒中の銅およびク
ロムの合計量は、金属として30重量%以上、好ましく
はlIo重童チ以上であることが望筐しい。銅およびク
ロムの合計量があまりに少いと、熱処理の効果が十分出
現せず、活性および副反応抑制の両者を満足する触媒と
はなり得ない。Further, in the present invention, the catalyst component may contain other metals such as sodium, calcium, barium, zinc, manganese, etc., but the total amount of copper and chromium in the catalyst is 30% as metal. It is desirable that the amount is at least 1% by weight, preferably at least 10% by weight. If the total amount of copper and chromium is too small, the effect of the heat treatment will not be sufficiently manifested, and the catalyst will not be able to satisfy both activity and suppression of side reactions.
本発明は銅−クロム系酸化物に対して特定量のカリウム
を担持させるものであるが、本発明では後から担持させ
るカリウムとは別に、触媒調製に用いる銅−クロム系酸
化物中にカリウムを含有していても差し支えない。In the present invention, a specific amount of potassium is supported on the copper-chromium oxide, but in the present invention, apart from the potassium that is supported later, potassium is supported in the copper-chromium oxide used for catalyst preparation. There is no problem even if it contains.
本発明のシクロヘキサノールの脱水素反応は、通常、気
相で行い、触媒を固定床または流動床として使用するが
、工業的には固定床方式を採用するのがよい。The dehydrogenation reaction of cyclohexanol in the present invention is usually carried out in a gas phase, using a catalyst as a fixed bed or a fluidized bed, but industrially it is preferable to adopt a fixed bed system.
反応温度は、200〜yoo℃、好ましくは 8−
+25O〜3!rθ℃、特に好ましくは2A;0〜30
0℃である。反応温度があまり低いと転化率が不妊くな
る。逆にめまり商いと転化率は太きくなるが、副反応が
増大するようになるので好壕しくない。反応圧力は特に
制限はなく、減圧から加圧まで適用できるが、通常、常
圧付近の圧力を選ぶのがよい。The reaction temperature is 200 to yoo°C, preferably 8-+25O to 3! rθ°C, particularly preferably 2A; 0 to 30
It is 0°C. If the reaction temperature is too low, the conversion rate will be infertile. On the other hand, if the conversion ratio is high, the conversion rate will increase, but side reactions will increase, which is not favorable. The reaction pressure is not particularly limited and can be applied from reduced pressure to increased pressure, but it is usually best to choose a pressure around normal pressure.
原料シクロヘキサノールの供給速度は、液空間速度(L
H8V)で0./ −/ 00 hr−’ 、好ましく
は0.A; −20hr−18度を選ぶのがよい。また
、原料シクロヘキサノールは、窒素、水蒸気などの不活
性ガスで稀釈して供給してもよい。The feed rate of the raw material cyclohexanol is determined by the liquid hourly space velocity (L
H8V) and 0. /-/00 hr-', preferably 0. A: It is best to choose -20hr-18 degrees. Further, the raw material cyclohexanol may be diluted with an inert gas such as nitrogen or steam before being supplied.
本発明方法によるときは、特に長期間にわたり、副生物
が少く収率よくシクロヘキサノンを製造することができ
るので、工業的に極めて有利である。The method of the present invention is industrially extremely advantageous because cyclohexanone can be produced in high yield with few by-products, especially over a long period of time.
以下、実施例によって本発明を具体的に説明するが、本
発明はその要旨をこえない限り以下の実施例に限定され
るものではない。EXAMPLES The present invention will be specifically explained below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.
実施例/
(触媒の調製)
重クロム酸ソーダysogを脱塩水2tに溶解し、これ
に、2g係アンモニア水’I!rOmtを加えたのち、
これに、硝酸銅72311.硝酸マンガンg i/ 1
1及び硝酸バリウム26./ gを脱塩水5tに溶解し
た溶液を攪拌下、添加し沈澱を生成させた。生成した沈
澱を沖過し、水洗後、110℃で3時間乾燥し、次いで
、3θθ℃の温度で6時間、焼成することにより、銅ニ
クロム:マンガン:バリウムの原子比が3θ:3θ:3
:/の銅−クロム系酸化物を得た。Example/ (Preparation of catalyst) Sodium dichromate ysog was dissolved in 2 t of demineralized water, and 2 g of aqueous ammonia 'I! After adding rOmt,
In addition, copper nitrate 72311. Manganese nitrate g i/1
1 and barium nitrate26. /g dissolved in 5 t of demineralized water was added under stirring to form a precipitate. The generated precipitate was filtered, washed with water, dried at 110°C for 3 hours, and then calcined at a temperature of 3θθ°C for 6 hours to obtain an atomic ratio of copper nichrome: manganese: barium of 3θ:3θ:3.
A copper-chromium oxide of :/ was obtained.
この銅−クロム系酸化物を打錠により円柱状錠剤(高さ
6鬼、径6%)に成形後、7左O℃の温度で空気中にて
2時間、熱処理したのち、次いで、ハ2 wt%硝酸カ
リウム水溶液中に室温にて20時間、浸漬させた。そし
て、銅−クロム系酸化物を遠心′p過し、空気中、70
℃の温度で一〇時間、乾燥したのぢ、1loo℃の温度
でユ時間、焼成を行ない、次いで、約J、y%径の大き
さに破砕した1、この粒状物S−を内径/3′Xnのス
テンレス製管状反応器に充填し、H2S VDl %及
びN293 vo1%の混合ガスを3017hrの速度
で110℃の@度にて6時間、更に、/ざo−;tso
℃の温度で左時間、流通させ、還元処理を行ない、本発
明の触媒を得た。This copper-chromium oxide was formed into a cylindrical tablet (height: 6 mm, diameter: 6%) by tableting, and then heat treated in air at a temperature of 7° C. for 2 hours. It was immersed in a wt% potassium nitrate aqueous solution at room temperature for 20 hours. Then, the copper-chromium oxide was centrifuged and placed in air for 70 minutes.
The granules S- were dried at a temperature of 100°C for 10 hours, fired at a temperature of 100°C for 1 hour, and then crushed to a size of about J,y% diameter. 'Xn stainless steel tubular reactor was filled with a mixed gas of H2S VDl % and N293 vol 1% at a rate of 3017 hr at 110 °C for 6 hours, and then /zao-;tso
The catalyst of the present invention was obtained by circulating the mixture at a temperature of 0.degree. C. for a certain period of time and performing a reduction treatment.
なお、このようにして得た触媒中のカリウム担持量は、
酸化物換算の銅及びクロノ、に対して、カリウムとして
0./ 9 wt%でめった。The amount of potassium supported in the catalyst obtained in this way is
0.0 as potassium for copper and chrono in terms of oxides. / 9 wt% was rare.
(シクロヘキサノールの脱水素反応)
上述のようにして得た触媒を用いてシクロヘキサノール
の脱水素反応を行なった。触媒の充填された前記管状反
応器の入口温度をユ乙0℃、出口温度を、2SO℃に保
ち、これに、予熱気化させた粗シクロヘキサノール(シ
クロヘキサノールg Owt%、シクロヘキサノンg
wt%、ソの他成分/ 、2 wt% )をLH8V
、20 hr−’の速度で供給し、反応器内圧力0.3
!; K9/cF!Gにて連続反応を行なった。(Dehydrogenation reaction of cyclohexanol) A dehydrogenation reaction of cyclohexanol was carried out using the catalyst obtained as described above. The inlet temperature of the tubular reactor filled with the catalyst was maintained at 0°C and the outlet temperature at 2SO°C, and preheated and vaporized crude cyclohexanol (cyclohexanol g Owt%, cyclohexanone g Owt%) was added to the reactor.
wt%, other components/, 2 wt%) to LH8V
, 20 hr-', and the reactor internal pressure was 0.3
! ; K9/cF! Continuous reactions were carried out at G.
反応開始より乙時間後のシクロヘキサノール転換率につ
き、反応生成物をガスクロマドクラ11−
フにて分析することにより求め、第1表に示す結果’(
5得た。The cyclohexanol conversion rate after an hour from the start of the reaction was determined by analyzing the reaction product in a gas chromatography chamber, and the results are shown in Table 1.
I got 5.
実施例2〜3
実施例/の方法において、触媒の調製工程で使用する硝
酸カリウムの譲贋を変えることにより、触媒のカリウム
担持前を第7表に示すように調節して、実施例/と同様
な力汰にてテストを行ない、第1衣に示す結果を得た。Examples 2 to 3 In the method of Example//, by changing the amount of potassium nitrate used in the catalyst preparation step, the catalyst before potassium loading was adjusted as shown in Table 7, and the same as Example// was carried out. A test was conducted using a large force, and the results shown in the first article were obtained.
実施例グ
実施例/の方法において、触媒の調製工程で硝酸カリウ
ム水溶液の代りに、炭酸カリウム水浴′lF!Lを用い
て、実施例/と同様な方法にてテストを行ない、814
/表に示す結果を得た。Example In the method of Example/, a potassium carbonate water bath was used in place of the potassium nitrate aqueous solution in the catalyst preparation process. Using L, a test was conducted in the same manner as in Example/, and 814
/The results shown in the table were obtained.
比較例/
実施例/の方法において、触媒の調製工程で硝酸カリウ
ム水浴液中への浸漬を省略し、実施例/と同様な方法に
てテストを行ない、第1表に示す結果を得た。Comparative Example/Example/In the method of Example/, immersion in a potassium nitrate aqueous bath solution was omitted in the catalyst preparation step, and a test was conducted in the same manner as in Example/, and the results shown in Table 1 were obtained.
12−
第1表
(注)K担持量
還元処理前の触媒中の酸化銅及び酸化クロムの和に対す
るカリウムとしての含有量を示す。12- Table 1 (Note) Amount of K supported The content as potassium relative to the sum of copper oxide and chromium oxide in the catalyst before reduction treatment is shown.
実施例S
実施例/の触媒の調製工程において、焼成処理後のカリ
ウムを担持した銅−クロム系酸化物lItを粉砕するこ
となく、内径32%、長さ6mのステンレス製管状反応
器に充填し、H,3VOI%及びN2?夕VOI%の混
合ガスを3−〇O1/hrの速度で、1gθ℃の温度に
て乙時間、/gO〜ユSO℃の温度で5時間、流通させ
還元処理を行なった。Example S In the catalyst preparation process of Example /, the potassium-supported copper-chromium oxide lIt after the calcination treatment was filled into a stainless steel tubular reactor with an inner diameter of 32% and a length of 6 m without pulverization. , H,3VOI% and N2? A reduction treatment was carried out by flowing a mixed gas of VOI% at a rate of 3-0 O1/hr at a temperature of 1 gθ°C for 2 hours and at a temperature of /gO to 0°C for 5 hours.
次いで、前記反応器の入口及び出口温度を、270℃に
保ち、これに、需用にて実施例/と同様の粗シクロヘキ
サノールを予熱気化させ、L ](SV 、2..2
hr−’の速度で供給し連続反応を行なった。Next, the inlet and outlet temperatures of the reactor were maintained at 270° C., and crude cyclohexanol similar to that in Example/was preheated and vaporized as required.
Continuous reaction was carried out by feeding at a rate of hr-'.
反応開始よp、xlIθ時間後のシクロヘキサノール転
換率を実施例/と同様にして求めたところ、第、2表に
示す結果を得た。The cyclohexanol conversion rate p, xlIθ hours after the start of the reaction was determined in the same manner as in Example 1, and the results shown in Table 2 were obtained.
比較例ユ
実施例左の方法において、触媒]の調製工程で硝酸カリ
ウム水溶液の浸醒を行なわなかった触媒を用いて、実施
例、ダと同様な方法にてテストを行ない、第2表に示す
結果を得た。Comparative Example U In the method on the left of Example 2, using a catalyst that was not immersed with an aqueous potassium nitrate solution in the preparation step of the catalyst, a test was conducted in the same manner as in Example 2, and the results are shown in Table 2. I got it.
第2表 一]5− 285−Table 2 1] 5- 285-
Claims (1)
サノンを製造する方法において、触媒として、 ■ 銅−クロム系酸化物を65O〜り00℃の温度で熱
処理し、 ■ 硝酸カリウム又は炭酸カリウムの水溶液への浸漬処
理により酸化物に対しカリウムとして0.07〜0−A
iM量%の該カリウム化合物を付着させ、 ■ 300〜500℃の温度で焼成し、■ 還元処理す
る ことによって得られる、銅ニクロムの原子比がg:2〜
ツ:どの銅−クロム系触媒を用いることを特徴とするシ
クロヘキサノンの製造法。(1) In the method of producing cyclohexanone by dehydrogenating cyclohexanol, as a catalyst: (1) heat treatment of a copper-chromium oxide at a temperature of 650 to 000C, (2) immersion treatment in an aqueous solution of potassium nitrate or potassium carbonate. 0.07 to 0-A as potassium to oxide
The atomic ratio of copper nichrome obtained by depositing iM% of the potassium compound, (1) firing at a temperature of 300 to 500°C, and (2) reduction treatment is such that the atomic ratio of copper nichrome is from g:2 to
T: A method for producing cyclohexanone characterized by using which copper-chromium catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57040580A JPS58157741A (en) | 1982-03-15 | 1982-03-15 | Production of cyclohexanone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57040580A JPS58157741A (en) | 1982-03-15 | 1982-03-15 | Production of cyclohexanone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58157741A true JPS58157741A (en) | 1983-09-19 |
JPH0328407B2 JPH0328407B2 (en) | 1991-04-19 |
Family
ID=12584423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57040580A Granted JPS58157741A (en) | 1982-03-15 | 1982-03-15 | Production of cyclohexanone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58157741A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5620541A (en) * | 1979-07-30 | 1981-02-26 | Mitsubishi Chem Ind Ltd | Preparation of cyclohexanone |
-
1982
- 1982-03-15 JP JP57040580A patent/JPS58157741A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5620541A (en) * | 1979-07-30 | 1981-02-26 | Mitsubishi Chem Ind Ltd | Preparation of cyclohexanone |
Also Published As
Publication number | Publication date |
---|---|
JPH0328407B2 (en) | 1991-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NZ210651A (en) | Palladium/rhenium catalyst and preparation of tetrahydrofuran and 1,4-butanediol | |
US5347021A (en) | Process of vapor phase catalytic hydrogenation of maleic anhydride to gamma-butyrolactone in high conversion and high selectivity using an activated catalyst | |
TW200533415A (en) | Modified catalysts and process | |
JP2000511548A (en) | An industrial method for heterogeneous catalytic gas-phase oxidation of propane to acrolein | |
TW200538198A (en) | Modified catalysts and process | |
JPH0275346A (en) | High temperature shift catalyst | |
JP3763738B2 (en) | Catalyst for producing lactones and method for producing lactones | |
JPS6123175B2 (en) | ||
JP3465350B2 (en) | Method for producing catalyst for methacrylic acid production | |
EP0146099B1 (en) | A process for producing acrylic acid by oxidation of acrolein and a novel catalyst useful thereof | |
JPH0417954B2 (en) | ||
JPS58157741A (en) | Production of cyclohexanone | |
JPH0427968B2 (en) | ||
CZ291458B6 (en) | Dehydrogenation process of secondary cyclic alcohols, dehydrogenation catalyst, process of its preparation and use | |
US3525701A (en) | Oxidation catalyst of an oxide composition of antimony,tin and copper | |
JPH031059B2 (en) | ||
JPH0158170B2 (en) | ||
KR830000880B1 (en) | Method for preparing cyclohexanone | |
US6566292B2 (en) | Process for the enhancement of the cycle life of a zinc-chromium based catalyst in the synthesis of 2-methylpyrazine | |
JPS6345658B2 (en) | ||
WO2005113144A1 (en) | Process for producing catalyst for unsaturated carboxylic acid production | |
JPS5885834A (en) | Formaldehyde manufacture | |
US5985786A (en) | Packed silver-catalyst bed doped with phosphorus | |
CN114591156A (en) | Method for preparing methacrolein and co-producing methacrylonitrile by oxidizing isobutene | |
US3378501A (en) | Catalyst for the production of saturated aldehydes |