JPH0328407B2 - - Google Patents

Info

Publication number
JPH0328407B2
JPH0328407B2 JP57040580A JP4058082A JPH0328407B2 JP H0328407 B2 JPH0328407 B2 JP H0328407B2 JP 57040580 A JP57040580 A JP 57040580A JP 4058082 A JP4058082 A JP 4058082A JP H0328407 B2 JPH0328407 B2 JP H0328407B2
Authority
JP
Japan
Prior art keywords
copper
catalyst
chromium
potassium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57040580A
Other languages
Japanese (ja)
Other versions
JPS58157741A (en
Inventor
Akio Tamaru
Yoshio Kanemasa
Takayuki Yoshida
Koji Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP57040580A priority Critical patent/JPS58157741A/en
Publication of JPS58157741A publication Critical patent/JPS58157741A/en
Publication of JPH0328407B2 publication Critical patent/JPH0328407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシクロヘキサノンの製造法に関するも
のである。 シクロヘキサノンは通常、シクロヘキサノール
を触媒の存在下、脱水素反応させて製造される
が、この反応では例えば、フエノールなどの副生
物が多量に生成する傾向がある。そのため、この
反応に用いる触媒としては、単に、活性が高いの
みならず、副生物の生成が低いものを選ぶ必要が
ある。しかしながら、従来より知られている代表
的な触媒である銅−クロム系触媒を用いた場合に
は、触媒としての活性は高いが、やはり相当量の
副生物の生成は避けられない。 本出願人は先に、このような銅−クロム系触媒
の欠点を改良するための方法を提案した。(特開
昭56−20,541号)この提案は銅−クロム系酸化
物を特定温度で加熱処理した後、還元処理して得
られる触媒を用いる方法であり、触媒としての活
性の向上及び副生物の生成抑制にかなりの効果が
得られるが、未だ、十分なものとは言えず、活性
面及び触媒ライフの面で更に改善の余地がたつ
た。 本発明者等は上記実情に鑑み、上述の銅−クロ
ム系触媒を更に、改良するために種々検討を行な
つた結果、ある特定の処理法により特定量のカリ
ウムを担持させた銅−クロム系触媒をシクロヘキ
サノールの脱水素反応に使用した場合には、より
一段と反応内容が改善されることを見い出し本発
明を完成した。 すなわち、本発明の要旨は、シクロヘキサノー
ルを脱水素してシクロヘキサノンを製造する方法
において、触媒として、 銅−クロム系酸化物を650〜900℃の温度で熱
処理し、 硝酸カリウム又は炭酸カリウムの水溶液への
浸漬処理により酸化物に対しカリウムとして
0.01〜0.5重量%の該カリカム化合物を付着さ
せ、 300〜500℃の温度で焼成し、 還元処理する ことによつて得られる、銅:クロムの原子比が
8:2〜2:8の銅−クロム系触媒を用いること
を特徴とするシクロヘキサノンの製造法に存す
る。 以下、本発明を詳細に説明する。 本発明はシクロヘキサノールを触媒の存在下、
脱水素してシクロヘキサノンを製造する方法であ
るが、原料として使用するシクロヘキサノールは
どのような製法により得たものでもよく、通常、
シクロヘキサンの液相空気酸化又はフエノールの
水添反応により得られるシクロヘキサノールが使
用される。 本発明では銅−クロム系酸化物を後述する方法
で処理して得られる銅−クロム系触媒を用いる
が、銅−クロム系触媒の銅:クロムの比率は原子
比として8:2〜2:8、好ましくは7:3〜
3:7である。クロムの含有量があまり少ない場
合には、触媒の耐久性が劣り、また、逆にあまり
多い場合には、触媒活性が劣る。 触媒の調整に使用する銅−クロム系酸化物は例
えば、下記〜に示すような公知の方法により
容易に得ることができる。 銅およびクロムの水溶性化合物、具体的に
は、硝酸塩、硫酸塩、塩化物のような無機塩、
ギ酸塩、酢酸塩、シユウ酸塩のような有機塩な
どを用い、所定の銅:クロム比の水溶液を調整
し、これと苛性ソーダ、苛性カリのような苛性
アルカリ、炭酸ソーダ、炭酸カリのような炭酸
アルカリ、アンモニア水、炭酸アンモニウムな
どの沈澱剤と混合して、銅−クロムの水酸化物
を沈澱させ、この沈澱を通常の触媒調整の方法
に従つて乾燥、200〜500℃程度の温度で焼成す
る。 重クロム酸ソーダ、重クロム酸アンモニウム
のような重クロム酸塩の水溶液にアンモニア水
を加えた溶液に、銅塩の水溶液を加え、得られ
た沈澱を上記におけると同様に乾燥、焼成す
る。 銅塩の水溶液に酸化クロムを浸漬して、酸化
クロム上に銅塩に付着させ、上記におけると
同様に乾燥、焼成する。 クロム塩の水溶液に酸化銅を浸漬して、酸化
銅の上にクロム塩を付着させ、上記における
と同様に乾燥、焼成する。 上記の方法に準じて、銅の水酸化物および
クロムの水酸化物を、それぞれ別個に調整し、
両水酸化物を混合して上記におけると同様に
乾燥、焼成する。 銅およびクロムの塩を混合し、通常の触媒調
整の方法に従つて200〜500℃程度の温度で焼成
する。 酸化銅および酸化クロムを混合する。 本発明では、上記のような方法で得られる銅−
クロム系酸化物をまず熱処理するが、この温度は
650〜900℃、好ましくは700〜850℃である。熱処
理の温度があまり低いと副反応の少ない触媒を得
ることができず、逆に、あまり高いと活性及び耐
久性の高い触媒が得られない。 熱処理は通常、銅−クロム系酸化物の比表面積
が0.5〜20m2/g、好ましくは1〜15m2/gとな
る迄行なわれる。このための所要時間は例えば、
0.5〜30時間、好ましくは1〜20時間程度である。
また、熱処理は通常空気などの酸素含有ガス中で
実施されるが、窒素のような不活性ガス中で行つ
てもよい。 熱処理を終えた銅−クロム系酸化物は次いでカ
リウム付着処理に供される。 カリウム付着処理は、前記酸化物を、硝酸カリ
ウム又は炭酸カリウムの、通常数%程度の稀薄水
溶液中に数時間〜数10時間程度、通常室温で浸漬
し、通常により過し、70〜150℃程度の温度で
乾燥することによつて行なわれる。カリウム付着
量は、前記過ないし乾燥後の酸化物に付着して
いる硝酸カリウム又は炭酸カリウムの量として、
酸化物に対しカリウムとして0.01〜0.5重量%、
好ましくは0.02〜0.4重量%である。 カリウム付着量が前記範囲よりも少ないと、所
期の効果が得られず、また、多いと、得られる触
媒の活性が低下する。 かくして、カリウム付着処理を施された銅−ク
ロム系酸化物は次いで、300〜500℃、好ましくは
330〜450℃の温度で、通常、1〜20時間、焼成処
理される。この焼成温度があまりに低くすぎる場
合又はあまり高すぎる場合には、カリウムを担持
させた効果が発揮されなくなるので好ましくな
い。 焼成処理後の銅−クロム系酸化物は最後に還元
処理され、本発明のカリウムを担持した銅−クロ
ム系触媒が得られる。還元処理は、例えば、水
素、一酸化炭素、メタノール、ホルマリンなどを
使用して、周知の手段によつて行うことができ
る。通常、水素または窒素、アルゴン、二酸化炭
素などの不活性ガスで希釈した水素を用い、100
〜500℃、好ましくは150〜400℃程度の温度で、
還元に伴う発熱が認められなくなるまで還元処理
を行うのがよい。 本発明の銅−クロム系触媒は、粉末のまま、ま
たは打錠、押し出しあるいは転動などの方法によ
つて成形して使用する。成形は上記した触媒調製
の任意の段階で行うことができる。 また、本発明では触媒成分中にその他の金属、
例えばナトリウム、カルシウム、バリウム、亜
鉛、マンガンなどの金属を含有していてもよい
が、該触媒中の銅およびクロムの合計量は、金属
として30重量%以上、好ましくは40重量%以上で
あることが望ましい。銅およびクロムの合計量が
あまりに少ないと、熱処理の効果が十分出現せ
ず、活性および副反応抑制の両者を満足する触媒
とはなり得ない。 本発明は銅−クロム系酸化物に対して特定量の
カリウムを担持させるものであるが、本発明では
後から担持させるカリウムとは別に、触媒調製に
用にる銅−クロム系酸化物中にカリウムを含有し
ていても差し支えない。 本発明のシクロヘキサノールの脱水素反応は、
通常、気相で行い、触媒を固定床または流動床と
して使用するが、工業的には固定床方式を採用す
るのがよい。 反応温度は、200〜400℃、好ましくは250〜350
℃、特に好ましくは250〜300℃である。反応温度
があまり低いと転化率が小さくなる。逆にあまり
高いと転化率は大きくなるが、副反応が増大する
ようになるので好ましくない。反応圧力は特に制
限はなく、減圧から加圧まで適用できるが、通
常、常圧付近の圧力を選ぶのがよい。 原料シクロヘキサノールの供給速度は、液空間
速度(LHSV)で0.1〜100hr-1、好ましくは0.5〜
20hr-1程度を選ぶのがよい。また、原料シクロヘ
キサノールは、窒素、水蒸気などの不活性ガスで
稀釈して供給してもよい。 本発明方法によるときは、特に長期間にわた
り、副成物が少く収率よくシクロヘキサノンを製
造することができるので、工業的に極めて有利で
ある。 以下、実施例によつて本発明を具体的に説明す
るが、本発明はその要旨をこえない限り以下の実
施例に限定されるものではない。 実施例 1 (触媒の調製) 重クロム酸ソーダ450gを脱塩水2に溶解し、
これに28%アンモニア水450mlを加えたのち、こ
れに、硝酸銅725g、硝酸マンガン86.1g及び硝酸
バリウム26.1gを脱塩水5に溶解した溶液を攬
拌下、添加し沈澱を生成させた。生成した沈澱を
過し、水洗後、110℃で8時間乾燥し、次いで、
300℃の温度で6時間、焼成することにより、
銅:クロム:マガジン:バリウムの原子比が30:
30:3:1の銅−クロム系酸化物を得た。 この銅−クロム系酸化物を打錠により円柱状錠
剤(高さ6m/m、径6m/m)に成形後、750℃
の温度で空気中にて2時間、熱処理したのち、次
いで、1.2wt%硝酸カリウム水溶液中に室温にて
20時間、浸漬させた。そして、銅−クロム系酸化
物を遠心過し、空気中、70℃の温度で20時間、
乾燥したのち、400℃の温度で2時間、焼成を行
ない、次いで、約3.4m/m径の大きさに破砕し
た。この粒状物5mlを内径13m/mのステンレス
製管状反応器に充填し、H25Vo1%及びN295vo1
%の混合ガスを30/hrの速度で180℃の屋度に
て6時間、更に、180〜250℃の温度で5時間、流
通させ、還元処理を行ない、本発明の触媒を得
た。 なお、このようにして得た触媒中のカリウム担
持量は、酸化物換算の銅及びクロムに対して、カ
リウムとして0.19wt%であつた。 (シクロヘキサノールの脱水素反応) 上述のようにして得た触媒を用いてシクロヘキ
サノールの脱水素反応を行なつた。触媒の充填さ
れた前記管状反応器の入口温度を260℃、出口温
度を250℃に保ち、これに、予熱気化させた粗シ
クロヘキサノール(シクロヘキサノール80wt%、
シクロヘキサノン8wt%、その他成分12wt%)を
LHSV20hr-1の速度で供給し、反応器内圧力0.55
Kg/cm2Gにて連続反応を行なつた。 反応開始より6時間後のシクロヘキサノール転
換率につき、反応生成分をガスクロマトグラフに
て分析することにより求め、第1表に示す結果を
得た。 実施例 2〜3 実施例1の方法において、触媒の調製工程で使
用する硝酸カリウムの濃度を変えることにより、
触媒のカリウム担持量を第1表に示すように調節
して、実施例1と同様な方法にてテストを行な
い、第1表に示す結果を得た。 実施例 4 実施例1の方法において、触媒の調製工程で硝
酸カリウム水溶液の代りに、炭酸カリウム水溶液
を用いて、実施例1と同様な方法にてテストを行
ない、第1表に示す結果を得た。 比較例 1 実施例1の方法において、触媒の調製工程で硝
酸カリウム水溶液中への浸漬を省略し、実施例1
と同様な方法にてテストを行ない、第1表に示す
結果を得た。
The present invention relates to a method for producing cyclohexanone. Cyclohexanone is usually produced by subjecting cyclohexanol to a dehydrogenation reaction in the presence of a catalyst, but this reaction tends to produce large amounts of by-products such as phenol. Therefore, it is necessary to select a catalyst for use in this reaction that not only has high activity but also produces low levels of by-products. However, when a copper-chromium catalyst, which is a typical conventionally known catalyst, is used, although the catalytic activity is high, the production of a considerable amount of by-products is still unavoidable. The present applicant has previously proposed a method for improving the drawbacks of such copper-chromium catalysts. (Japanese Unexamined Patent Publication No. 56-20, 541) This proposal uses a catalyst obtained by heating a copper-chromium oxide at a specific temperature and then reducing it. Although a considerable effect was obtained in suppressing the production of living organisms, it was still not sufficient, and there was still room for further improvement in terms of activity and catalyst life. In view of the above circumstances, the present inventors conducted various studies to further improve the copper-chromium catalyst described above. The inventors have completed the present invention by discovering that when a catalyst is used in the dehydrogenation reaction of cyclohexanol, the reaction content is further improved. That is, the gist of the present invention is to provide a method for producing cyclohexanone by dehydrogenating cyclohexanol, which includes heat treating a copper-chromium oxide as a catalyst at a temperature of 650 to 900°C, and adding it to an aqueous solution of potassium nitrate or potassium carbonate. As potassium for oxides by immersion treatment
Copper with a copper:chromium atomic ratio of 8:2 to 2:8, obtained by depositing 0.01 to 0.5% by weight of the calicum compound, firing at a temperature of 300 to 500°C, and performing reduction treatment. A method for producing cyclohexanone characterized by using a chromium-based catalyst. The present invention will be explained in detail below. The present invention uses cyclohexanol in the presence of a catalyst,
This is a method of producing cyclohexanone by dehydrogenation, but the cyclohexanol used as a raw material may be obtained by any manufacturing method, and usually,
Cyclohexanol obtained by liquid phase air oxidation of cyclohexane or hydrogenation reaction of phenol is used. In the present invention, a copper-chromium catalyst obtained by treating a copper-chromium oxide by the method described below is used, and the copper:chromium ratio of the copper-chromium catalyst is 8:2 to 2:8 as an atomic ratio. , preferably 7:3~
The ratio is 3:7. If the chromium content is too low, the durability of the catalyst will be poor, and if the chromium content is too high, the catalyst activity will be poor. The copper-chromium oxide used for preparing the catalyst can be easily obtained, for example, by the known methods shown below. water-soluble compounds of copper and chromium, specifically inorganic salts such as nitrates, sulfates, and chlorides;
Using organic salts such as formate, acetate, and oxalate, an aqueous solution with a specified copper:chromium ratio is prepared, and this is combined with a caustic alkali such as caustic soda, caustic potash, carbonic acid such as sodium carbonate, and potassium carbonate. Copper-chromium hydroxide is precipitated by mixing with a precipitant such as alkali, aqueous ammonia, or ammonium carbonate, and this precipitate is dried according to the usual catalyst preparation method and calcined at a temperature of about 200 to 500℃. do. An aqueous solution of a copper salt is added to an aqueous solution of a dichromate such as sodium dichromate or ammonium dichromate and aqueous ammonia, and the resulting precipitate is dried and calcined in the same manner as described above. Chromium oxide is immersed in an aqueous solution of copper salt, and the copper salt is deposited on the chromium oxide, followed by drying and firing in the same manner as above. Copper oxide is immersed in an aqueous solution of chromium salt to adhere the chromium salt onto the copper oxide, and then dried and fired in the same manner as above. According to the above method, copper hydroxide and chromium hydroxide were prepared separately,
Both hydroxides are mixed, dried and fired in the same manner as above. Copper and chromium salts are mixed and calcined at a temperature of about 200 to 500°C according to a conventional catalyst preparation method. Mix copper oxide and chromium oxide. In the present invention, copper-
The chromium-based oxide is first heat-treated, but this temperature is
The temperature is 650-900°C, preferably 700-850°C. If the heat treatment temperature is too low, a catalyst with few side reactions cannot be obtained; on the other hand, if the heat treatment temperature is too high, a catalyst with high activity and durability cannot be obtained. The heat treatment is usually carried out until the specific surface area of the copper-chromium oxide becomes 0.5 to 20 m 2 /g, preferably 1 to 15 m 2 /g. The time required for this is e.g.
It is about 0.5 to 30 hours, preferably about 1 to 20 hours.
Further, although the heat treatment is usually carried out in an oxygen-containing gas such as air, it may also be carried out in an inert gas such as nitrogen. After the heat treatment, the copper-chromium oxide is then subjected to potassium deposition treatment. In the potassium adhesion treatment, the oxide is immersed in a dilute aqueous solution of potassium nitrate or potassium carbonate, usually about a few percent, for several hours to several tens of hours, usually at room temperature, and then heated to about 70 to 150 degrees Celsius. This is done by drying at high temperatures. The amount of potassium attached is the amount of potassium nitrate or potassium carbonate attached to the oxide after drying.
0.01-0.5% by weight of potassium based on oxide,
Preferably it is 0.02 to 0.4% by weight. If the amount of potassium deposited is less than the above range, the desired effect cannot be obtained, and if it is more than the above range, the activity of the resulting catalyst will be reduced. Thus, the copper-chromium oxide subjected to the potassium deposition treatment is then heated to 300 to 500°C, preferably
The firing process is carried out at a temperature of 330 to 450°C, usually for 1 to 20 hours. If this firing temperature is too low or too high, the effect of supporting potassium will not be exhibited, which is not preferable. The copper-chromium based oxide after the calcination treatment is finally subjected to a reduction treatment to obtain the potassium-supported copper-chromium based catalyst of the present invention. The reduction treatment can be performed by well-known means using, for example, hydrogen, carbon monoxide, methanol, formalin, or the like. Usually, hydrogen or hydrogen diluted with an inert gas such as nitrogen, argon, or carbon dioxide is used to
~500℃, preferably at a temperature of about 150~400℃,
It is preferable to carry out the reduction treatment until no heat generation accompanying the reduction is observed. The copper-chromium catalyst of the present invention is used as a powder or after being formed by a method such as tableting, extrusion, or rolling. Shaping can be carried out at any stage of the catalyst preparation described above. In addition, in the present invention, other metals are included in the catalyst component.
For example, the catalyst may contain metals such as sodium, calcium, barium, zinc, and manganese, but the total amount of copper and chromium in the catalyst should be 30% by weight or more, preferably 40% by weight or more as metals. is desirable. If the total amount of copper and chromium is too small, the effect of heat treatment will not be sufficiently manifested, and the catalyst will not be able to satisfy both activity and suppression of side reactions. In the present invention, a specific amount of potassium is supported on a copper-chromium oxide. There is no problem even if it contains potassium. The dehydrogenation reaction of cyclohexanol of the present invention is
Usually, it is carried out in a gas phase, and the catalyst is used as a fixed bed or a fluidized bed, but it is preferable to adopt a fixed bed method industrially. The reaction temperature is 200-400℃, preferably 250-350℃
℃, particularly preferably 250 to 300℃. If the reaction temperature is too low, the conversion rate will be low. On the other hand, if it is too high, the conversion rate will increase, but side reactions will increase, which is not preferable. The reaction pressure is not particularly limited and can be applied from reduced pressure to increased pressure, but it is usually best to choose a pressure around normal pressure. The feed rate of the raw material cyclohexanol is 0.1 to 100 hr -1 in liquid hourly space velocity (LHSV), preferably 0.5 to 100 hr -1
It is best to choose around 20hr -1 . Further, the raw material cyclohexanol may be diluted with an inert gas such as nitrogen or steam before being supplied. The method of the present invention is industrially extremely advantageous because cyclohexanone can be produced in high yield with few by-products, especially over a long period of time. EXAMPLES The present invention will be specifically explained below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 (Preparation of catalyst) Dissolve 450 g of sodium dichromate in demineralized water 2,
After adding 450 ml of 28% ammonia water to this, a solution prepared by dissolving 725 g of copper nitrate, 86.1 g of manganese nitrate, and 26.1 g of barium nitrate in 55 g of demineralized water was added under stirring to form a precipitate. The formed precipitate was filtered, washed with water, dried at 110°C for 8 hours, and then
By baking at a temperature of 300℃ for 6 hours,
The atomic ratio of copper:chromium:magazine:barium is 30:
A copper-chromium oxide having a ratio of 30:3:1 was obtained. This copper-chromium oxide was formed into cylindrical tablets (height 6m/m, diameter 6m/m) at 750°C.
After heat treatment in air for 2 hours at a temperature of
Soaked for 20 hours. The copper-chromium oxide was then centrifuged and left in the air at a temperature of 70°C for 20 hours.
After drying, it was fired at a temperature of 400° C. for 2 hours, and then crushed into pieces with a diameter of about 3.4 m/m. 5 ml of this granular material was filled into a stainless steel tubular reactor with an inner diameter of 13 m/m, and H 2 5 Vo1% and N 2 95 Vo1
% mixed gas was passed at a rate of 30/hr at a temperature of 180°C for 6 hours and then at a temperature of 180 to 250°C for 5 hours to carry out a reduction treatment to obtain a catalyst of the present invention. The amount of potassium supported in the catalyst thus obtained was 0.19 wt% as potassium based on copper and chromium in terms of oxides. (Dehydrogenation reaction of cyclohexanol) A dehydrogenation reaction of cyclohexanol was carried out using the catalyst obtained as described above. The inlet temperature of the tubular reactor filled with the catalyst was maintained at 260°C and the outlet temperature at 250°C, and preheated and vaporized crude cyclohexanol (cyclohexanol 80wt%,
cyclohexanone 8wt%, other ingredients 12wt%)
Feed at a rate of LHSV20hr -1 , reactor internal pressure 0.55
Continuous reactions were carried out at Kg/cm 2 G. The cyclohexanol conversion rate 6 hours after the start of the reaction was determined by analyzing the reaction product using a gas chromatograph, and the results shown in Table 1 were obtained. Examples 2 to 3 In the method of Example 1, by changing the concentration of potassium nitrate used in the catalyst preparation step,
A test was conducted in the same manner as in Example 1, with the amount of potassium supported on the catalyst adjusted as shown in Table 1, and the results shown in Table 1 were obtained. Example 4 A test was conducted in the same manner as in Example 1 except that a potassium carbonate aqueous solution was used in place of the potassium nitrate aqueous solution in the catalyst preparation process, and the results shown in Table 1 were obtained. . Comparative Example 1 In the method of Example 1, immersion in potassium nitrate aqueous solution was omitted in the catalyst preparation step, and Example 1
A test was conducted in the same manner as above, and the results shown in Table 1 were obtained.

【表】【table】

【表】 比較例 2〜3 実施例1の方法において、触媒の調製工程で硝
酸カリウム水溶液の代りに、水酸化カリウム水溶
液又は硫酸カリウム水溶液を用いて、実施例1と
同様な方法にてテストを行ない、第1表に示す結
果を得た。 比較例 4〜5 実施例1の方法において、触媒の調製工程で使
用する硝酸カリウムの濃度を変え、触媒のカリウ
ム担持量を第1表に示すように調節して、実施例
1と同様な方法にてテストを行ない、第1表に示
す結果を得た。 実施例 5 実施例1の触媒の調整工程において、焼成処理
後のカリウムを担持した銅−クロム系酸化物4
を紛砕することなく、内径32m/m、長さ6mの
ステンレス製管状反応器に充填し、H2 5 vol
%及びN295vol%の混合ガスを3200/hrの速度
で、180℃の温度にて6時間、180〜250℃の温度
で5時間、流通させ還元処理を行なつた。 次いで、前記反応器の入口及び出口温度を270
℃に保ち、これに、常圧にて実施例1と同様の粗
シクロヘキサノールを予熱気化させ、
LHSV2.2hr-1の速度で供給し連続反応を行なつ
た。 反応開始より240時間後のシクロヘキサノール
転換率を実施例1と同様にして求めたところ、第
2表に示す結果を得た。 比較例 6 実施例5の方法において、触媒の調製工程で硝
酸カリウム水溶液の浸漬を行なわなかつた触媒を
用いて、実施例5と同様な方法にてテストを行な
い、第2表に示す結果を得た。
[Table] Comparative Examples 2 to 3 In the method of Example 1, a test was conducted in the same manner as in Example 1, using an aqueous potassium hydroxide solution or an aqueous potassium sulfate solution instead of an aqueous potassium nitrate solution in the catalyst preparation step. , the results shown in Table 1 were obtained. Comparative Examples 4 to 5 The same method as Example 1 was carried out by changing the concentration of potassium nitrate used in the catalyst preparation step and adjusting the amount of potassium supported on the catalyst as shown in Table 1. A test was conducted and the results shown in Table 1 were obtained. Example 5 In the catalyst preparation step of Example 1, copper-chromium-based oxide 4 supporting potassium after calcination treatment
Without crushing H 2 5 vol.
% and N 2 95 vol % was passed at a rate of 3200/hr at a temperature of 180° C. for 6 hours and at a temperature of 180 to 250° C. for 5 hours to carry out the reduction treatment. Then, the inlet and outlet temperatures of the reactor were set to 270
℃, and preheated and vaporized the same crude cyclohexanol as in Example 1 at normal pressure.
Continuous reaction was carried out by feeding at a rate of LHSV 2.2 hr -1 . The cyclohexanol conversion rate 240 hours after the start of the reaction was determined in the same manner as in Example 1, and the results shown in Table 2 were obtained. Comparative Example 6 A test was conducted in the same manner as in Example 5 using a catalyst that was not immersed in potassium nitrate aqueous solution in the catalyst preparation step, and the results shown in Table 2 were obtained. .

【表】【table】

Claims (1)

【特許請求の範囲】 1 シクロヘキサノールを脱水素してシクロヘキ
サノンを製造する方法において、触媒として、 銅−クロム系酸化物を650〜900℃の温度で熱
処理し、 硝酸カリウム又は炭酸カリウムの水溶液への
浸漬処理により酸化物に対しカリウムとして
0.01〜0.5重量%の該カリウム化合物を付着さ
せ、 300〜500℃の温度で焼成し、 還元処理する ことによつて得られる、銅:クロムの原子比が
8:2〜2:8の銅−クロム系触媒を用いること
を特徴とするシクロヘキサノンの製造法。
[Claims] 1. In a method for producing cyclohexanone by dehydrogenating cyclohexanol, a copper-chromium oxide is heat-treated as a catalyst at a temperature of 650 to 900°C, and immersed in an aqueous solution of potassium nitrate or potassium carbonate. As potassium to oxide by treatment
Copper with a copper:chromium atomic ratio of 8:2 to 2:8, obtained by depositing 0.01 to 0.5% by weight of the potassium compound, firing at a temperature of 300 to 500°C, and reduction treatment. A method for producing cyclohexanone characterized by using a chromium-based catalyst.
JP57040580A 1982-03-15 1982-03-15 Production of cyclohexanone Granted JPS58157741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57040580A JPS58157741A (en) 1982-03-15 1982-03-15 Production of cyclohexanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040580A JPS58157741A (en) 1982-03-15 1982-03-15 Production of cyclohexanone

Publications (2)

Publication Number Publication Date
JPS58157741A JPS58157741A (en) 1983-09-19
JPH0328407B2 true JPH0328407B2 (en) 1991-04-19

Family

ID=12584423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040580A Granted JPS58157741A (en) 1982-03-15 1982-03-15 Production of cyclohexanone

Country Status (1)

Country Link
JP (1) JPS58157741A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620541A (en) * 1979-07-30 1981-02-26 Mitsubishi Chem Ind Ltd Preparation of cyclohexanone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620541A (en) * 1979-07-30 1981-02-26 Mitsubishi Chem Ind Ltd Preparation of cyclohexanone

Also Published As

Publication number Publication date
JPS58157741A (en) 1983-09-19

Similar Documents

Publication Publication Date Title
US20090054706A1 (en) Catalytic Conversion of Ethanol and Methanol to an Isobutanol-Containing Reaction Product Using a Thermally Decomposed Hydrotalcite Catalyst
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
JPH0336571B2 (en)
JPH05505975A (en) Gas-phase catalytic hydrogenation method of maleic anhydride to γ-butyrolactone with high conversion and high selectivity using active catalyst
CN111889097B (en) Aniline hydrogenation catalyst, preparation method and application
US4981830A (en) Process for preparing iron-antimony-phosphorus-containing catalyst for fluidized bed process
JPS6123175B2 (en)
JP2003534303A (en) Method for selectively producing acetic acid by catalytic oxidation of ethane and / or ethylene
US5122495A (en) Activated catalyst for the vapor phase hydrogenation of maleic anhydride to gamma-butyrolactone in high conversion and high selectivity
JP4588848B2 (en) Process for producing pentanediol from alkoxydihydropyran
JPH09508918A (en) Method for producing gamma-butyrolactone
EP0146099A2 (en) A process for producing acrylic acid by oxidation of acrolein and a novel catalyst useful thereof
CN113234012B (en) Preparation method of 3-methylaminopyridine and derivative or salt thereof
JPH0328407B2 (en)
JPH03131501A (en) Method for decomposing methanol
CN107954840B (en) Method for preparing benzaldehyde and benzyl alcohol
JPH0216736B2 (en)
JP3999972B2 (en) Method for producing acrylic acid or methacrylic acid
KR830000880B1 (en) Method for preparing cyclohexanone
JPH0456015B2 (en)
JPH03232875A (en) Production of gamma-butyrolactone
JP3221447B2 (en) Catalyst for producing phenol, method for producing the same, and method for producing phenol
JP3268648B2 (en) Catalyst for producing phenol, method for producing the same, and method for producing phenol
JP3221446B2 (en) Catalyst for producing phenol, method for producing the same, and method for producing phenol
JP3221445B2 (en) Catalyst for producing phenol, method for producing the same, and method for producing phenol