JPS58157149A - Manufacture of semiconductor integrated circuit and master slice chip - Google Patents

Manufacture of semiconductor integrated circuit and master slice chip

Info

Publication number
JPS58157149A
JPS58157149A JP3934682A JP3934682A JPS58157149A JP S58157149 A JPS58157149 A JP S58157149A JP 3934682 A JP3934682 A JP 3934682A JP 3934682 A JP3934682 A JP 3934682A JP S58157149 A JPS58157149 A JP S58157149A
Authority
JP
Japan
Prior art keywords
wiring
master slice
mutual
clock
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3934682A
Other languages
Japanese (ja)
Inventor
Toshio Seto
瀬戸 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3934682A priority Critical patent/JPS58157149A/en
Publication of JPS58157149A publication Critical patent/JPS58157149A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive improvement in the uniformity of the delay time between signals, in simplification of wiring and in efficiency of wiring work by a method wherein a suitable number of fundamental wirings are formed in the titled integrated circuit beforehand. CONSTITUTION:A contact X1 and/or X4 and Y1 and/or Y4 which are connected to the gate of a gate array, for example, formed in an element region 1a are provided, the contact X1 and/or X4 is connected to a clock phi1, and the other contact Y1 and/or Y4 is connected to a clock phi2. In this case, a pair of fundamental wiring 3a for clock (clock phi1) and 3b (clock phi2) extending in the longitudinal direction (array direction) are provided in a wiring region 1b. These fundamental wirings 3a and 3b for clock, which are extended making an almost straight line, have the length same as that of the wiring region, and are provided in the well-kown arrangement relations which will be used as the prestage for a mutual wiring design.

Description

【発明の詳細な説明】 装置@は集積回路技術に関するもので、脣に素子間の配
縁を容易にしたマスタスライス型集積回路r)lIil
造方法及びその製造方法に使用するマスタスライスチッ
プに@するものである。
[Detailed Description of the Invention] The device @ relates to integrated circuit technology, and is a master slice type integrated circuit that facilitates interconnection between elements.
This is used for the manufacturing method and the master slice chip used in the manufacturing method.

集積回路のうち、最後O金属蒸着による配線までは全く
同llK作っておき、最後の金属蒸着による配線のみ會
違えて異なった機能會有する集積回路tm造するマスタ
スライス方式は公知である。この様な!スタスライス集
積回路では、1チツプ上に半導体素子音配列させた素子
領域とこれら素子間の配線を行なう為O配縁領域とが予
め定められており、拡散工程(ウニハエ8りの終了した
マスタスライスを品種ととに異なった配線パターンで相
互配線してLSI&影成する。
There is a known master slicing method in which all parts of an integrated circuit up to the last O metal evaporated wiring are made in exactly the same way, and only the last metal evaporated wiring is changed to produce an integrated circuit having a different function. Like this! In a star slice integrated circuit, an element area in which semiconductor elements are arrayed on one chip and an O wiring area for wiring between these elements are predetermined on one chip. are interconnected with different wiring patterns depending on the product type to form an LSI &

従って、マスタスライスは最適集s1度0III饋會満
足すると共に、顧客の注文に応じて回路設計が可能でる
9その融通性が高い点に4色を有するO 従来ρマスタスライスチップの構造1111図に示しで
ある。即ち、ミスタスライステップ1は、素子領域1m
、配縁領域1b%圃辺領域1eを有する。素子領域1a
iFiトランジスタ等任意の半導体素子が7レイ状に多
数配設されている。
Therefore, the master slice satisfies the optimum set of chips, and it is possible to design the circuit according to the customer's order9.It is highly flexible and has four colors. This is an indication. That is, Mr. Sly step 1 has an element area of 1 m.
, has a edging area 1b% and a field area 1e. Element area 1a
A large number of arbitrary semiconductor elements such as iFi transistors are arranged in a 7-lay pattern.

接続する為の配Ii1を施す区緘で、そこには横方向に
延びたアンダーパス(履役配一層)2が複数個1列アレ
イ状#C設けられている。これらのアンダーパス2は、
通常、多結晶シリコン、又#iP+拡散やN+拡散の拡
散層さして形成場れる。
In the section where the arrangement Ii1 for connection is applied, a plurality of horizontally extending underpasses (player arrangement layer) 2 are provided in a single row array #C. These underpasses 2 are
Usually, it is formed using polycrystalline silicon, or a diffusion layer of #iP+ diffusion or N+ diffusion.

一方、コンタクトとコンタクトと0簡の配線は、チップ
上面に存在する絶縁層上KAt等の金属を蒸着しパター
ン形成して構成させる。第1図には、点A、B、C関【
金属層2′及び壊般層2を使用して接続した状m上水し
である。
On the other hand, the contact-to-contact wiring is constructed by depositing a metal such as KAt on the insulating layer existing on the upper surface of the chip and forming a pattern. In Figure 1, points A, B, and C are shown.
This is a water tank connected using a metal layer 2' and a broken layer 2.

CD様に従来のマスタスライス方式においては、所賛の
コンタクト間を掻続する為の相互配置IIに、チップの
配線領域1b丙においてランダム的な構成で形成されて
いた。第2図に示したもDは、2相クロックφ、(央@
)及びφ、(点卿)で動作する回路を従来方法で相互配
線した場合であって、配線領域lb内においてクロック
φ。
In the conventional master slicing method such as CD, contacts are formed in a random configuration in the wiring area 1b of the chip in mutual arrangement II for connecting desired contacts. D shown in Fig. 2 is a two-phase clock φ, (center @
) and φ, (points) are mutually wired by the conventional method, and the clock φ is within the wiring region lb.

及びφ!に対する夫々の配線路は任意ρ複雑形状となっ
ている。この株な従来方式では、注意深く配線設計を行
なわないとクロックφ、とφ、D夫々の配線長や配線経
路が著しく相異する可能性があり、従って回路の動作不
良発生t)J[因となることがあった。更に%第2図に
ボした如く、従来技術においては、チップ全体に延在し
て設けるこきρ多いリセット縁などは必要以上に分岐や
曲折を有することとなり、全配線長が長くなりすぎ友り
配線ミスf発生したりすることが多々あった。
and φ! The wiring paths for each have an arbitrary ρ complex shape. In this conventional method, if the wiring is not carefully designed, there is a possibility that the wiring lengths and wiring routes of the clocks φ, φ, and D may be significantly different from each other, resulting in circuit malfunction. Something happened. Furthermore, as shown in Figure 2, in the conventional technology, the reset edge, which is provided over the entire chip, has more branches and bends than necessary, making the total wiring length too long. Wiring errors often occurred.

以上の如く、どの素子間配置Iも同じレベルでランダム
に配縁全行なう従来技術では、信号間の位相ズレを補償
する必1Ft)Toるノード等は配線設計に%に注意を
払う必要があった。又、クロック信号やリセット信号り
如きチップD殆んど全体に供給する必要のある信号に対
する配線であっても、各カスタム配−毎に配線作業上行
なう必要があり、配線作業時間短縮の妨げとなっていた
・更に1自動配線【行なう場合においては、遅延量の誤
**求が厳しい2ノード関であっても、全く配線長が異
なって配線されてしまう恐れがあp1従って自動配線り
適用範凹を狭いものとしていた。
As described above, in the conventional technology in which all the inter-element arrangements I are randomly interconnected at the same level, it is necessary to pay special attention to the wiring design for nodes etc. where it is necessary to compensate for the phase shift between signals. Ta. Furthermore, even for wiring for signals that need to be supplied to almost the entire chip D, such as clock signals and reset signals, wiring must be performed for each custom wiring, which hinders the reduction of wiring work time.・Additionally, 1 automatic routing [When performing automatic routing, there is a risk that the wiring lengths will be completely different even if the two nodes are connected with strict delay requirements. The range was narrow.

本発明は、以上の点に鑑みなされたものであって、特に
クロツタ線やリセット線等の様に回路全体に亙って使用
される配−?m源線と同様に基本配線として予め規則的
な構成にθけでおき、この基本配線ノ々ターンに所要の
コンタクト間ti[I続する接続パターンとt結合嘔せ
て相互配@、eターン會形成する4oであって、配−設
計及び製造を容易化し、ノード関接続における遅延量の
均一化を可能とし喪集検回路装置の製造方法及びその方
法!IC直接使用するマスタスライスチップを提供する
ことを目的とする。
The present invention has been made in view of the above points, and particularly includes wires used throughout the circuit, such as crosstalk wires and reset wires. Similar to the m-source line, the basic wiring is preliminarily arranged in a regular configuration with θ, and this basic wiring no-turn has the required contact distance ti 4o, which facilitates the layout design and manufacturing, and makes it possible to equalize the amount of delay in node connection, and a method for manufacturing the circuit device, and the method thereof! The purpose is to provide a master slice chip that can be used directly in an IC.

本発明の1脣徴によれば、少なくとも1列のアレイに配
設した複数個の半導体素子會有する素子領域と鴫(;記
アレイに対し略直交する方向に延在して設Ff九埋般配
線層全複数個有する配線領域と會夫々過数個交互に配r
1を壊せたマスタスライスチップに所g!IO相互配I
mヲ形成して半導体集積回路を製造する方法であって、
前記アレイに実質的に並行で前記素子領域 及び/又は
配4!領域と略々同じ長さ會有し所定の間隔で配置もせ
た適数個の基本配li!”ターンと前記マスタスライス
チップ上p所lIOコンタクト聞t11続する接続パタ
ーンとで相互配線パターンを形成し、前記相互配線・臂
ターンに基づき相互配縁用マスク會形成し、かく形成し
た相互配線用マスクを使用して前記マスタスライスチッ
プ上に所!!の相互配−全形成する、各工程を有する半
導体装置の製造方法を提供する%t)である。
According to one aspect of the present invention, an element region having a plurality of semiconductor elements arranged in at least one array, and an element region extending in a direction substantially perpendicular to the array, A wiring area having a plurality of wiring layers and a wiring area having a plurality of wiring layers are alternately arranged.
Kudos to the master slice chip that broke 1! IO mutual arrangement I
A method for manufacturing a semiconductor integrated circuit by forming m,
the element region and/or arrangement substantially parallel to the array; An appropriate number of basic layouts with approximately the same length as the area and arranged at predetermined intervals! A mutual wiring pattern is formed by the ``turn'' and a connection pattern that continues between the IO contacts on the master slice chip, and a mask for mutual wiring is formed based on the mutual wiring and the IO contacts. %t) provides a method for manufacturing a semiconductor device having each step of forming all interconnections on the master sliced chip using a mask.

本発明の別の特WIKよれば、少なくとも1列のアレイ
に配設した複数個の半導体素子を有する素子領域と前記
アレイに対し略lI又して延在する堀設配線層を豪数個
有する配*霞域き會夫々適数@父互に配置嘔せ友マスタ
スライスチップであって、前記アレイに実質的に並行で
前記素子領域 及び/又は 配#!領域と略々同じ長さ
を有すると共に所定の間隔で配置され前記マスタスライ
スチップ上に形成すべき相互配線パターンの1部全形成
する基本配線パターンt−濃股層として設けたマスタス
ライスチップ141供するもOである。
According to another feature of the present invention, there is provided an element region having a plurality of semiconductor elements arranged in at least one row of arrays, and several trench wiring layers extending approximately 100 degrees to the array. A suitable number of master slice chips are arranged in parallel with each other, and the element regions and/or the arrays are arranged substantially parallel to the array. A master slice chip 141 provided as a basic wiring pattern t-dense layer having approximately the same length as the area and arranged at predetermined intervals to form part or all of the mutual wiring pattern to be formed on the master slice chip. is also O.

以下、添付O!!5画を参考に本発明の具体的実施り態
様に付き詳細に#!i明する。1183図は、本発明0
原理を例示的に示した概略図であって、本発明方法に従
って製造場れたマスタスライス槃集積回路装置oist
示している。第3図に示した如く、素子領域11内に設
けられた例えばゲートアレイのゲートKWea8れてい
るコンタクトX1乃至為及びY+乃至Y4がf&けられ
ており、コンタクトX1乃至X、Fiミクロツク、に、
一方コンタクトY、乃至Y4はクロックφ、に接kJc
−gれている。この場合、本発明によれば、配線領域l
b内に位置嘔れて配嶽領域lbO長手方向(アレイ方向
)K延在丁61対のクロック用基本配置13 m (ク
ロック−1用)及び3b(クロッター8用)がfjFf
られている。こρ略II練的に延在するクロック用基本
配線3a、3bは、11w領域り長石と略々同じ長さを
有し、相互配線設計を行なう前段階として予め所定の配
置関係會もって用意される。
Attached below! ! Detailed explanation of specific embodiments of the present invention with reference to the 5th picture #! I will explain. Figure 1183 shows the present invention 0
1 is a schematic diagram illustrating the principle of a master slice integrated circuit device manufactured according to the method of the present invention; FIG.
It shows. As shown in FIG. 3, the contacts X1 to Y+ and Y+ to Y4 provided in the element region 11, for example, the gate KWea8 of the gate array are f&, and the contacts X1 to X, the Fi microk,
On the other hand, contacts Y to Y4 are in contact with clock φ, kJc
-g is broken. In this case, according to the present invention, the wiring area l
The basic arrangement for clocks of 61 pairs of extending blocks 13 m (for clock-1) and 3b (for crotter 8) is fjFf in the storage area lbO longitudinal direction (array direction)
It is being The basic clock wiring lines 3a and 3b, which are extended in a detailed manner, have approximately the same length as the feldspar in the 11w area, and are prepared in advance with a predetermined arrangement relationship as a step before mutual wiring design. Ru.

この様にして用意された基本配J13m、3b[対し、
素子領域l&内の夫々のコンタクトX1乃至入及びYl
乃至Y4から所望の基本配線3m、3bK至る接続配置
f ms乃至−及びカ!乃至n4tレイアウトし、基本
配!I3とコンタクトX、Yと0間の接続配線、及び、
113図には示してない臥素子領域内における任意のコ
ンタクト間OiI続配線とで相互配縁パターンを形成す
る。こ0IIKして形成した相互配線パターンに基づい
てマスクを形成し、そのマスタtgl用して第3図に示
した如き相互配In形成する0尚、相互配−はAj等の
金属音使用して形成することが可能である。
The basic arrangement J13m, 3b prepared in this way [for
Respective contacts X1 to Yl in the element region l&
Connection arrangement f ms to - and Ka! from Y4 to desired basic wiring 3m, 3bK! Or n4t layout, basic arrangement! Connection wiring between I3 and contact X, Y and 0, and
113 A mutual interconnection pattern is formed with arbitrary inter-contact OiI interconnections in the lying element region (not shown in the figure). A mask is formed based on the mutual wiring pattern formed by this process, and the mutual wiring pattern shown in FIG. 3 is formed using the master TGL. It is possible to form.

第31AKF1基本配線として2相クロツクφ1及びφ
、に対するクロック用の基本配線しか示してないが、基
本配線としてはそO他K11l源電圧用及びリフレッシ
ュ信号用の基本配線等必gIK応じ適数個設けるこ七が
可能である。又、後に示す如く、この様な基本配1Ik
i必ずしも配線領域内に設ける必lIはなく、寄生効果
等を考慮し可能な場合には素子領域la内Kv&けるこ
とも可能である。尚、纂3I!11には明瞭に示してな
いへ配線領域lb内には水平方向に一砥在する複数個D
アンダーメスが設けられており、必!!に応じ素子間接
続等に使用可能であることは言うまでもない。IH3m
Kシいて、水平方向に走る配線と喬1方向【走る配線と
はStO,等の絶縁層會介して別の層に設けられており
、水平方向に走る配線と垂直方向に走る配線とを接続す
べき両配!IK)交点において絶縁層に孔開けを行なっ
てコンタクトを形成し両配層関の接続1行なう。
2-phase clock φ1 and φ as the 31st AKF1 basic wiring.
Although only the basic wiring for the clock for , is shown, it is possible to provide an appropriate number of other basic wirings, such as basic wiring for the K11l source voltage and refresh signal, depending on the requirements. Also, as shown later, such a basic arrangement 1Ik
It is not necessarily necessary to provide Kv& within the wiring region, and if possible, considering parasitic effects etc., it is also possible to provide Kv& within the element region la. In addition, 3I! 11, there are a plurality of wires D arranged horizontally within the wiring area lb.
An under female is provided, which is a must! ! Needless to say, it can be used for connection between elements, etc., depending on the requirements. IH3m
The wiring running horizontally and the wiring running vertically are connected to the wiring running horizontally and the wiring running vertically. Should be both! IK) Drill holes in the insulating layer at the intersections to form contacts and connect both layers.

以上O如く、本発明においては、マスタスライステップ
上に形成場れるぺ暑相互配−〇内で、%[チップD全体
に対し共通に使用される仁とD多いクロック線やリフレ
ッシュ線を基本配線として予め設け、これらp基本配線
に基づいて所IIOコンタクト関會接続する接続配融會
設ける構成であるから、整理嘔れた形で整然とした配線
設計を行なうことが可能である。例えば、第3図に示し
た本発明に基づ(相互配mAターンは、同じコンタクト
とクロツタφ、及びφ、と0関を従来技術に基づいて相
互配−した場合と比較して、配線構成が著しく整然とし
ており、しかもコンタクトと所要のクロック線とを結ぶ
配線は全て略々等長とされている。従って、配線による
信号p遅延量を略々等しくなるので動作不良0可能性も
著しく減少される。本発明では相互配線が整然と嘔れる
ので、配線作業効率が向上場れるばか9か、誤配1il
Iv1q能性を着しく減少される。
As described above, in the present invention, within the interconnection pattern formed on the master slice step, the clock lines and refresh lines that are commonly used for the entire chip D are connected to the basic wiring. Since the configuration is such that a connection/distribution system is provided in advance to connect IIO contacts based on these p basic wirings, it is possible to design the wiring in an orderly manner. For example, based on the present invention shown in FIG. The lines connecting the contacts and the required clock lines are all approximately the same length.As a result, the amount of signal p delay caused by the wiring is approximately equal, and the possibility of malfunctions is significantly reduced. In the present invention, since the interconnections are arranged in an orderly manner, the efficiency of wiring work can be improved.
Iv1q potential is significantly reduced.

尚、#I4図は従来技術に基づ−て製造場れ九マスタス
ライス型集、lllFm路0配瞭状朦を模式的に示した
%Dであり、第5図は本発明に基づいて適数本iりji
線ラインで構成され九基本配[3【使用して製造したマ
スタスライス型集積回路を模式的に示したものである。
In addition, Figure #I4 is a %D diagram schematically showing the nine master slice molds of the manufacturing factory based on the prior art, and Figure 5 is a diagram schematically showing the 9th master slice mold collection and the IllFm path 0 distribution shape according to the present invention. Several books
This is a schematic diagram of a master slice integrated circuit manufactured using nine basic interconnects [3].

これら両図0比較から、本発明【使用することにより折
一部を減少させ簡単なAl−ン【有する相互配!lt影
成することが可能であり、従って相互配!It形成する
配線作業一体管容易化し、歩留り【向上させることが可
能であることが分かる。
From the comparison of these two figures, it can be seen that the present invention reduces folding parts and has a simple Al-bond mutual arrangement! lt is possible to create an image and therefore mutual arrangement! It can be seen that it is possible to simplify the wiring work of forming an integrated tube and improve the yield.

116図は、本発明方法に基づいて製造した集積回路の
1@會模式的に示した平面図である。
FIG. 116 is a schematic plan view of an integrated circuit manufactured according to the method of the present invention.

図示した如く、こ0場合の!スタスライスチップD配線
領斌1bKヒ3列アレイ状〈雛設配縁層2がVけられて
おり、中央C)埋設配線層アレイD上方に絶縁層1介し
て3本p基本配線層3m+3b*3tが形1i!場れて
いる。これらの基本配線層3m+ 3b、 3etf電
源供給用、クロック信号供給用、リフレッシュ信号供給
用等に使用する。又、11M!!4配[4とコンタクト
5とを介して所要D   ゛接続【行なっている。
As shown in the figure, this case is 0! Star slice chip D wiring area 1bKhi 3-column array (temporary wiring layer 2 is cut out, center C) buried wiring layer array D 3 p basic wiring layer 3m + 3b * 3t is shape 1i! It's out of place. These basic wiring layers 3m+3b and 3etf are used for power supply, clock signal supply, refresh signal supply, etc. Also, 11M! ! The required D connections are made through the 4 wires and the contacts 5.

j17図は、第6mと同様0相互配線パメーン【形成す
640であるが、#!7図に示した場合においては基本
配@ 3’a 、 3’b 、 3’c C)設は方が
異なっている。即ち、第7図に示した場合には、基本配
Is a’a 、3’b * 3/cd jil設配縁
層2と同IIK予めマスタスライスチップ内に形成場れ
ている。
Figure j17 shows the 0 interconnection parameter [formation 640] as in the 6th m, but #! In the case shown in Figure 7, the basic arrangement @ 3'a, 3'b, 3'c C) is different. That is, in the case shown in FIG. 7, the basic wiring Is a'a, 3'b * 3/cd jil wiring layer 2 and the same IIK are formed in the master slice chip in advance.

従って、117図p場会部会基本配線3’at 3’b
Therefore, Fig. 117 P field meeting basic wiring 3'at 3'b
.

3’cはm般配線層2と同@Klリシリプン層又は拡散
層として形成場れるもDであp11a図り如(基本配線
3at 3be 3gが金属で形成されるものとは異な
る。こ0Ilk基本配@ 3’a I 3’b #3’
efrマスタスライスチップ内に予め作り込んでおく構
成とした場合には、相互配、@CS製造工薯’f:ll
K簡単化することが可能である。
3'c is formed as the same @Kl silicone layer or diffusion layer as the m general wiring layer 2, but as shown in p11a in D (different from the basic wiring 3at 3be 3g formed of metal). @ 3'a I 3'b #3'
If the configuration is made in advance in the efr master slice chip, mutual alignment, @CS manufacturing factory'f:ll
K can be simplified.

JIB図は、本発明をCMOSゲートアレイ4戚のマス
タスライステップに適用し友場合である。
The JIB diagram shows the case where the present invention is applied to the master slice step of a CMOS gate array 4.

こO場合は、N型拡散層6aとPW拡散層6b【有し、
両方の共通のゲートとしてIvシリコンゲート7が設け
られている。又、0MO8−にル関KFi拡散層乃至は
ポリシリコンから戚るアンダーパス8が形fR賂れて−
る。基本配置13&*3b、3a、3dd素子領域1a
内に絶縁層【介して被着形成場れる。尚、こD場合の素
子領域1aには半導体素子Oみならずアンダーパス8も
彫li!嘔れている。こ12)llK 、本明細書では
素子領域及び配線領域とは、素子領域KjiI−いては
少なくとも半導体素子を有し、又配線領域Kkいて鉱少
なくとも配@l@場設層【有するという意味で番って、
付加的に別f)fjE會有する%lDであっても良イ。
In this case, the N-type diffusion layer 6a and the PW diffusion layer 6b have
An Iv silicon gate 7 is provided as a common gate for both. Moreover, the underpass 8 related to the KFi diffusion layer or polysilicon related to 0MO8 is formed by the shape fR.
Ru. Basic arrangement 13&*3b, 3a, 3dd element area 1a
An insulating layer is deposited within the insulating layer. In this case, not only the semiconductor element O but also the underpass 8 are carved in the element region 1a! I'm vomiting. 12) In this specification, an element region and a wiring region refer to an element region KjiI- which has at least a semiconductor element, and a wiring region Kk which has at least a wiring field layer. So,
Additionally, it may be %ID that has a separate f)fjE meeting.

尚、j1g#Ac’構1i![オvs テ、fFIjば
、基本配@ 3 b t VDD線として使用し、基本
配* 3 @ t V@@纏として使用することが可能
である。
In addition, j1g#Ac' structure 1i! [In the case of fFIJ, it is possible to use it as a basic wiring @ 3 b t VDD line and as a basic wiring * 3 @ t V @ @ wire.

以上詳説した如く、本発明によれば、予め適数本O基本
配1jIt作り込んでおくことにより信号間遥嬌の均一
化、配線O単純化、配線作業の絽率向上が可能であり、
マスタスライス型の集積回路r)**V一段と改善する
ことが可能である。尚、本発明はメタル配線層り層aK
係わりなく適応可能なもDであり、かつ作り込んでおく
基本配WI叔−餉隈嘔れない。ガえば、8ピツ)OCP
U(中央処m装置)とインターフェースする機会p多い
回路#1主たる対象とするマスメスライスLSIにおい
ては、8本り作り込み基本配置【持たせると、8ビツト
Dパスラインの配置1が極めて単純かつ整然と行ない得
る。尚、重置@け上述した特定の具体的実施ガに限定さ
れるべI%DでFiなく、本発明の技術的範囲内におい
て種々ρ変形が可能であることけ言うまでもない。例え
ば、作り込んでおく基本配IIの位置、本数、材質(メ
タル、Iリシリコン、拡散等)等は適宜の条件に応じ選
択可能な一〇である。
As explained in detail above, according to the present invention, by preparing an appropriate number of basic wiring lines in advance, it is possible to equalize signal spacing, simplify wiring lines, and improve the efficiency of wiring work.
The master slice type integrated circuit r)**V can be further improved. Note that the present invention is based on the metal wiring layer aK.
It is D that can be applied regardless of the situation, and it is impossible to create a basic system that can be applied. Gaba, 8 pits) OCP
Circuit #1 with many opportunities to interface with the U (central processing unit) It can be done in an orderly manner. It goes without saying that the superposition is not limited to the specific specific implementation described above, and that various ρ modifications are possible within the technical scope of the present invention. For example, the position, number, material (metal, silicon, diffusion, etc.) of the basic wiring II to be fabricated can be selected according to appropriate conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

181図は従来のマスタスライステップD全体的構成を
示した模式図、j12図は従来技術に基き相互配線【し
た状me示しlI−説明図、第3図は本発明の原理に基
き相互配縁會した状駕を示した説明図、第4図は従来技
111に*@相互配線をした状mt−示したマスタスラ
イステップの模式図、第5図は本発明に基龜相互配al
tした状lI【示したマスタスライスチップの模式図、
第6図は本発明に4き製造した集a回路の1例を示した
部分的平面図、317図は本発明マスタスライステップ
D i 91t7tt;した部分的平面図、第8図は本
発明に基き製造した集積U路の別の例を示した部分的平
面図、である。 (符号V説明) 1 :マスタスライステップ 1凰:素子領域1b:配
線領域    2:埋設配線層3:基本配11   4
:接続線 5:コンタタト 特許出願人  株式会社 リ コ − 第1図 第2図 第3図 第5図 10 第6図 第7図 第8図 0
Fig. 181 is a schematic diagram showing the overall configuration of the conventional master slice step D, Fig. 12 is an explanatory diagram showing mutual interconnection based on the prior art, and Fig. 3 is an explanatory diagram showing mutual interconnection based on the principle of the present invention. FIG. 4 is a schematic diagram of the master slice step shown in the conventional technique 111 with mutual wiring, and FIG.
t-shaped lI [Schematic diagram of the master slice chip shown,
FIG. 6 is a partial plan view showing an example of an integrated circuit manufactured according to the present invention, FIG. FIG. 3 is a partial plan view of another example of an integrated U-way manufactured based on the same method; (Description of code V) 1: Master slice step 1 凰: Element area 1b: Wiring area 2: Embedded wiring layer 3: Basic wiring 11 4
: Connection line 5: Kontatato Patent Applicant Rico Co., Ltd. - Figure 1 Figure 2 Figure 3 Figure 5 Figure 10 Figure 6 Figure 7 Figure 8 Figure 0

Claims (1)

【特許請求の範囲】 1、 少なくとも1列のアレイに配設したI[a個の半
導体素子を有する素子領域と前記アレイに対し略直交す
る方向に延在して設けた埋設配線層t−被数個有する配
置領域とを夫々適数個交互に配置させたマスタスライス
チップに所l!cs相互配線を形成して半導体集積回路
を製造する方法において、前記アレイに実質的に並行で
前記素子領域 及び/又は 配!1領域と略々同じ長さ
を有し所定■間隔で配置洛せた適数個り基本配線パター
ンと前記マスタスライスチップ上O所gIvコンタクト
関會接続する接続パターンとで相互配IIAターン【形
成し、前記相互配@Aターンに基づき相互配線用マスク
を形威し、かく形成した相互飯線用マスクを使用して前
記マスタスライスチップ上に7[[)相互配aiiv形
成する、上記各工St有することを特徴とする半導体集
積回路の製造方法。 2 少なくとt1列Oアレイに配設した複数個の半導体
素子を有する素子領域と前記アレイに対し略直交する方
向に延在して設けた堀設配一層1に複数個有する配置領
域とを夫々適数個交互に配置嘔せたマスタスライスチッ
プにおいて、前記プレイに実質的に並行で前記素子領域
 及び/゛又は 配線領域と略々同じ長さ會有すると共
して所定p間隔で配置嘔れ前記マスタスライスチップ上
に形成丁べき相互配−ノ々ターンの1部會なす基本配線
パターン會、!1e層として設けたこと1%像とするマ
スタスライスチップ。
[Scope of Claims] 1. An element region having I[a semiconductor elements arranged in at least one row of arrays and a buried wiring layer t-cover provided extending in a direction substantially perpendicular to the array. A master slice chip in which an appropriate number of arrangement areas are arranged alternately. In a method of manufacturing a semiconductor integrated circuit by forming cs interconnections, the element region and/or the interconnects are substantially parallel to the array. An appropriate number of basic wiring patterns having approximately the same length as one area and arranged at predetermined intervals and connection patterns connected to the contacts on the master slice chip are used to form interconnected IIA turns. Then, form a mutual wiring mask based on the mutual wiring @A turn, and form 7 [[) mutual wiring aiiv on the master slice chip using the thus formed mutual wiring mask. A method for manufacturing a semiconductor integrated circuit, characterized in that it has St. 2. An element region having a plurality of semiconductor elements arranged in an O array in at least t1 rows and an arrangement region having a plurality of semiconductor elements in the trenched wiring layer 1 extending in a direction substantially perpendicular to the array. In an appropriate number of master slice chips arranged alternately, the slices are substantially parallel to the play, have approximately the same length as the element area and/or wiring area, and are arranged at predetermined intervals. A basic wiring pattern meeting, which is a part of the mutual arrangement-no-turns to be formed on the master slice chip! A master slice chip with a 1% image provided as a 1e layer.
JP3934682A 1982-03-15 1982-03-15 Manufacture of semiconductor integrated circuit and master slice chip Pending JPS58157149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3934682A JPS58157149A (en) 1982-03-15 1982-03-15 Manufacture of semiconductor integrated circuit and master slice chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3934682A JPS58157149A (en) 1982-03-15 1982-03-15 Manufacture of semiconductor integrated circuit and master slice chip

Publications (1)

Publication Number Publication Date
JPS58157149A true JPS58157149A (en) 1983-09-19

Family

ID=12550514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3934682A Pending JPS58157149A (en) 1982-03-15 1982-03-15 Manufacture of semiconductor integrated circuit and master slice chip

Country Status (1)

Country Link
JP (1) JPS58157149A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313517A (en) * 1986-07-04 1988-01-20 Nec Corp Gate array circuit
JPH04287369A (en) * 1991-03-15 1992-10-12 Sharp Corp Manufacture of gate array and semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313517A (en) * 1986-07-04 1988-01-20 Nec Corp Gate array circuit
JPH04287369A (en) * 1991-03-15 1992-10-12 Sharp Corp Manufacture of gate array and semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US6242767B1 (en) Asic routing architecture
CN101621055B (en) Multi-die integrated circuit device and method
JP3154411B2 (en) Two metal layer integrated circuit gate array laid out by CAD
US8969923B2 (en) Methods and apparatus for layout of three dimensional matrix array memory for reduced cost patterning
JP2001127161A (en) Integrated circuit
JPS59172250A (en) Universal array
JPH04251976A (en) Gate array structure
JPH09162279A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6361778B2 (en)
US6885043B2 (en) ASIC routing architecture
JPS5989435A (en) Planar semiconductor integrated circuit
JPH09293844A (en) High density gate array cell structure and manufacture thereof
US7245158B2 (en) Circuit wiring layout in semiconductor memory device
US5793068A (en) Compact gate array
JP2001044397A (en) Semiconductor integrated circuit
JPH0494556A (en) Integrated circuit cell layout method and cell structure thereof
JPS58157149A (en) Manufacture of semiconductor integrated circuit and master slice chip
US7648912B1 (en) ASIC customization with predefined via mask
EP0135019B1 (en) Interconnection of elements on integrated cirrcuit substrate
CN100359693C (en) Semiconductor integrated circuit and its manufactring method
TW202105547A (en) Method for random cut patterning
USH512H (en) Automated universal array
JP3340267B2 (en) Wiring forming method in semiconductor memory device
JPH0114704B2 (en)
JPH03274764A (en) Semiconductor integrated circuit device