JPS5815710Y2 - Directional control valve spool - Google Patents
Directional control valve spoolInfo
- Publication number
- JPS5815710Y2 JPS5815710Y2 JP6847877U JP6847877U JPS5815710Y2 JP S5815710 Y2 JPS5815710 Y2 JP S5815710Y2 JP 6847877 U JP6847877 U JP 6847877U JP 6847877 U JP6847877 U JP 6847877U JP S5815710 Y2 JPS5815710 Y2 JP S5815710Y2
- Authority
- JP
- Japan
- Prior art keywords
- diameter portion
- large diameter
- notch
- axial force
- spool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Sliding Valves (AREA)
- Multiple-Way Valves (AREA)
Description
【考案の詳細な説明】
本考案は、油圧装置にあ・ける方向制御弁のスプールで
、特に第1図に示すようにスプールaの中立時にポンプ
bからタンクCヘアンロードしている中立回路でこれを
閉じたときの軸力を減少させることができる油圧装置に
おける方向制御弁のスプールを提供しようとするもので
ある。[Detailed description of the invention] The present invention is a spool for a directional control valve that is installed in a hydraulic system, and in particular, as shown in Fig. 1, it is used in a neutral circuit that unloads tank C from pump B when spool a is in the neutral state. An object of the present invention is to provide a spool for a directional control valve in a hydraulic system that can reduce the axial force when the valve is closed.
油圧方向制御弁を切換えるときにスプールに軸力が作用
することは以前から知られて釦す、特にこの軸力は圧力
が高い程大きく発生する。It has long been known that an axial force acts on the spool when switching a hydraulic directional control valve, and in particular, the higher the pressure, the greater the axial force generated.
この軸力を低減するために従来から種々の対策がとられ
てきた(例えば実公昭50−27626号)が、それは
主にスプールにつけられている流量微調整のための切欠
部に集中していた。Various measures have been taken in the past to reduce this axial force (for example, Utility Model Publication No. 50-27626), but these have mainly been concentrated on the notches attached to the spool for finely adjusting the flow rate. .
その結果切欠部が閉じるときに発生する軸力はかなり低
減されたが、スプールの大径部が閉じる時に発生する軸
力が太きぐなってきた。As a result, the axial force generated when the notch closes has been considerably reduced, but the axial force generated when the large diameter portion of the spool closes has become stronger.
すなわち、第2図は切欠部dの溝底を小径部より深くし
た場合の従来例を示すもので、これのA図は大径部が閉
じる場合、B図は切欠部が閉じる場合である。That is, Fig. 2 shows a conventional example in which the groove bottom of the notch d is deeper than the small diameter part, and Fig. A shows the case when the large diameter part is closed, and Fig. B shows the case when the notch part is closed.
このときの軸力の推移は第3図の実線eに示すようにな
る。The transition of the axial force at this time is as shown by the solid line e in FIG.
図中1は大径部が閉じる場合、■は切欠部が閉じる場合
で、この図からも切欠部が閉じる場合は減小したが大径
部が閉じる場合の軸力が1だ大きいことがわかる。In the figure, 1 is when the large diameter part is closed, and ■ is when the notch is closed.From this figure, it can be seen that the axial force is reduced by 1 when the notch is closed, but is larger by 1 when the large diameter part is closed. .
第2図Cは軸力低減対策前のスプールでとのスプールの
移動に対する軸力の推移は第3図の鎖線fで示すように
なり、大径部が閉じる場合■の軸力も大きいが、切欠部
が閉じる場合Hの軸力が極めて大きかった。Figure 2C shows the spool before taking measures to reduce the axial force.The change in axial force with respect to the movement of the spool is shown by the chain line f in Figure 3.When the large diameter portion closes, the axial force in ■ is also large; When the section closed, the axial force of H was extremely large.
上記のように軸力の低減対策の結果切欠部が閉じる場合
Hの軸力は低減したが大径部が閉じる場合■の軸力が依
然として大きく、特に油圧装置が高圧化するに従い制御
弁によって制御されるシリンダ、モータ等のアクチェー
タの作動圧が高くなって切欠部の開口面積を小さくする
必要がある場合にはそれだけ大径部が閉じる場合■にあ
・いて中立部の圧力も高くなりこの場合での軸力も大き
くなってきた。As a result of the axial force reduction measures mentioned above, when the notch closes, the axial force of H has been reduced, but when the large diameter section closes, the axial force of When the operating pressure of actuators such as cylinders and motors increases and it is necessary to reduce the opening area of the notch, the pressure in the neutral part increases as the large diameter part closes. The axial force has also increased.
上記スプールaに作用する軸力Fは
F = pQ (V 1 cosθ1−V 2 cos
θ2)によってあられされる。The axial force F acting on the spool a is F = pQ (V 1 cos θ1 - V 2 cos
θ2).
ここでρは流体の密度、Qは流量、■1は流入速度、θ
lは流入角度、θ2は流出角度である。Here, ρ is the density of the fluid, Q is the flow rate, ■1 is the inflow velocity, θ
l is the inflow angle and θ2 is the outflow angle.
上記式から(VICO8θ1−v2CO8θ2)が少さ
くなるようにVl、+V2tθ1.θ2 fcきめるこ
とによりスプールaに作用する軸力F’を小さくするこ
とができる0
ここで従来の切欠部が閉じる位置で軸力を低減したスプ
ールについて第4図を参照して考えて見る。From the above formula, Vl, +V2tθ1. By determining θ2 fc, the axial force F' acting on the spool a can be reduced.0 Here, a conventional spool in which the axial force is reduced at the position where the notch is closed will be considered with reference to FIG.
スプールaの大径部からの流体は速度Vl、角度θlで
流入し、切欠部dの底面で反転し、切欠部dの深さhの
つさあたり壁面に泊って速度V1、角度θ2で飛び出し
ていく。The fluid from the large diameter part of spool a flows in at a speed Vl and an angle θl, reverses at the bottom of the notch d, stays on the wall surface of the notch d at the depth h, and jumps out at a speed V1 and an angle θ2. To go.
この場合θ□とθ2とは略同−になって(V1cosθ
1−V2CO3θ2 )は小さくなり、従って軸力Fは
小さくなる。In this case, θ□ and θ2 become approximately the same (V1 cos θ
1-V2CO3θ2) becomes smaller, and therefore the axial force F becomes smaller.
このときの流出角θ2は切欠部dの長さgおよび深さh
によりきめられる。The outflow angle θ2 at this time is the length g and depth h of the notch d.
Determined by.
一方策2図Cに示す軸力低減対策前のスプールでは、切
欠から流入した流体は隣接する大径部の端面に衝突し、
この端面に泊って殆ど軸直角状に流出してθ2は大きく
、従ってV 2 CO8θ2はきわめて小さくなる。On the other hand, in the spool before the axial force reduction measures shown in Figure 2 C, the fluid flowing in from the notch collides with the end face of the adjacent large diameter part.
It stays at this end face and flows out almost perpendicular to the axis, and θ2 is large, so V 2 CO8θ2 becomes extremely small.
従って(V1cosθ1−V 2 cosθ2)が大き
くなって軸力Fが大きくなる。Therefore, (V1 cos θ1-V 2 cos θ2) increases, and the axial force F increases.
このことは第2図Aに示す大径部が閉じるときも同じで
流出側の流出角θ2は大きく、従ってV2CO8θ2が
小さいため軸力が大きくなり、結局第3図に示すように
大径部が閉じるとき、釦よび第2図Cに示ず例における
切欠部が閉じるときの軸力が大きくなることがわかる。This is the same when the large diameter part shown in Fig. 2A closes; the outflow angle θ2 on the outflow side is large, and therefore the axial force becomes large because V2CO8θ2 is small, and as a result, the large diameter part closes as shown in Fig. 3. It can be seen that when the button is closed, the axial force when the button and the notch in the example not shown in FIG. 2C are closed becomes large.
上記のことから第5図に示すように小径部に傾斜した段
部を有する中径部を設け、大径部が閉じるときに流入し
た流体を適当な流出角θ2で流出することにより、大径
部が閉じる位置での軸力を低減することができることが
推考される。From the above, as shown in FIG. It is considered that the axial force at the closed position can be reduced.
しかし、スプールa’Q第5図のような形状にすること
によりこれに切欠部dt加えた場合第6図のようになっ
て第4図に示す状態から切欠部dの深さhの寸法が大き
くなり、切欠部からの流出角θ2が大きくなるため切欠
部dが閉じる位置での軸力低減が損なわれる。However, if the spool a'Q is shaped as shown in Figure 5 and a notch dt is added to this, the result will be as shown in Figure 6, and the depth h of the notch d will change from the state shown in Figure 4. This increases the outflow angle θ2 from the notch, which impairs the reduction of the axial force at the position where the notch d closes.
本考案は上記のことにかんがみなされたもので、切欠部
が閉じる位置での軸力の低減効果を損なうことなく、大
径部が閉じる位置での軸力を低減できるようにすること
を目的とするものである。The present invention was developed in consideration of the above, and its purpose is to reduce the axial force at the position where the large diameter part is closed, without impairing the effect of reducing the axial force at the position where the notch is closed. It is something to do.
本考案は上記目的を達成するために、大径部と小径部を
有するスプールにおいて、大径部から小径部にわたって
小径部の外周面より深くした切欠溝を設けると共に、上
記小径部に、上記切欠溝を有する大径部から軸方向に離
れた位置に中径部を設け、この中径部の上記大径部に対
向する段部を、大径部から遠ざかるに従って大径となる
斜面状になし、また中径部の上記切欠溝の延長部分に切
欠を設けた構成とした。In order to achieve the above object, the present invention provides a spool having a large diameter part and a small diameter part with a notch groove that is deeper than the outer circumferential surface of the small diameter part from the large diameter part to the small diameter part, and the notch groove is provided in the small diameter part. A medium diameter portion is provided at a position axially distant from the large diameter portion having a groove, and the step portion of the medium diameter portion facing the large diameter portion is formed into an inclined surface whose diameter increases as the distance from the large diameter portion increases. Also, a notch is provided in an extension of the notch groove in the middle diameter portion.
上記構成の方向制御弁の作用は次の通りである。The operation of the directional control valve having the above configuration is as follows.
すなわち、大径部が閉じるときに、大径部側から小径部
側へ流入した流体は、中径部の斜面に当たり、流入角と
略同−の角度でもって小径部から流出ポートへ流出し、
このときの軸力は小さくなる。That is, when the large diameter part closes, the fluid that flows from the large diameter part to the small diameter part hits the slope of the medium diameter part and flows out from the small diameter part to the outflow port at an angle that is approximately the same as the inflow angle.
The axial force at this time becomes small.
芽た切欠溝が閉じるときには大径部から切欠溝へ流入し
た流体は切欠溝より中径部に設けた切欠に泊って流入角
と略同−の角度で流出し、このときの軸力も小さくなる
。When the sprouted notch groove closes, the fluid that flows into the notch groove from the large diameter part stays in the notch provided in the middle diameter part from the notch groove and flows out at approximately the same angle as the inflow angle, and the axial force at this time also becomes smaller. .
そして上記構成による効果は次の通りである。The effects of the above configuration are as follows.
すなわち、方向制御弁のスプールを小さな軸力で切換操
作を行なうことができる。That is, the spool of the direction control valve can be switched with a small axial force.
またスプールTh、+イロット圧力あるいはソレノイド
による電磁力で切換えるようにした場合、小さな油圧力
あるいは小電力にて切換えることができ、切換えのため
の動力を小さくすることができる。Further, when switching is performed using spool Th, +Ilot pressure or electromagnetic force from a solenoid, switching can be performed with small hydraulic pressure or small electric power, and the power required for switching can be reduced.
さらにゆっくり切換える等微妙な切換操作が可能になる
。Even more subtle switching operations, such as switching more slowly, become possible.
以下本考案の実施例を第7図に基づして説明する0
スプール1の中立位置切換用の大径部2に、この部分か
ら小径部3につながる切欠溝4を従来と同様に設ける。An embodiment of the present invention will be described below with reference to FIG. 7. The large diameter portion 2 of the spool 1 for switching the neutral position is provided with a cutout groove 4 that connects from this portion to the small diameter portion 3 in the same manner as in the prior art.
そして上記小径部3の上記切欠溝4を有する大径部2か
ら離れた位置に、大径部2より小径で小径部3より大径
の中径部5を設けると共に、この中径部5の段部を直線
または曲線状の斜面とし、また切欠溝4の延長部分に小
径部3の寸法と略同−程度に切り除いた切欠6を設ける
。A medium diameter portion 5 having a smaller diameter than the large diameter portion 2 and a larger diameter than the small diameter portion 3 is provided at a position away from the large diameter portion 2 having the notch groove 4 of the small diameter portion 3. The stepped portion is a straight or curved slope, and a notch 6 is provided in an extension of the notched groove 4 to be approximately the same size as the small diameter portion 3.
かくすることにより、大径部が閉じる位置では、大径部
から流入した流体は中径部の斜面で反転して流出し、こ
のときの流入角と流出角が略同じになり、軸力を考える
にあたって式F−ρQ(Vlcosfi−V2cosθ
2)の(V1cosθ1−V2cosθ2)が小さくな
り、上記大径部が閉じる位置での軸が低減される。By doing this, at the position where the large diameter section is closed, the fluid flowing in from the large diameter section is reversed on the slope of the middle diameter section and flows out, and the inflow angle and outflow angle at this time are approximately the same, and the axial force is reduced. When considering the formula F-ρQ(Vlcosfi-V2cosθ
2) (V1cosθ1-V2cosθ2) becomes smaller, and the axis at the position where the large diameter portion is closed is reduced.
一方切欠部が閉じる位置では、中径部に切欠溝4から延
長された切欠6を設けたことにより従来と同様にこの部
分が閉じる位置での軸力を小さく保持することができる
。On the other hand, in the position where the notch is closed, by providing the notch 6 extending from the notch groove 4 in the middle diameter part, the axial force at the position where this part is closed can be kept small as in the conventional case.
上記両位置での軸力の推移は第8図に示すようになり、
大径部2が閉じる位置■釦よび切欠部が閉じる位置■で
の軸力は曲線jで示すようになり、大径部が閉じるとき
の軸力は従来の場合の軸力kに比較して著しく低減され
た。The changes in axial force at both positions above are shown in Figure 8.
The axial force at the position where the large diameter part 2 closes ■The position where the button and notch close ■ is shown by the curve j, and the axial force when the large diameter part closes is compared to the axial force k in the conventional case. significantly reduced.
第1図は本考案を適用しようとする油圧装置の方向制御
弁の一部破断説明図、第2図A、B、Cは従来のスプー
ルの要部の破断説明図、第3図は従来のスプールの場合
の軸力の推移を示す線図、第4図は従来のスプールの要
部の拡大断面図、第5図および第6図は一対策例を示す
説明図、第7図は本考案に係るスプールの構成説明図、
第8図は本考案の場合のスプールの軸力の推移を示す線
図である。
1はスプール、2は大径部、3は小径部、4は切欠溝、
5は中径部、6は切欠。Fig. 1 is a partially cutaway explanatory diagram of a directional control valve of a hydraulic system to which the present invention is applied, Figs. A diagram showing the transition of axial force in the case of a spool, Fig. 4 is an enlarged sectional view of the main parts of a conventional spool, Figs. An explanatory diagram of the configuration of the spool,
FIG. 8 is a diagram showing the transition of the axial force of the spool in the case of the present invention. 1 is a spool, 2 is a large diameter part, 3 is a small diameter part, 4 is a notched groove,
5 is the middle diameter part, 6 is the notch.
Claims (1)
合し、かつ大径部2とこれに隣接する小径部3を有し、
摺動することにより、大径部2と小径部3にて上記弁体
の流入ポートと流出ポートとの連通を断続するようにし
、た方向制御弁のスプールにおいて、大径部2から小径
部3にわたって小径部3の外周面より深くした切欠溝4
を設けると共に、上記小径部3に、上記切欠溝4を有す
る大径部2から軸方向に離れた位置に中径部5を設け、
この中径部5の上記大径部2に対向する段部を、大径部
2から遠ざかるに従って大径どなる斜面状になし、また
中径部5の上記切欠溝4の延長部に切欠6を設けてなる
ことを特徴とする方向制御弁のスプール。The valve body is slidably fitted into a valve body having an inflow port and an outflow hole, and has a large diameter portion 2 and a small diameter portion 3 adjacent thereto;
By sliding, communication between the inflow port and the outflow port of the valve body is disconnected between the large diameter portion 2 and the small diameter portion 3, and the spool of the directional control valve is connected from the large diameter portion 2 to the small diameter portion 3. A notched groove 4 that is deeper than the outer circumferential surface of the small diameter portion 3
and a medium diameter portion 5 is provided in the small diameter portion 3 at a position axially away from the large diameter portion 2 having the notch groove 4,
The stepped portion of the medium diameter portion 5 facing the large diameter portion 2 is formed into a slope shape whose diameter gradually increases as the distance from the large diameter portion 2 increases, and a notch 6 is formed in an extension of the notch groove 4 of the medium diameter portion 5 A spool for a directional control valve, comprising: a spool for a directional control valve;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6847877U JPS5815710Y2 (en) | 1977-05-30 | 1977-05-30 | Directional control valve spool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6847877U JPS5815710Y2 (en) | 1977-05-30 | 1977-05-30 | Directional control valve spool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53162931U JPS53162931U (en) | 1978-12-20 |
JPS5815710Y2 true JPS5815710Y2 (en) | 1983-03-30 |
Family
ID=28976390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6847877U Expired JPS5815710Y2 (en) | 1977-05-30 | 1977-05-30 | Directional control valve spool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5815710Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6652008B2 (en) * | 2016-07-21 | 2020-02-19 | 株式会社デンソー | Spool valve |
-
1977
- 1977-05-30 JP JP6847877U patent/JPS5815710Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53162931U (en) | 1978-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6397890B1 (en) | Variable metering fluid control valve | |
JPS5815710Y2 (en) | Directional control valve spool | |
CN213117673U (en) | Digital reversing throttle valve with displacement feedback | |
EP0474872B1 (en) | Hydraulic control valve | |
CN208268473U (en) | Reversal valve | |
JPH1182767A (en) | Spool valve | |
JP2008045678A (en) | Spool valve | |
JP3039683B2 (en) | Valve block for hydraulic cylinder | |
JP2642667B2 (en) | Fluid control valve device | |
JP2003120603A (en) | Hydraulic circuit for construction machine | |
JPH0235162B2 (en) | SAISEIOYOBYUSENKENYOYUATSUSEIGYOSOCHI | |
JPH0417854Y2 (en) | ||
JPS6231742Y2 (en) | ||
JPH0419220Y2 (en) | ||
JPH0241363Y2 (en) | ||
JPH0224965Y2 (en) | ||
JP2563355Y2 (en) | Flow control valve | |
JPS6319602Y2 (en) | ||
JPH0132364B2 (en) | ||
JPS603421Y2 (en) | directional valve | |
JPH10331997A (en) | Electrohydraulic servo valve | |
KR970000132Y1 (en) | Make-up circuit for an excavator | |
JPS5824701Y2 (en) | Check valve shock absorber | |
JPS5917004A (en) | Fluid control valve | |
JPS6144049Y2 (en) |