JPS58156784A - Pulse-hydraulic converter - Google Patents

Pulse-hydraulic converter

Info

Publication number
JPS58156784A
JPS58156784A JP3793682A JP3793682A JPS58156784A JP S58156784 A JPS58156784 A JP S58156784A JP 3793682 A JP3793682 A JP 3793682A JP 3793682 A JP3793682 A JP 3793682A JP S58156784 A JPS58156784 A JP S58156784A
Authority
JP
Japan
Prior art keywords
force
pressure
gap
spring
spool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3793682A
Other languages
Japanese (ja)
Inventor
Hayato Sugawara
早人 菅原
Shigeru Horikoshi
堀越 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP3793682A priority Critical patent/JPS58156784A/en
Publication of JPS58156784A publication Critical patent/JPS58156784A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To limit the working range of a gap between a core and a plunger, generate a constant force irrespectively of the displacement of an attracted part and contrive to reduce the size of a valve, by using the titled converter for an oil pressure controlling solenoid valve or the like. CONSTITUTION:The pressure inside a pressure chamber 14 is determined through the opening of a pressure inlet port 12 and a pressure outlet port 11 by sliding a pilot spool 9 leftwards or rightwards, thereby balancing the pressure with the resultant force of a spring force exerted on the spool 9 and a magnetic attracting force. The relationship between the gap between the plunger 8 and the core 7 and the attracting force is evaluated as linear by limiting the working range of the gap, and the attracting force and the force of a spring 5 reacting against the attracting force are equalized selecting the rigidity of the spring 5, thereby enabling to generate a force independently of the gap. Accordingly, the oil pressure can be set only in response to an exciting current, and the attracting force can be utilized effectively.

Description

【発明の詳細な説明】 本発明は、自動車用自動変速機における油圧制御用電磁
弁に係り、電磁弁を駆動するパルス信号のデユティ比に
比例した油圧を得る事に好適なパルス・油圧変換弁に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solenoid valve for oil pressure control in an automatic transmission for automobiles, and is a pulse/hydraulic conversion valve suitable for obtaining oil pressure proportional to the duty ratio of a pulse signal that drives the solenoid valve. Regarding.

従来、油圧をコントロールするためには、スプール弁を
用いることが多いが、これは基本的にはスプール弁の両
端に加わる力を等しくするように油圧ti111らかせ
るものである。通常、一端に油圧會、他端に外的な力、
例えば、バネ力、機械的な操作力、あるいは、電磁弁な
どの吸引力を利用し油圧とこれらの力を約9合わせ、油
圧を制御するものである。
Conventionally, a spool valve is often used to control oil pressure, but this basically adjusts the oil pressure ti111 so that the force applied to both ends of the spool valve is equal. Usually a hydraulic system at one end, an external force at the other end,
For example, the oil pressure is controlled by using spring force, mechanical operating force, or suction force of a solenoid valve, and combining these forces with the oil pressure by about 9 degrees.

外的な力に、電磁弁の吸引力を利用した場合には、励磁
電流によって、吸引力を変化させることができ、油圧を
電流で制御することが可能で、制御装置全体を簡素化す
ることができる。
When using the attraction force of a solenoid valve as an external force, the attraction force can be changed by the excitation current, and the hydraulic pressure can be controlled with the current, simplifying the entire control device. I can do it.

しかしながら、−足の励磁電流を供給している場合にお
いても、スプール(吸引部)の移動に伴い、吸引力が変
化し、励磁電流による油圧の正確なコントロールが困難
となっている。
However, even when a negative excitation current is supplied, the suction force changes as the spool (suction section) moves, making it difficult to accurately control the hydraulic pressure using the excitation current.

スプール(吸引部)の移動にかかわらず吸引力を一定に
保つためには、吸引部の形状を適したものにすることで
ロエ能となるが、この場合には、吸引力を犠牲にするた
め、電磁弁自体の形状が大きくなるという欠点をもつ。
In order to keep the suction force constant regardless of the movement of the spool (suction part), the shape of the suction part can be optimized to achieve Loe performance, but in this case, the suction power must be sacrificed. However, the disadvantage is that the solenoid valve itself becomes larger in size.

そこで、本発明の目的は、吸引部の移動量に無関係に一
足の力を出し、かつ、小型の電磁弁を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a small-sized electromagnetic valve that can generate a large amount of force regardless of the amount of movement of a suction part.

電磁弁の空隙と吸引力との関係を、空隙の使用範囲を限
定することで一次的であると評価し、この吸引力と反発
するスプリングのバネ定数t−,a幽に選択することで
、空NK無関係な力を発生させようとしたものである。
By evaluating the relationship between the gap in the solenoid valve and the suction force as primary by limiting the range of use of the gap, and by selecting the spring constants t- and a of the springs that repel this suction force, This was an attempt to generate a force unrelated to Sky NK.

以下、本発明の一実施例を図面を用諭て説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は、装置の構成を表わした図である。FIG. 1 is a diagram showing the configuration of the apparatus.

メインスプール13は、2つの圧力流入口24゜25を
持つ、圧力流入口24には供給油圧20が提供されてお
り、圧力流入口25はドレイン21と連絡されている。
The main spool 13 has two pressure inlets 24 and 25, the pressure inlet 24 is provided with a supply hydraulic pressure 20, and the pressure inlet 25 is connected to a drain 21.

スプール13の左右への摺動に伴って、圧力室13aの
圧力が決定するが、圧力室13aと圧力室23とは連絡
路13bによって連絡されている九め、その圧力値は、
E力量14の圧力上等しい所で安定し決定する。22は
ダ炉 制御油圧流出口であるが、この圧力は、圧力室14で決
定することとなる。
As the spool 13 slides from side to side, the pressure in the pressure chamber 13a is determined, and since the pressure chambers 13a and 23 are connected by a communication path 13b, the pressure value is
It is stabilized and determined at a place where the pressure of E force 14 is equal. 22 is a furnace control hydraulic pressure outlet, the pressure of which is determined by the pressure chamber 14.

同様に、パイロットスプール9も、左右の摺動により、
圧力流入口12と、圧力流出口11の開縦によって圧力
室14の圧力を決定し、パイロットスプール9に作用す
るスプリング力と、磁気的鉄引力の合力と、この時の圧
力とが釣り合う。すなわち、パイロットスプール90面
flRt8t%圧力室14の圧力をPC%スプリング5
によるバネ力k Fsv 、磁気的な吸引力をF、、1
とすると、釣り合い位置では 8p−Pc = Fat  F−g    ”””””
・・・・(1)となり、圧力室14の圧力Pcは Pcm−(Fat  F−−g)    ・・・・旧・
・・・・(匂F となる。
Similarly, the pilot spool 9 also slides from side to side.
The pressure in the pressure chamber 14 is determined by the vertical opening of the pressure inlet 12 and the pressure outlet 11, and the spring force acting on the pilot spool 9, the resultant force of the magnetic iron attraction force, and the pressure at this time are balanced. That is, the pressure of the pilot spool 90 surface flRt8t% pressure chamber 14 is changed to PC% spring 5.
The spring force k Fsv is the magnetic attraction force F, 1
Then, at the equilibrium position, 8p-Pc = Fat F-g """""
...(1), and the pressure Pc in the pressure chamber 14 is Pcm-(Fat F--g) ...old...
...(It becomes smell F.

一方、コイル3に励磁電流を印加すると、主磁気回路2
は、第1図で示す様に、コア7、ケース4、グランジャ
8の一連の閉ループを構成する。
On the other hand, when an excitation current is applied to the coil 3, the main magnetic circuit 2
constitutes a series of closed loops including a core 7, a case 4, and a granger 8, as shown in FIG.

コア7と、プランジャ8との空隙に磁束が通過−すると
吸引力が発生するが、この力は励磁電流Iの関数で表わ
され F −−g” G (I )    ・・・・・団・・
・・・・団・・旧・・・・・(3)と表わすことができ
る。
When a magnetic flux passes through the gap between the core 7 and the plunger 8, an attractive force is generated, and this force is expressed as a function of the excitation current I.・
It can be expressed as...dan...former...(3).

また、吸引力F、6.はプランジャ8とコア7との空隙
量にも影響され、本実施例では%@2図曲4131の様
な特性を示す。すなわち、使用する空隙では、吸引力は
空隙に一次的に減小することが判る。(直#32) 今、空隙長さくスプール移動距離)をlとすると ?、、、=Kt        ・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・(4)とな
る定数KK−仮定できる。
Also, suction force F, 6. is also affected by the amount of air gap between the plunger 8 and the core 7, and exhibits a characteristic like %@2 diagram 4131 in this example. That is, it can be seen that the suction force decreases primarily in the gap used. (Direct #32) Now, what if the gap length and spool travel distance are l? ,,,=Kt ・・・・・・・・・・・・
It is possible to assume a constant KK that satisfies (4).

スプリング5に、定数にと婢しいバネ定数を持つものを
選ぶと、(2)式の釣り合いの式は” K l m/ 
S p     ・・・・・・・・・・・・・・・・・
・・・・(5)となる、ここで!、はスプリング5の初
期歪でるる、したがって、出力油圧である圧力室14の
圧力Paは、励磁電流によってのみ決定できるのである
If we choose a spring 5 with a spring constant that is too slow, the equation of balance in equation (2) becomes "K l m/
S p ・・・・・・・・・・・・・・・・・・
...(5) here! , is the initial strain of the spring 5. Therefore, the pressure Pa in the pressure chamber 14, which is the output oil pressure, can be determined only by the exciting current.

゛ 一般に、(4)式における定数には、プランジャ5
と、コア7との空隙の軸方向に対しての傾き角を小さく
とることによって、小さくなり、第2図における直軸3
2が、使用空隙ではほぼフラットになる。従って、使用
の空隙では、空隙に無関係に吸引力ヲ得るこ七ができる
。しかしこの時の吸引力は、プランジャ5とコア7との
空隙の傾き角を大きくした場合に比べて、小さくなって
いる。つ1す、必歎な吸引力を侍るためには、電磁弁の
容振(形状、消費電力)を大きくしなければならなくな
る。
゛ Generally, the constant in equation (4) includes the plunger 5
By making the angle of inclination of the gap with the core 7 small with respect to the axial direction, it becomes smaller, and the vertical axis 3 in FIG.
2, but the space used is almost flat. Therefore, the suction force can be obtained regardless of the gap used. However, the suction force at this time is smaller than when the inclination angle of the gap between the plunger 5 and the core 7 is increased. First, in order to meet the required suction force, the vibration capacity (shape, power consumption) of the solenoid valve must be increased.

本発明によれば、スプリング5のバネ定数を、適切な1
1自に設定することで、スプールの移動量に無関係に、
吸引力を設定でき、かつ、吸引力を大きくとれるために
、電流によってのみ油圧を決定でき、かつ、小型の電磁
弁を提供することができた。
According to the present invention, the spring constant of the spring 5 is set to an appropriate 1.
By setting it to 1, regardless of the amount of spool movement,
Since the suction force can be set and a large suction force can be obtained, the oil pressure can be determined only by electric current, and a compact electromagnetic valve can be provided.

本発明によれば、空隙長さに無関係な吸引力をイIIる
ことができるので、励磁電流に対してのみ、油圧を指建
することに幼果がある。
According to the present invention, the attraction force that is independent of the gap length can be reduced, so the advantage lies in controlling the hydraulic pressure only with respect to the excitation current.

また、吸引力全有効に利用できるため、小型化に効果が
ある。
In addition, since the suction force can be fully utilized, it is effective in downsizing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1区は装置の#面図、第2図は性能を示すグラフであ
る。
The first section is a # side view of the device, and the second section is a graph showing performance.

Claims (1)

【特許請求の範囲】[Claims] 1、 コイルに励磁電流を供給し、磁界を発生させたこ
とで吸引部に吸引力を与え、前記吸引部に結合したスプ
ール弁を摺動させ、前記スプール弁の出力油圧を変化さ
せる電磁弁と、前記−プール弁の後段に配置され、1I
tI記出力油圧と同等の圧力に油圧を制御する圧力制御
弁を有するパルス油圧変換装置において、前記吸引部に
作用する前記吸引力およびスプリングの剛性を等しくし
た事を%黴とするパルス・油圧変換装置。
1. A solenoid valve that supplies an excitation current to a coil and generates a magnetic field to apply an attraction force to an attraction part, slide a spool valve coupled to the attraction part, and change the output oil pressure of the spool valve. , said - placed after the pool valve, 1I
In a pulse hydraulic conversion device having a pressure control valve that controls hydraulic pressure to a pressure equivalent to the output hydraulic pressure, the pulse-hydraulic conversion assumes that the suction force acting on the suction part and the stiffness of the spring are equalized. Device.
JP3793682A 1982-03-12 1982-03-12 Pulse-hydraulic converter Pending JPS58156784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3793682A JPS58156784A (en) 1982-03-12 1982-03-12 Pulse-hydraulic converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3793682A JPS58156784A (en) 1982-03-12 1982-03-12 Pulse-hydraulic converter

Publications (1)

Publication Number Publication Date
JPS58156784A true JPS58156784A (en) 1983-09-17

Family

ID=12511440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3793682A Pending JPS58156784A (en) 1982-03-12 1982-03-12 Pulse-hydraulic converter

Country Status (1)

Country Link
JP (1) JPS58156784A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574843A (en) * 1983-05-26 1986-03-11 Double A Products Co. Solenoid valve override cartridge
JPS6422205U (en) * 1987-07-29 1989-02-06
JPH0192576U (en) * 1987-12-11 1989-06-16
US5067687A (en) * 1990-02-08 1991-11-26 Applied Power Inc. Proportional pressure control valve
US5069420A (en) * 1990-02-08 1991-12-03 Applied Power Inc. Proportional pressure control valve
US5174338A (en) * 1988-05-25 1992-12-29 Atsugi Motor Parts Company, Limited Pressure control valve unit
US5184644A (en) * 1991-05-30 1993-02-09 Coltec Industries Inc. Solenoid operated pressure regulating valve
US5975139A (en) * 1998-01-09 1999-11-02 Caterpillar Inc. Servo control valve for a hydraulically-actuated device
EP1158230A3 (en) * 2000-05-22 2003-01-22 Eaton Corporation Solenoid operated pressure control valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574843A (en) * 1983-05-26 1986-03-11 Double A Products Co. Solenoid valve override cartridge
JPS6422205U (en) * 1987-07-29 1989-02-06
JPH0192576U (en) * 1987-12-11 1989-06-16
US5174338A (en) * 1988-05-25 1992-12-29 Atsugi Motor Parts Company, Limited Pressure control valve unit
US5067687A (en) * 1990-02-08 1991-11-26 Applied Power Inc. Proportional pressure control valve
US5069420A (en) * 1990-02-08 1991-12-03 Applied Power Inc. Proportional pressure control valve
US5184644A (en) * 1991-05-30 1993-02-09 Coltec Industries Inc. Solenoid operated pressure regulating valve
US5282604A (en) * 1991-05-30 1994-02-01 Coltec Industries Inc. Solenoid operated pressure regulating valve
US5975139A (en) * 1998-01-09 1999-11-02 Caterpillar Inc. Servo control valve for a hydraulically-actuated device
EP1158230A3 (en) * 2000-05-22 2003-01-22 Eaton Corporation Solenoid operated pressure control valve

Similar Documents

Publication Publication Date Title
US20060011245A1 (en) Solenoid-operated valve
US4362182A (en) Nozzle force feedback for pilot stage flapper
JPS58156784A (en) Pulse-hydraulic converter
CN106481609B (en) Proportional control solenoid valve system
KR100476246B1 (en) Proportional pressure control valve
US20200182371A1 (en) Proportional Valve for Fluid Flow Control and Generation of Load-Sense Signal
JP4797969B2 (en) solenoid valve
WO2016006436A1 (en) Solenoid valve
CN103727083B (en) A kind of leading type inverse proportion vacuum solenoid valve
US6374856B1 (en) Valve device, especially a combined proportional-distributing valve device
EP0385286A2 (en) Variable force solenoid pressure regulator for electronic transmission controller
JPH10299711A (en) Flow rate direction switching valve
JPS6383476A (en) Magnetic fluid type control orifice
JPH0717898Y2 (en) Proportional solenoid pressure control valve
JPH0138892Y2 (en)
JPS6343532Y2 (en)
JPS5846284A (en) Proportional solenoid valve
JP7323337B2 (en) Proportional solenoid valve and hydraulic circuit system
JPH11283828A (en) Proportional solenoid type actuator
JP4654984B2 (en) Fluid control device
JPS5940615Y2 (en) Pilot operated solenoid valve
JP2001304451A (en) Proportional solenoid valve
JPS61244982A (en) Closed loop proportional solenoid valve
JPH0245574Y2 (en)
JPS6073714A (en) Closed-loop type oil pressure controller