JPS58156505A - Process for separating and recovering hydrogen chloride and ammonia from ammonium chloride - Google Patents
Process for separating and recovering hydrogen chloride and ammonia from ammonium chlorideInfo
- Publication number
- JPS58156505A JPS58156505A JP3521082A JP3521082A JPS58156505A JP S58156505 A JPS58156505 A JP S58156505A JP 3521082 A JP3521082 A JP 3521082A JP 3521082 A JP3521082 A JP 3521082A JP S58156505 A JPS58156505 A JP S58156505A
- Authority
- JP
- Japan
- Prior art keywords
- ammonium
- ammonia
- chloride
- molten salt
- ammonium chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は硫酸水素アンモニウムを用いて、塩化アンモニ
ウムを塩化水素およびアンモニアに分離回収する方法に
関し、詳しくは塩化アンモニウムガスと硫酸水素アンモ
ニウムを接触させて塩化水隼を回収し九後、生成し九硫
酸アンモニウムを熱分解してアンモニアを回収する、塩
化アンモニウムから高収率で塩化水素およびアンモニア
の分離回収が工業的規模で十分にできる方法に関するも
のである。Detailed Description of the Invention The present invention relates to a method for separating and recovering ammonium chloride into hydrogen chloride and ammonia using ammonium hydrogen sulfate. Specifically, the present invention relates to a method for separating and recovering ammonium chloride into hydrogen chloride and ammonia using ammonium hydrogen sulfate. The present invention relates to a method that can sufficiently separate and recover hydrogen chloride and ammonia from ammonium chloride in high yields on an industrial scale, by thermally decomposing the ammonium 9-sulfate produced after the 9-year-old process and recovering ammonia.
塩化アンモニウムは現在、塩安・ソーメ併産法によシ、
ソーダ灰製造の際の副産物として大規模生産されている
が、その多くは安価な肥料として利用されているに過ぎ
ない。この塩化アンモニウムを分解して高付加価値品で
ある塩素あるいは塩化水素を製造し、アン4ニアを回収
する試みが従来よシ提案されているが、いずれも重大な
欠点をもち未だ実用化されていない。Currently, ammonium chloride is produced using the ammonium chloride/some production method.
It is produced on a large scale as a byproduct of soda ash production, but much of it is used only as a cheap fertilizer. Previous attempts have been proposed to recover ammonium chloride by decomposing ammonium chloride to produce high value-added products such as chlorine or hydrogen chloride, but each method has serious drawbacks and has not yet been put to practical use. do not have.
例えば鉄、マンガン、マグネシウム等の金属酸化物と塩
化アンモニウムとの反応を利用する方法は、反応に50
0℃以上の高温を必要とし、且つ反応物が主として固体
である丸めに装置材質、構造、操作面で解決すべき問題
が多く、実用化KFi程遠い技術である。For example, a method that utilizes the reaction of metal oxides such as iron, manganese, and magnesium with ammonium chloride requires 50%
KFi is a technology that is far from being put to practical use because it requires a high temperature of 0° C. or higher, and the reactants are mainly solids.
またアンモニウム、ナトリウム等の酸性硫酸塩it塩化
アンモニウムの反応を利用し九方法が提案されている。In addition, nine methods have been proposed that utilize the reaction between acidic sulfates such as ammonium and sodium and ammonium chloride.
特開昭55−162405号公報によれば、酸性硫酸塩
として硫酸アンモニウムを使用したときには、反応は以
下に示す(す式および伽)弐に従って進行する。According to JP-A-55-162405, when ammonium sulfate is used as the acidic sulfate, the reaction proceeds according to the following formulas.
am、as o、+ MTIaOL→(NH4)t 8
04+ HOt↑ (1)()iH4)、80(+ 1
%H804+ NTi畠↑ (2)(1)式の反応は
200〜260℃、―)式の反応は320〜380℃で
それぞれ実施されておシ、金属酸化物を用いる方法に必
要なSOO℃以上という高温よシかなシ低い温度で効率
よく塩化水素とアンモニアを回収できる。また、反応は
ほとんど溶融塩の状態で行われるため、固体と比較して
操作面でも非常に有利である。am, as o, + MTIaOL→(NH4)t 8
04+ HOt↑ (1)()iH4), 80(+1
%H804+ NTi Hatake ↑ (2) The reaction of equation (1) is carried out at 200 to 260°C, and the reaction of equation -) is carried out at 320 to 380°C, respectively, above the SOO°C required for the method using metal oxides. Hydrogen chloride and ammonia can be efficiently recovered at lower temperatures than at higher temperatures. Furthermore, since most of the reaction is carried out in the state of a molten salt, it is very advantageous in terms of operation compared to a solid state.
本発明者らは、この硫酸水素アンモニウムとの反応を利
用した技術に関して詳細に検討した。その結果、本技術
を実用化するKは塩化アンモニウムから回収される塩化
水素およびアンモニアの回収率を実質的に化学量論量ま
で向上させることが必須であることを見出した。The present inventors conducted a detailed study on the technology utilizing this reaction with ammonium hydrogen sulfate. As a result, K, who put this technology into practical use, found that it is essential to improve the recovery rate of hydrogen chloride and ammonia recovered from ammonium chloride to substantially stoichiometric amounts.
該公報によれば回収される塩化水素およびアンモニアは
用いた塩化アンモニウムに対して最大!五491であり
、本発明者らはこの回収率低下が塩化水素発生時に併発
する塩化アンモニウムの昇華および未分解塩化アンモニ
ウムが溶融塩中に残存することに起因することを見い出
した。この未分解塩化アンモニウムは溶融塩を320〜
3110℃まで加熱する途中シよびアンモニア回収工程
で昇華する。According to the publication, the amount of hydrogen chloride and ammonia recovered is the maximum compared to the ammonium chloride used! The present inventors have found that this decrease in recovery rate is due to the sublimation of ammonium chloride that occurs when hydrogen chloride is generated and the undecomposed ammonium chloride remaining in the molten salt. This undecomposed ammonium chloride has a molten salt of 320~
During heating to 3110°C, sublimation occurs during the ammonia recovery process.
これら塩化アンモニウムの昇華は回収すべき塩化水素お
よびアンモニア量の減少、所要エネルギーの増加等の経
済的不利を招くのは当然であるが、それ以上に塩化アン
モニウムの昇華によって安定な運転の継続を阻害される
ことの方が実用上は重大な問題である。工程内で昇華し
丸環化アンモニウムは反応器および塩化水素またはアン
モニアの回収管の壁面に析出して、管が閉塞して正常な
運転の妨げになる。It is natural that the sublimation of ammonium chloride causes economic disadvantages such as a decrease in the amount of hydrogen chloride and ammonia to be recovered and an increase in the required energy, but moreover, the sublimation of ammonium chloride hinders the continuation of stable operation. This is a more serious problem in practical terms. Circular ammonium sublimes during the process and precipitates on the walls of the reactor and hydrogen chloride or ammonia recovery pipe, clogging the pipe and interfering with normal operation.
このような障害を回避するには、反応器内、管内の塩化
アンモニウムが析出する部分を加熱あるいは保温して、
析出した塩化アンモニウムを再昇華させればよいが、そ
のためには温度保持のための装置1回収され丸環化水素
又はアンモニアからの塩化アンモニウムの除去装置さら
に試材を必要とするなど非常に問題が多い。To avoid such problems, heat or keep warm the areas in the reactor and tubes where ammonium chloride is precipitated.
The precipitated ammonium chloride can be re-sublimated, but this requires a device for temperature maintenance, a device for removing ammonium chloride from circular cyclized hydrogen or ammonia, and a sample material. many.
本発明者らは酸性硫酸塩と塩化アンモニウムの反応を利
用した方法において新規な解決すべき問題点を見出し、
鋭意検討の結果、硫酸水素アンモニウム溶融塩とガス状
の塩化アンモニウムを接触させるとアンモニアは極めて
効率よく硫酸水素アンモニウム溶融塩に吸収されるが、
塩化水素Fiまったく吸収されないため塩化アンモニウ
ムをまったく含まない塩化水素を効率よく回収できるこ
とを見出し、本発明を完成した。The present inventors discovered a new problem to be solved in a method using the reaction of acidic sulfate and ammonium chloride,
As a result of extensive research, we found that when molten ammonium hydrogen sulfate and gaseous ammonium chloride are brought into contact, ammonia is absorbed into the molten ammonium hydrogen sulfate extremely efficiently;
The present invention was completed based on the discovery that hydrogen chloride, which does not contain any ammonium chloride, can be efficiently recovered because hydrogen chloride Fi is not absorbed at all.
即ち本発明の方法は、主として硫酸水素アンモニウムか
らなる溶融塩と塩化アンモニウムガスを接触させ、該溶
融塩中にアンモニアを吸収させて塩化水素を回収する塩
化水素回収工程、およびアンモニアを吸収し九溶融塩を
加熱してアンモニアを溶融塩から分離回収するアンモニ
ア回収工程からな夛、該アンモニア回収工程から得られ
る主として硫酸水素アンモニウムからなる溶融塩を塩化
水素回収工種へ循環することを特徴とする方法である。That is, the method of the present invention includes a hydrogen chloride recovery step in which a molten salt mainly consisting of ammonium hydrogen sulfate is brought into contact with ammonium chloride gas, and ammonia is absorbed into the molten salt to recover hydrogen chloride; An ammonia recovery step in which ammonia is separated and recovered from the molten salt by heating the salt, and a molten salt mainly consisting of ammonium hydrogen sulfate obtained from the ammonia recovery step is recycled to a hydrogen chloride recovery facility. be.
本発明の方法では、工程内での塩化アンモニウムの昇華
を実質的に抑制できるために、昇華した塩化アンモニウ
ムの除去等の丸めの特殊な装置を必要とせず、長期間に
わたシ安定した運転が保証され、更には塩化水素、アン
モニアおよびエネルギーの損失もなく経済性にも優れて
いるなど、極めて工業的規模の生産に適し九技術である
。Since the method of the present invention can substantially suppress the sublimation of ammonium chloride in the process, it does not require special equipment for rounding such as removing sublimated ammonium chloride, and stable operation can be achieved over a long period of time. This technology is extremely suitable for industrial-scale production, as it is highly economical and has no loss of hydrogen chloride, ammonia, or energy.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
本発明の方法の最も重要な特徴は、ガス状の塩化7ンモ
ニウムを用いることである。即ち、固体塩化アンモニウ
ムを200℃以上、好ましく社290−350℃の温度
で昇華させて得九塩化アンモニウムガスをアンモニア回
収工程から循暑さ、(れた主として硫酸水素アンモニウ
ムから成る溶融塩と接触させて塩化水素を回収すること
にある。The most important feature of the process of the invention is the use of gaseous heptammonium chloride. That is, the ammonium nonachloride gas obtained by sublimating solid ammonium chloride at a temperature of 200° C. or higher, preferably 290-350° C., is brought into contact with a molten salt mainly consisting of ammonium hydrogen sulfate after being circulated from the ammonia recovery step. The objective is to recover hydrogen chloride.
前述したように塩化アンモニウムを固体で供給した場合
、少なくと45慢の塩化アンモニウムが工程内で昇華し
て塩化水素又はアンモニア中に含有されてくる。それに
対して、ガス状の塩化アンモニ・ラムを供給した場合に
は塩化アンモニウムを含まない塩化水素およびアンモニ
アを得ることができ、塩化アンモニウムの昇華、析出に
よる問題は発生しない。そればかシか、塩化アンモニウ
ムの昇華温度とキャリヤーガス流量によるが、塩化水素
回収速度は固体の塩化アンモニウムを供給する場合に比
較して10〜100倍も向上し、且つ必要とする硫酸水
素アンモニウム溶融塩量は’、/!O= ’7’!−倍
まで節減できるのである。As mentioned above, when ammonium chloride is supplied in solid form, at least 45% of ammonium chloride sublimes during the process and becomes contained in hydrogen chloride or ammonia. On the other hand, when gaseous ammonium chloride rum is supplied, hydrogen chloride and ammonia containing no ammonium chloride can be obtained, and problems due to sublimation and precipitation of ammonium chloride do not occur. Depending on the sublimation temperature of ammonium chloride and the carrier gas flow rate, the hydrogen chloride recovery rate is improved by 10 to 100 times compared to the case where solid ammonium chloride is supplied. The amount of salt is ',/! O = '7'! -You can save up to twice as much.
このように単に供給する塩化アンモニウムを固体から気
体に替え九だけで従来法の問題点が解決でき、反応の効
率が改善され、装置の大幅な小型化を可能としたことは
驚くべきことである。この理由は明らかではないが次の
ように推察される。It is surprising that the problems of the conventional method could be solved by simply changing the supplied ammonium chloride from solid to gas, improving reaction efficiency and making it possible to significantly downsize the device. . Although the reason for this is not clear, it is inferred as follows.
固体の塩化アンモニウムを供給するときの反応は、諌特
開昭55−162405号公報に本記載されているよう
に
MH41180,+4kOL →(’Ha%804+M
ol↑で表わされる塩化アンモニウムを硫酸水素アンモ
ニウムで分解する反応である。これに対してガス状の塩
化アンモニウムを供給したときの反応紘次の反応式で表
わされる。The reaction when supplying solid ammonium chloride is as described in JP-A-55-162405, MH41180, +4kOL → ('Ha%804+M
This is a reaction in which ammonium chloride, represented by ol↑, is decomposed with ammonium hydrogen sulfate. On the other hand, the reaction when gaseous ammonium chloride is supplied is expressed by the following reaction formula.
)iH4H804+ IH,→(aH4)*soaまっ
たく異なり九反応機構をとっていると考えられる。即ち
塩化アンモニウムガスは実質的に#i塩化水素とアンモ
ニアに解離した状態で存在する混合ガスで、この混合ガ
スを硫酸水素アンモニウムの溶融塩と接触させると、上
記の中和反応によりてアンモニアが吸収されて塩化水素
のみが回収できると考えられる。この反応機構の差が前
述した塩化アンモニウムの昇華量、塩化水素の回収速度
、循環溶融塩量の大きな差となって現われ九のである。)iH4H804+ IH, → (aH4)*soa It is thought that the reaction mechanism is completely different. That is, ammonium chloride gas is a mixed gas that exists in a substantially dissociated state into #i hydrogen chloride and ammonia, and when this mixed gas is brought into contact with a molten salt of ammonium hydrogen sulfate, ammonia is absorbed by the above neutralization reaction. It is thought that only hydrogen chloride can be recovered. This difference in reaction mechanism results in a large difference in the amount of sublimation of ammonium chloride, the rate of recovery of hydrogen chloride, and the amount of circulating molten salt, as described above.
塩化アンモニウムガスは固体の塩化アンモニウムを20
0℃以上、好ましくFi290〜550℃に加熱、昇華
させることによって得られるが、通常は窒素、空気等の
キャリヤーガスを昇華工程内に通じるか、もしくは混合
し、塩化アンモニウムとして10〜50 vol−含有
する混合ガスが用いられる。これは昇華した塩化アンモ
ニウムが配管内および溶融塩への供給入口に析出するこ
とを抑制するのに非常に有効である。Ammonium chloride gas is solid ammonium chloride
It is obtained by heating and sublimating at 0°C or higher, preferably Fi 290 to 550°C, but usually a carrier gas such as nitrogen or air is passed into the sublimation process or mixed to contain 10 to 50 vol- of ammonium chloride. A mixed gas is used. This is very effective in suppressing the precipitation of sublimed ammonium chloride in the piping and at the feed inlet to the molten salt.
硫酸水素アンモニウム溶融塩は塩化アンモニウムガスか
ら非常に効率よくアンモニアを吸収するために、特別な
工夫は必要ないが、使用する溶融塩量が減少でき、且つ
塩化水素回収速度が向上して装置容積が減少できるため
、塩化アンモニウムガスと溶融塩を向流接触させる方法
が好ましい。Since ammonium hydrogen sulfate molten salt absorbs ammonia from ammonium chloride gas very efficiently, no special measures are required, but the amount of molten salt used can be reduced, and the hydrogen chloride recovery rate can be improved, increasing the equipment volume. A method in which ammonium chloride gas and molten salt are brought into countercurrent contact is preferred because it can reduce the amount of gas.
接触温度社200〜290℃の範囲でよ゛いが、供給す
る塩化アンモニウムガスの濃度、供給入口におけるスケ
ール発生の防止、所要エネルギー量郷を考慮すると、で
きるだけ高温、即ち250〜290℃程度が好ましい。The contact temperature may range from 200 to 290°C, but in consideration of the concentration of ammonium chloride gas to be supplied, prevention of scale generation at the supply inlet, and the amount of energy required, it is preferably as high as possible, that is, about 250 to 290°C. .
290℃を超える温度では硫酸アンモニウムの分解が始
まるので避けるべきである。Temperatures above 290°C should be avoided as ammonium sulfate begins to decompose.
溶融塩中の硫酸アンモニウム含有量は、硫酸水素アンモ
ニウムによってアンモニアが極めて効率よく吸収される
九めに、4IK制限はない。しかし温度によって多少差
はあるが、硫酸アンモニウム含有量が70mallを超
えると、溶融塩中に硫酸アンモニウムが固体として析出
する九めに溶融塩の粘度が急激に上昇して取)扱いが困
離となるので好ましくない。通常塩化水素回収1糧から
得られる一融塩には50〜40 mob−の硫酸アンモ
ニウムが含まれる。There is no 4IK limit for the ammonium sulfate content in the molten salt, as long as ammonium hydrogen sulfate absorbs ammonia very efficiently. However, although there are some differences depending on the temperature, if the ammonium sulfate content exceeds 70 mall, ammonium sulfate will precipitate in the molten salt as a solid, and the viscosity of the molten salt will rapidly increase, making handling difficult. Undesirable. Usually, the fused salt obtained from one hydrogen chloride recovery product contains 50 to 40 mobs of ammonium sulfate.
塩化水素回収速度より得られる溶融塩は塩化アンモニウ
ムを含まず、50〜40 mol−の硫酸アンモニウム
を含有しているために、硫酸アンモニウムの分解温度よ
シ高い300℃以上に加熱してやれば何の問題もなくア
ンモニアを回収できる。The molten salt obtained from the hydrogen chloride recovery rate does not contain ammonium chloride, but contains 50 to 40 mol of ammonium sulfate, so there will be no problems if it is heated to 300°C or higher, which is higher than the decomposition temperature of ammonium sulfate. Ammonia can be recovered.
九だし、硫酸アンモニウムと硫酸水素アンモニウムの間
に平衡が存在するため、アンモニア回収量を増加させる
には高温糎どよい。しかし、硫酸水素ア/モニ、ウムの
分解が始まる380”Cを超える高温は避ける−べきで
、350〜370℃の範囲が好ましい。アンモニア回収
工場より得られる溶融塩は通常、硫酸水素アンモニウム
85mo19G、硫酸アンモニクi15molqIIの
組成をもち、塩化水素回収速度の温度まで冷却する以外
に何の処j14必要とせず、塩化水素回収工種へ循環で
きる。また、アンモニアを効率よく回収するために1空
気。Since there is an equilibrium between ammonium sulfate and ammonium hydrogen sulfate, high temperature sintering is preferred to increase ammonia recovery. However, high temperatures above 380"C, where ammonium hydrogen sulfate begins to decompose, should be avoided, preferably in the range of 350 to 370°C. The molten salt obtained from an ammonia recovery plant is usually 85mol19G of ammonium hydrogensulfate, It has a composition of 15 molq II of ammonium sulfate, and can be recycled to the hydrogen chloride recovery plant without requiring any treatment other than cooling to the temperature that corresponds to the hydrogen chloride recovery rate.In addition, 1 air is required to efficiently recover ammonia.
窒素等の、キャリヤーガスを溶融塩中に供給する方法が
通常使用される。A method of supplying a carrier gas, such as nitrogen, into the molten salt is commonly used.
本発明の方法は実用化に際して大きな障害となる工程中
での塩化アンモニウムの昇華という問題を解決したばか
シか、固体の塩化アンモニウムを使用した方法と比較し
て極めて大きな改良を成し遂げた。即ち塩化アンモニウ
ムを硫酸水素アンモニウムによって分解する反応でない
丸め、本発明の方法では塩化水素回収速度は固体の塩化
アンモニウムを供給する方法と比較すると10〜100
倍、通常50倍震度で、その分、単位塩化水素回収に必
要な反応器は115oとなる。を九、固体の塩化アンモ
ニウムを供給し九場合に1塩化水素回収工橿で塩化アン
モニウムを完全に分解し、塩化アンモニウムを含まない
溶融塩を得る丸めKは、硫酸アンモニウム含有、量を4
0 mol−以下、通常はssmol−以下にする必要
かあ〕、単位溶融塩当iのアンモニア回収量は本発明の
方法と比ベカ以下となる。The method of the present invention not only solves the problem of sublimation of ammonium chloride during the process, which is a major obstacle to practical application, but also achieves a huge improvement over the method using solid ammonium chloride. That is, in the method of the present invention, which is not a reaction in which ammonium chloride is decomposed with ammonium hydrogen sulfate, the hydrogen chloride recovery rate is 10 to 100 times faster than that of a method that supplies solid ammonium chloride.
If the seismic intensity is 50 times higher than normal, the reactor required for unit hydrogen chloride recovery will be 115 degrees. 9, if solid ammonium chloride is supplied, 1 completely decomposes the ammonium chloride in the hydrogen chloride recovery process and obtains a molten salt that does not contain ammonium chloride. Rounding K is ammonium sulfate content, the amount is 4
The amount of ammonia recovered per unit molten salt is less than the amount compared to the method of the present invention.
以上の説明からも明らかなように、本発明の方法では、
固体の塩化アンモニウムを使用し九従来の方法と比較し
て、所要溶融塩量゛を力以下に減少させ、且つ工程中で
の塩化アンモニウム昇華による問題を解決して、化学量
論的な塩化水素およびアンモニアの分離回収を達成した
。その結果、塩化水素回収速度の反応器容積は1Aoと
なり、アンモニア回収工場での溶融塩の顕−分の所要エ
ネルギー量はη以下となる。即ち、本発明の方法は工業
的規模での東施に極めて適した方法であ夛、用途が肥料
に限定されていた塩化アつモ二つムの有効活用が可能と
なっ九。As is clear from the above explanation, in the method of the present invention,
By using solid ammonium chloride, the required amount of molten salt is reduced to less than 90% compared with the conventional method, and the problem caused by ammonium chloride sublimation during the process is solved, resulting in stoichiometric hydrogen chloride. Separation and recovery of ammonia and ammonia were achieved. As a result, the reactor volume for the hydrogen chloride recovery rate is 1 Ao, and the amount of energy required for the sensible portion of the molten salt at the ammonia recovery plant is less than η. In other words, the method of the present invention is extremely suitable for use on an industrial scale, and makes it possible to effectively utilize chloride atomium, whose use was limited to fertilizers.
以下、実施例に基づき本発明を具体的に説明する。 。Hereinafter, the present invention will be specifically explained based on Examples. .
実施例1
硫酸水素アンモニウム2.0モルを底部にガス吹き込み
口を有する反応器に1塩化アンモニウムt5モルを昇華
器にそれぞれ詰め、窒素ガスを400 inの流速で昇
華器9反゛応器、ガス吸収管の履に導入した。反応器を
加熱して硫−水素ア/モニウムを溶融状態にして280
℃に保ち、次いで昇華器を加熱して所定温度まで昇温し
、塩化アンモニウムを昇華させ、窒素ガスと−ともに溶
融塩に吹き込んだ。アンモニアから分離され丸環化水素
は純水を満したガス吸収管に導入し九。1時間で昇華し
丸環化アンモニ゛ウムは実験A1でcL41 モル、A
2で(:167モル、Jlft08%ルであった。まえ
、塩化水素回収率は実験A1で表1 ′
?7.41s、A2で1001.A3ftt1−であっ
た。Example 1 2.0 mol of ammonium hydrogen sulfate was packed into a reactor with a gas inlet at the bottom, 5 mol of ammonium monochloride was packed into each sublimator, and nitrogen gas was introduced into the sublimator at a flow rate of 400 in. Introduced into the shoes of absorption tubes. The reactor is heated to melt ammonium sulfur/hydrogen at 280°C.
℃, and then heated the sublimator to a predetermined temperature to sublimate ammonium chloride and blow into the molten salt together with nitrogen gas. The circular cyclized hydrogen separated from ammonia is introduced into a gas absorption tube filled with pure water9. Round cyclized ammonium sublimated in 1 hour in experiment A1 with cL41 mol, A
The hydrogen chloride recovery rate was 7.41s in experiment A1 and 1001.A3ftt1 in experiment A2.
次に実験A2およびA3にっiて昇華器を室温まで冷や
し、塩化水素回収を終了した後に、反応器に窒素ガスの
みを導入して反応器をs6o″Cまで昇温して一定に保
ち、発生するアンモニアを希硫酸を満たしたガス吸収管
に捕促した。その結果、A2においては!40″CK昇
温してから2時間で回収したアンモニア量は1139モ
ルで、溶融塩中の硫酸アンモニウム含有量は140mo
1gIIでありた。同様にしてA5ではアンモニア回収
量は(L64モルで、溶融塩中の硫酸アンモニウム含有
量は2 t 5 mol−であった。塩化水素回収時お
よヒアンモニア回収時において回収管内に白色のスケー
ルが析出することはなかった。Next, in experiments A2 and A3, after cooling the sublimator to room temperature and completing hydrogen chloride recovery, only nitrogen gas was introduced into the reactor to raise the temperature of the reactor to s6o''C and keep it constant. The generated ammonia was captured in a gas absorption tube filled with dilute sulfuric acid.As a result, in A2, the amount of ammonia recovered in 2 hours after raising the temperature to !40''CK was 1139 mol, and the ammonium sulfate content in the molten salt was The amount is 140mo
It was 1gII. Similarly, in A5, the amount of ammonia recovered was (L64 mol), and the ammonium sulfate content in the molten salt was 2 t 5 mol. White scale was deposited inside the recovery tube during hydrogen chloride recovery and hyammonia recovery. There was nothing to do.
比較例
″ 実施例1と同様の反応器1(2,0モ
ルの硫酸水素アンモニウムを充填して、250℃および
280℃に加熱、溶融し、塩化アンモニウムLO7モル
を混合した。窒素ガス流量を4001血nとして、発生
する塩化水素を純水を満たしたガス吸収管に導入し良。Comparative Example "Reactor 1 similar to Example 1 (filled with 2.0 mol of ammonium hydrogen sulfate, heated and melted at 250°C and 280°C, and mixed with 7 mol of ammonium chloride LO. Nitrogen gas flow rate was 4001 As blood, the generated hydrogen chloride can be introduced into a gas absorption tube filled with pure water.
250℃および280℃いずれの溶融塩温*においても
、反応器上部および回収管内に時間の経過とともに白色
スケールが増加し、特に280℃ではスケールの増加は
著しかった。5時間での回収率は250℃で89.7%
、280℃で表2
Sat−であり九。塩化水素回収後に溶融塩中に残存し
ていた塩化アンモニウムは250℃で101モル、28
0℃では検出されなかりた。At both molten salt temperatures* of 250°C and 280°C, white scale increased over time in the upper part of the reactor and in the recovery tube, and the increase in scale was particularly significant at 280°C. Recovery rate in 5 hours was 89.7% at 250℃
, at 280°C Table 2 Sat- and 9. Ammonium chloride remaining in the molten salt after hydrogen chloride recovery was 101 mol and 28
It was not detected at 0°C.
実施例2
図1に概略図を示した反応装置を用いて、10時間の連
続運転を実施した。OO昇華器に固体の塩化アンモニウ
ムを充填し、15mal11の硫酸アンモニウムを含む
硫酸水素アンモニウム溶融塩を反応器ム、予熱器9反応
器Bおよび放冷槽011に循環した。反応器ムは280
℃9反応器すは560℃にそれぞれ設定し、放冷槽では
溶融塩温度をs00℃まで下けた。溶融塩の滞在時間は
反応器ムで20分、Bで3時間に設定した。えだし、反
応器ムの容量はrhsl、反応器Bの容量はtOtとし
た。Example 2 Continuous operation for 10 hours was carried out using the reaction apparatus schematically shown in FIG. The OO sublimator was filled with solid ammonium chloride, and molten ammonium hydrogen sulfate containing 15 mal11 of ammonium sulfate was circulated to reactor M, preheater 9, reactor B, and cooling tank 011. Reactor size is 280
The temperature of the 9°C reactors was set at 560°C, and the temperature of the molten salt was lowered to s00°C in the cooling tank. The residence time of the molten salt was set to 20 minutes in reactor chamber B and 3 hours in chamber B. The capacity of reactor B was rhsl, and the capacity of reactor B was tOt.
塩化アンモニウム昇華器の温度を550℃に保ち、α5
4/ninの窒素ガスと塩化アンモニウムとの混合ガス
を反応器ムへ導入して回収ガスは回収管を通して苛性ソ
ーダ水溶液を満九し九ガス吸収管において捕促した。i
九、反応器BK41asルj廊で窒素ガスを吹き込み、
回収ガスを硫酸水溶液を満たしたガス吸収管に導入し九
。10時間の連続運転の結果、昇華した塩化アンモニウ
ムは11!sモルで、回収できた塩化水素は1t1モル
で回収率?tO参、回収できたアンモニアは111モル
で回収率ttS−であった。まえ、10時間の連続運転
の後に4反応器ム、Bの上部訃よび回収管内に白色スケ
ールの析出は見られなかった。Keep the temperature of the ammonium chloride sublimator at 550℃,
A mixed gas of 4/nin of nitrogen gas and ammonium chloride was introduced into the reactor, and the recovered gas was filled with an aqueous solution of caustic soda through a recovery tube and captured in a gas absorption tube. i
9. Blow nitrogen gas into the reactor BK41AS,
Introduce the recovered gas into a gas absorption tube filled with an aqueous sulfuric acid solution. As a result of 10 hours of continuous operation, the amount of sublimated ammonium chloride was 11! What is the recovery rate for hydrogen chloride recovered in s moles per 1 ton and 1 mole? The amount of ammonia recovered was 111 moles, and the recovery rate was ttS-. After 10 hours of continuous operation, no white scale was found to be deposited in the upper part of the 4 reactors, B, or the collection tube.
図1は実施例2で使用し九反応装置の概略図である。
実線は溶融塩の流れ、破線はガスの流れを示す。
ム:塩化水素回収反応器、B=アンモニア回収反応器、
C:塩化アンモニウム昇華器、′D=予熱器。
1:放冷槽、′t:塩化水素ガス吸収管、G:アンモニ
アガス吸収管、P:ポンプ
特許出願人 東洋1達工業株式会社FIG. 1 is a schematic diagram of the nine reactor used in Example 2. The solid line shows the flow of molten salt, and the broken line shows the flow of gas. M: hydrogen chloride recovery reactor, B = ammonia recovery reactor,
C: ammonium chloride sublimator, 'D = preheater. 1: Cooling tank, 't: Hydrogen chloride gas absorption pipe, G: Ammonia gas absorption pipe, P: Pump patent applicant Toyo Ichida Kogyo Co., Ltd.
Claims (1)
いて塩化水素およびアンモニアを分離回収する方法にお
いて、主として硫酸水素アンモニウムからなる溶融塩と
塩化アンモニウムガスを接触させ、該溶融塩にアンモニ
アを吸収させて塩化水素を分離回収する塩化水素回収工
程およびアンモニアを吸収し九溶融塩を加熱してアンモ
ニアを溶融塩から分離回収するアンモニア回収1糧から
なり、該アンモニア回収1糧から得られる主として硫酸
水素アンモニウムからなる溶融塩を塩化水素回収工11
Kli環することをq#轍とする塩化水素とアンモニア
を塩化アンモニウムから分離回収する方法。 (2)主として硫酸水素アンモニウムからなる溶融塩と
塩化アンモニウムガスを向流接触させることを特徴とす
る特許請求の範囲第1項記載の方法。 (2)塩化アンモニウムガスとして、窒素又は空気等の
キャリヤニガスを50〜!O□VOW−含む混合ガスを
用いることを特徴とする特許請求の範囲第1項または第
2項記載の方法。 44)200℃から290℃の温度で塩化水素を回収し
、300℃から580℃の11度でアンモニアを回収す
ることを特徴とする特許請求の範囲第1項から第3項の
いずれかの項に記載の方法。[Claims] 0) A method for separating and recovering hydrogen chloride and ammonia from ammonium chloride using ammonium hydrogen sulfate, in which a molten salt mainly consisting of ammonium hydrogen sulfate is brought into contact with ammonium chloride gas, and ammonia is added to the molten salt. The hydrogen chloride recovery process consists of a hydrogen chloride recovery process in which hydrogen chloride is separated and recovered by absorption, and an ammonia recovery process in which ammonia is absorbed and the molten salt is heated to separate and recover ammonia from the molten salt. Hydrogen chloride recovery process 11 for molten salt consisting of ammonium hydrogen
A method for separating and recovering hydrogen chloride and ammonia from ammonium chloride using Kli rings as a q# track. (2) The method according to claim 1, characterized in that a molten salt mainly consisting of ammonium hydrogen sulfate and ammonium chloride gas are brought into countercurrent contact. (2) As ammonium chloride gas, use a carrier gas such as nitrogen or air for 50~! 3. The method according to claim 1 or 2, characterized in that a mixed gas containing O□VOW- is used. 44) Any one of claims 1 to 3, characterized in that hydrogen chloride is recovered at a temperature of 200°C to 290°C, and ammonia is recovered at a temperature of 11 degrees, from 300°C to 580°C. The method described in.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3521082A JPS58156505A (en) | 1982-03-08 | 1982-03-08 | Process for separating and recovering hydrogen chloride and ammonia from ammonium chloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3521082A JPS58156505A (en) | 1982-03-08 | 1982-03-08 | Process for separating and recovering hydrogen chloride and ammonia from ammonium chloride |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58156505A true JPS58156505A (en) | 1983-09-17 |
Family
ID=12435477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3521082A Pending JPS58156505A (en) | 1982-03-08 | 1982-03-08 | Process for separating and recovering hydrogen chloride and ammonia from ammonium chloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58156505A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011074524A1 (en) * | 2009-12-14 | 2011-06-23 | 株式会社日本触媒 | Process for synthesis of ammonia |
CN113479910A (en) * | 2021-08-04 | 2021-10-08 | 宁波弗镁瑞环保科技有限公司 | Method for sequentially releasing chlorine and ammonia by decomposing ammonium chloride |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55162403A (en) * | 1979-06-05 | 1980-12-17 | Central Glass Co Ltd | Manufacture of hydrogen chloride and ammonia from ammonium chloride as starting material |
-
1982
- 1982-03-08 JP JP3521082A patent/JPS58156505A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55162403A (en) * | 1979-06-05 | 1980-12-17 | Central Glass Co Ltd | Manufacture of hydrogen chloride and ammonia from ammonium chloride as starting material |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011074524A1 (en) * | 2009-12-14 | 2011-06-23 | 株式会社日本触媒 | Process for synthesis of ammonia |
JP2011144102A (en) * | 2009-12-14 | 2011-07-28 | Tokyo Univ Of Agriculture & Technology | Method for synthesizing ammonia |
CN113479910A (en) * | 2021-08-04 | 2021-10-08 | 宁波弗镁瑞环保科技有限公司 | Method for sequentially releasing chlorine and ammonia by decomposing ammonium chloride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3682592A (en) | Treatment of waste hci pickle liquor | |
US3383170A (en) | Process for the recovery of sulphur dioxide and ammonia | |
US3997413A (en) | Purification of magnesium chloride cell bath material useful for the production of magnesium metal by electrolysis | |
CA2157885C (en) | Process for making anhydrous magnesium chloride | |
US3376112A (en) | Production of chlorine through oxidation of film of ferric chloride salt complex | |
US4041137A (en) | Method of producing aluminum fluoride | |
JP2002527329A (en) | Ammonium sulfate purification method | |
JPS6191335A (en) | Method for recovering platinum group metal | |
JPS58156505A (en) | Process for separating and recovering hydrogen chloride and ammonia from ammonium chloride | |
US4195070A (en) | Preparation of a MgCl2 solution for Nalco's MgCl2 process from MgSO4 and other MgSO4 salts | |
US4293532A (en) | Process for producing hydrogen chloride and ammonia | |
US2691569A (en) | Production of chlorine and metal nitrates | |
US4062929A (en) | Production of hydrogen fluoride | |
US3920529A (en) | Control of alkali metal chlorates in mercury cell brine | |
US6475457B2 (en) | Process for manufacturing potassium nitrate fertilizer and other metal nitrates | |
US2531182A (en) | Process for the manufacture of boric acid | |
US4089936A (en) | Production of hydrogen fluoride | |
US200134A (en) | Improvement in processes for utilizing zinc sulphate | |
RU2534323C1 (en) | Metallic cobalt obtaining method | |
US1247619A (en) | Recovery of alkali. | |
US2726140A (en) | Production of chlorine and metal sulfates | |
KR870001995B1 (en) | Preparation process fo sodium tripolyphosphate | |
SU353992A1 (en) | METHOD OF PROCESSING IRON-TITANIUM CONCENTRATES | |
JPS62256930A (en) | Method for recovering ruthenium | |
US1983041A (en) | Production of carbamates of the alkali-forming metals |