JPS58155262A - Combustion acceleration device of engine - Google Patents

Combustion acceleration device of engine

Info

Publication number
JPS58155262A
JPS58155262A JP3865282A JP3865282A JPS58155262A JP S58155262 A JPS58155262 A JP S58155262A JP 3865282 A JP3865282 A JP 3865282A JP 3865282 A JP3865282 A JP 3865282A JP S58155262 A JPS58155262 A JP S58155262A
Authority
JP
Japan
Prior art keywords
passage
oxygen
air
rich air
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3865282A
Other languages
Japanese (ja)
Inventor
Haruo Okimoto
沖本 晴男
Yasuhiro Shidahara
志田原 康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP3865282A priority Critical patent/JPS58155262A/en
Publication of JPS58155262A publication Critical patent/JPS58155262A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To require no discharge pump of nitrogen rich air by connecting an discharge passage exhausting the nitrogen rich air of an oxygen density enriching device to a discharge gas passage through a reed valve so as to absorb the nitrogen rich air by use of the pulsating discharge gas. CONSTITUTION:An oxygen density enriching device 12 made by containing an oxygen transparent membrane 14 in a case 13 introduces the air through an air introduction passage 15 branched from an intake air passage 2 downstream an air cleaner 3, and the oxygen rich air transmitted through the oxygen transparent membrane 14 is adequately fed into the intake air passage 2 from a feed passage 16 through a suction pump 18 and a control valve 21. In addition, the nitrogen rich air not transmitted through the transparent membrane 14 is introduced to a discharge passage 17, which is connected to a discharge gas passage 4 through a reed valve 24 so that the nitrogen rich air can be exhausted to the discharge gas passage 4 by utilizing the pulsating discharge gas. The discharge passage 14 is connected to the feed passage 16 downstream the pump 18 through 2 relief passage 25 provided with a relief valve 26.

Description

【発明の詳細な説明】 本発明は、酸素リッチ空気を供給するエンジンの燃焼促
進装置に関するものであるー 従来より、エンジンの燃焼性能を改善して燃費性を向上
させるものとして、例えば特開昭j乙−60263号公
報に示されるように、酸素含有比率を増大した酸素リッ
チ空気をエンジンに供給する技術が提来されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion promotion device for an engine that supplies oxygen-rich air. As shown in Japanese Patent No. J Otsu-60263, a technique has been proposed for supplying oxygen-rich air with an increased oxygen content ratio to an engine.

上記酸素リッチ空気を得る酸素濃度富化装置としては、
先行例に記載の如きシリコン糸ゴム膜を多層重ねた酸素
透過膜を用い、この酸素透過膜の一方側から空気を送り
他方側から吸引して、その圧力差による酸素と窒素との
溶解速度の差により、酸素を多く透過させて酸素リッチ
空気を得るいわゆる酸素透過膜方式と、ペレット状の合
成ゼオライトを充填した容器に空気を加圧して送り、窒
素をゼオライトに多く吸着させ、浮遊した酸素を取り出
して酸素リッチ空気を得るいわゆる窒素吸着方式とが主
に知られている。
As an oxygen concentration enrichment device to obtain the above oxygen-rich air,
Using an oxygen permeable membrane made of multiple layers of silicone thread rubber membranes as described in the previous example, air is sent from one side of the oxygen permeable membrane and sucked from the other side, and the dissolution rate of oxygen and nitrogen is determined by the pressure difference. Due to the difference, there is a so-called oxygen permeable membrane method that allows a large amount of oxygen to pass through to create oxygen-rich air, and a method that pressurizes air and sends it into a container filled with pellet-shaped synthetic zeolite, which causes the zeolite to adsorb a large amount of nitrogen and remove suspended oxygen. The so-called nitrogen adsorption method, which extracts oxygen-rich air to obtain oxygen-rich air, is mainly known.

しかして、上記酸素濃度富化装置においては空気の圧送
もしくは吸引を行うためにポンプを備えているものであ
るか、このポンプを回転駆動するためにエンジンの出力
損失かあり、特にエンジンの低負荷域では、エンジン出
力か低いことからポンプ駆動損失の比率か大きくなるも
のであって、上記酸素IJ ノチ空気を供給することに
よる燃費性の向上効果を低ドさせる不具合を有する。
However, the above oxygen concentration enrichment device is either equipped with a pump for pumping or suctioning air, or there is a loss of engine output to drive this pump, especially when the engine is under low load. In this region, the ratio of pump drive loss increases due to the low engine output, which has the disadvantage of reducing the effect of improving fuel efficiency by supplying the above-mentioned oxygen IJ and air.

そこで、本発明はかかる点に鑑み、空気中の酸素含有比
率を増大させる酸素濃度富化装置と、該酸素濃度富化装
置によって富化された酸素リッチ′+!気をエンジンに
供給する酸素リッチ空気供給通路と、上記酸素濃度富化
装Wの窒素リッチ空気を排出する窒素リッチ空気排出通
路とを備え、該窒素リッチ空気排出通路をリード弁を介
して排気通路に接続し、排気脈動を利用して窒素リッチ
空気を吸引するようにしたエンジンの燃焼促進装置を提
供し、ポンプの駆動損失を減少して良好な燃費性の向上
を図らんとするものである。
In view of this, the present invention provides an oxygen concentration enrichment device that increases the oxygen content ratio in the air, and an oxygen rich '+' enriched by the oxygen concentration enrichment device! an oxygen-rich air supply passage for supplying air to the engine, and a nitrogen-rich air exhaust passage for discharging the nitrogen-rich air from the oxygen concentration enrichment device W, and the nitrogen-rich air exhaust passage is connected to an exhaust passage via a reed valve. The present invention provides a combustion accelerating device for an engine which is connected to the engine and sucks nitrogen-rich air using exhaust pulsation, thereby reducing drive loss of the pump and improving fuel efficiency.

以−[、木兄りjの実施例を図面に沿って説明する。Hereinafter, embodiments of the Kinei Rij will be described with reference to the drawings.

第1因において、1はエンジン、2はエアクリ−f 6
ヲB f::空気をエンジン1に供給する吸気通路、4
は4iF気通路である0 吸気通路21こおいて、5は吸入空気量を検出するエア
フローメータ、6はエアフローメータ5の下流に配設さ
れアクセル操作に応じて開閉するスロットル弁、7はス
ロットル弁6の下流に燃料を噴射する燃料噴射ノズルで
ある。なお、9は吸気弁、10は排気弁、11は点火プ
ラクである。
In the first cause, 1 is the engine, 2 is the air cleaner f 6
wo B f:: Intake passage that supplies air to engine 1, 4
is a 4iF air passage 0 In the intake passage 21, 5 is an air flow meter that detects the amount of intake air, 6 is a throttle valve that is disposed downstream of the air flow meter 5 and opens and closes in response to accelerator operation, and 7 is a throttle valve. This is a fuel injection nozzle that injects fuel downstream of 6. Note that 9 is an intake valve, 10 is an exhaust valve, and 11 is a spark plaque.

一方、12はケース16内に酸素透過膜14を備え空気
中の酸素含有比率を増大させる酸素濃度富化装置、15
はエアクリーナ6下流の吸気通路2がら空気を酸素濃度
富化装置12に取入れる空気導入通路、16は酸素濃度
富化装置h”12の酸素透過膜14を透過した酸素リッ
チ空気を導出する酸素リッチ空気供給通路、17は酸素
濃度富化装置12の酸素透過膜14を透過しない窒素リ
ッチ空気を排出する窒素リッチ空気排出通路である。
On the other hand, 12 is an oxygen concentration enrichment device that includes an oxygen permeable membrane 14 in a case 16 and increases the oxygen content ratio in the air; 15
16 is an air introduction passage that takes air from the intake passage 2 downstream of the air cleaner 6 into the oxygen concentration enrichment device 12; The air supply passage 17 is a nitrogen-rich air discharge passage that discharges nitrogen-rich air that does not pass through the oxygen permeable membrane 14 of the oxygen concentration enrichment device 12.

上記酸素リッチを気供給通路16の下流端は、酸素透過
膜14を内方部に透過した酸素リッチ空気を吸引する吸
引ポンプ18を経てエアフローメータ5上流の吸気通路
2に接続され、エンジン1に酸素リッチ空気を供給する
。なお、吸引ポンプ18はエンジン1の回転に伴って常
時駆動されるよう構成されている。
The downstream end of the oxygen-rich air supply passage 16 is connected to the intake passage 2 upstream of the air flow meter 5 through a suction pump 18 that suctions the oxygen-rich air that has permeated inward through the oxygen permeable membrane 14, and is connected to the intake passage 2 upstream of the air flow meter 5. Supply oxygen-rich air. Note that the suction pump 18 is configured to be constantly driven as the engine 1 rotates.

上記酸素濃度富化装置12で富化された酸素リッチ空気
は酸素濃度A整装置19により所定濃度で・エンジン1
に供給され、この酸素濃度調整装置19は酸素リッチ空
気供給通路16の合流部より上流の吸気通路2に介設さ
れた第1制御弁20と、吸引ポンプ18より下流の酸素
リッチ空気供給通路16に介設された第2制御弁21と
を備え、この第1制御升20と第、2制御弁21とをリ
ンク機構22で連係し、モータ23の作動により第1制
御弁20と第2制御弁21とを相反方向に連動開閉して
、エンジン1に供給する吸入空気の酸素濃IIを調整す
るものである。すなわち、酸素濃度を濃くするときには
第1制御弁20を閉じて第2制御弁21を開く一方、酸
素濃度を薄くするときには第1制御弁20を開いて第2
制御弁21を閉じるものである。
The oxygen-rich air enriched by the oxygen concentration enrichment device 12 is adjusted to a predetermined concentration by the oxygen concentration A adjustment device 19.
The oxygen concentration adjusting device 19 is connected to a first control valve 20 provided in the intake passage 2 upstream of the confluence of the oxygen-rich air supply passages 16 and to the oxygen-rich air supply passage 16 downstream of the suction pump 18. The first control valve 20 and the second control valve 21 are linked by a link mechanism 22, and the first control valve 20 and the second control valve 21 are connected by the operation of a motor 23. The oxygen concentration II of the intake air supplied to the engine 1 is adjusted by interlockingly opening and closing the valve 21 in opposite directions. That is, when increasing the oxygen concentration, the first control valve 20 is closed and the second control valve 21 is opened, while when decreasing the oxygen concentration, the first control valve 20 is opened and the second control valve 21 is opened.
This closes the control valve 21.

一方、前記窒素IJ ノチ空気排出通路17は一端が酸
素濃度富化装置12のケース16における酸素透過膜1
4の外周部に開口し他端が排気通路4に連通し、該窒素
リッチ空気排出通路17の途中にはり−ド弁24が介設
されており、排気通路4に発生する排気脈動により酸素
透過膜14外方部の窒素リッチ空気(酸素リーン空気)
を吸引し、酸素a度富化装’at 12のケース13内
に空気導入通路15から吸気通路2の空気を導入するも
のである。
On the other hand, the nitrogen IJ notch air exhaust passage 17 has one end connected to the oxygen permeable membrane 1 in the case 16 of the oxygen concentration enrichment device 12.
4, and the other end communicates with the exhaust passage 4, and a bridge valve 24 is interposed in the middle of the nitrogen-rich air exhaust passage 17, and the exhaust pulsation generated in the exhaust passage 4 allows oxygen to permeate. Nitrogen-rich air (oxygen-lean air) outside the membrane 14
The air in the intake passage 2 is introduced from the air introduction passage 15 into the case 13 of the oxygen enrichment device 'at 12.

なお、25は吸引ポンプ18下流の酸素リッチ空気供給
通路16と窒素リッチ空気排出通路17とを連通ずるリ
リーフ通路、26は酸素リッチ空気供給時に該IJ I
J−7通路25を閉じ非供給時にリリーフ通路25を開
くリリーフ弁である0また、27は、上記燃料噴射ノズ
ル7からの燃料噴射量、およびすIJ−フ弁26の開閉
作動、並びに第1制御弁20、第2制両弁21の開度を
調整するモータ26の作動を制御する制御装置である。
In addition, 25 is a relief passage that communicates the oxygen-rich air supply passage 16 downstream of the suction pump 18 and the nitrogen-rich air discharge passage 17, and 26 is a relief passage that connects the IJ I when oxygen-rich air is supplied.
27 is a relief valve that closes the J-7 passage 25 and opens the relief passage 25 when no fuel is supplied. Also, 27 controls the amount of fuel injected from the fuel injection nozzle 7, the opening/closing operation of the IJ-f valve 26, and the first This is a control device that controls the operation of a motor 26 that adjusts the opening degrees of the control valve 20 and the second control valve 21.

サラに、28はスロットル弁6の開度より負荷を検出す
る負荷センサー、29はエアフローメータ5上流の吸気
通路2に配設されて吸気中の酸素濃度を検出する酸素濃
度センサーであって、上記両センサー28.29の検出
信号はエア70−メータ5の検出信号とともに制御装置
27に入力される。
Specifically, 28 is a load sensor that detects the load from the opening degree of the throttle valve 6, and 29 is an oxygen concentration sensor that is disposed in the intake passage 2 upstream of the air flow meter 5 and detects the oxygen concentration in the intake air. The detection signals of both sensors 28 and 29 are input to the control device 27 together with the detection signals of the air meter 5.

上記制御装置27は、吸入空気量に応じて燃料噴射ノズ
ル7からの燃看噴射惜を制御するとともに、エンジン1
の負荷状態に応じ低中負荷時に酸素リッチ空気供給通路
16より酸素リッチ空気を供給して燃焼を促進し、さら
に、この低中負荷時にエンジン1に供給する酸素リッチ
空気の酸素濃度が設定値を越えて濃くなったときに酸素
濃度を減少させるように制御して燃焼温度の異常上昇を
抑制するものである。
The control device 27 controls fuel injection from the fuel injection nozzle 7 according to the amount of intake air, and
According to the load condition of the engine 1, oxygen-rich air is supplied from the oxygen-rich air supply passage 16 at low to medium loads to promote combustion, and furthermore, the oxygen concentration of the oxygen-rich air supplied to the engine 1 at low to medium loads is adjusted to a set value. When the oxygen concentration exceeds the oxygen concentration, the oxygen concentration is controlled to be reduced to suppress an abnormal rise in combustion temperature.

第2図は上記制御装置H27の一例を示すものであって
、30はエアフローメータ5て検出した吸入空気量に対
する燃料噴射量を演算する基本噴射緻決定回路であり、
その出力fd号は燃料噴射ノズル駆動回路61を経て燃
料噴射ノズル7に出力される。
FIG. 2 shows an example of the control device H27, in which 30 is a basic injection fine-determination circuit that calculates the fuel injection amount with respect to the intake air amount detected by the air flow meter 5;
The output fd is outputted to the fuel injection nozzle 7 via the fuel injection nozzle drive circuit 61.

一方、62は負荷センサー28の検出信号を基準値と比
較しエンジン負荷が低中負荷状態にあるかどうかを判別
する判別回路で、低中負荷時には判別回路62の出力信
号は+717一フ弁駆動回路66を経てリリーフ弁26
に出力されて該リリーフ弁26を閉作動するとともに、
判別回路32の出力信号はモータ駆動回路34および補
正回路35を経てモータ26に出力されて該モータ26
を駆動し、第1制御弁20を閉じて第2制両弁21を開
くものである。
On the other hand, 62 is a determination circuit that compares the detection signal of the load sensor 28 with a reference value and determines whether the engine load is in a low-medium load state.At low-medium load, the output signal of the determination circuit 62 is +717, which drives the valve. Relief valve 26 via circuit 66
is output to close the relief valve 26, and
The output signal of the discrimination circuit 32 is output to the motor 26 via the motor drive circuit 34 and the correction circuit 35.
The first control valve 20 is closed and the second control valve 21 is opened.

さらに、66は酸素濃度センサー29の検出信号を基準
値と比較する比較回路で、実際の酸素濃度が基準値より
大きいときには補正回路65に補正信号を出力する。こ
の補正回路65では比較回路66からの信号か入力され
ると、モータ駆動回路64の制御信号を補正して第1制
御弁20の開度を大きく第2制御弁21の開度を小さく
して、エンジン11こ供給される酸素リッチ空気の酸素
濃度を減少させるものである。
Furthermore, 66 is a comparison circuit that compares the detection signal of the oxygen concentration sensor 29 with a reference value, and outputs a correction signal to the correction circuit 65 when the actual oxygen concentration is higher than the reference value. When this correction circuit 65 receives the signal from the comparison circuit 66, it corrects the control signal of the motor drive circuit 64 to increase the opening degree of the first control valve 20 and decrease the opening degree of the second control valve 21. , the oxygen concentration of the oxygen-rich air supplied to the engine 11 is reduced.

なお、上記実施例においては、吸引ポンプ18を常時駆
動式に設けているが、この吸引ポンプ18を電動ポンプ
にて構成し前記リリーフ弁26の制御に代えて該吸引ポ
ンプを制御するようにしてもよい。さらに、第1制御弁
20と第2制御弁21の使用にかえて、酸素リッチ空気
供給通路16と吸気通路2を切り換えるようにするとと
もに、酸素リッチ空気供給通路16に対し希釈用の空気
を供給して酸素リッチ空気の酸素濃度を制御するように
してもよい。
In the above embodiment, the suction pump 18 is provided in a constantly driven manner, but the suction pump 18 is configured with an electric pump and the suction pump is controlled instead of controlling the relief valve 26. Good too. Furthermore, instead of using the first control valve 20 and the second control valve 21, the oxygen-rich air supply passage 16 and the intake passage 2 are switched, and dilution air is supplied to the oxygen-rich air supply passage 16. The oxygen concentration of the oxygen-rich air may be controlled by

次に、第3図には窒素吸着方式の酸素濃度富化装置67
の例を示し、68および69はペレット状の合成ゼオラ
イト40を充填した第1および第、2答器で、この第1
および第2容器38.39には、上流側に送給ポンプ4
1を備えた空気導入通路15が、下流側に酸素リッチ空
気供給通路16および窒素リッチ空気排出通路17かそ
れぞれ接続されて両容器38.39は互いに並列に配設
され、上記谷通路15,16.17には第1容器68と
第2容器69とを切り換えるバルブ■1〜v6が介設さ
れている。
Next, FIG. 3 shows a nitrogen adsorption type oxygen concentration enrichment device 67.
In this example, 68 and 69 are the first, second and second reactors filled with pelleted synthetic zeolite 40;
And the second container 38, 39 has a feed pump 4 on the upstream side.
1 is connected to the oxygen-rich air supply passage 16 and the nitrogen-rich air discharge passage 17 on the downstream side, and both containers 38 and 39 are arranged in parallel with each other, and the valley passages 15 and 16 .17 is provided with valves 1 to v6 for switching between the first container 68 and the second container 69.

上記空気導入通路15は吸気通路2の空気を送給ポンプ
41によって加圧して第1容器68もしくは第2容器6
9に送給し、酸素IJ ソチ空気供給通路16は窒素が
合成ゼオライト40に吸着されて富化されてなる酸素リ
ッチ空気を導出して、前例と同様にエアフローメータ5
の上流の吸気通路2からエンジン1に供給するものであ
る。
The air introduction passage 15 pressurizes the air in the intake passage 2 with the feed pump 41 to form the first container 68 or the second container 6.
The Sochi air supply passage 16 delivers oxygen-rich air enriched with nitrogen adsorbed to the synthetic zeolite 40, and as in the previous example, the air flow meter 5
The air is supplied to the engine 1 from the intake passage 2 upstream of the air.

また、窒素リッチ空気排出通路17はリード弁24を介
して排気通路4に接続され、第1谷器68もしくは第2
谷器69の合成ゼオライト40に吸着していた窒素を放
出させた窒素リッチ空気を、上記排気通路4に発生する
排気脈動を利用して排出し、合成ゼオライ)40の窒素
吸着性能を回復させるものである。
Further, the nitrogen-rich air exhaust passage 17 is connected to the exhaust passage 4 via a reed valve 24, and is connected to the first valve 68 or the second valve 68.
The nitrogen-rich air that has released the nitrogen adsorbed on the synthetic zeolite 40 of the valley device 69 is discharged using the exhaust pulsation generated in the exhaust passage 4, thereby restoring the nitrogen adsorption performance of the synthetic zeolite 40. It is.

一方、酸素リッチ空気を供給する時期については、上記
実施例ではエンジン1の低中負荷時に供給し、燃焼促進
を図るようにしているが、高負荷時において出力向上を
図る場合には、高負荷時にも酸素リッチ空気を供給する
ようにしてもよい。
On the other hand, regarding the timing of supplying oxygen-rich air, in the above embodiment, it is supplied when the engine 1 is under low to medium load to promote combustion. Oxygen-rich air may also be supplied at times.

以上説明したように、本発明によれは、酸素濃度富化装
置の窒素リッチ′9.気を排出する窒素リッチ空気排出
通路をリード弁を介して排気通路に接続し、排気通路に
発生する排気脈動を利用して窒素リッチ空気を吸引する
ようにしたことにより、酸素濃度富化装置のための特別
なポンプを設けることなく窒素リッチ空気を排出するこ
とかでき、特にエンジン出力が小さい低負荷時において
、酸素リンチ空気の供給による燃焼促進に伴う燃費性改
善効果を十分に発揮させることができるものである。
As explained above, according to the present invention, the nitrogen rich '9. The nitrogen-rich air exhaust passage that discharges air is connected to the exhaust passage via a reed valve, and the exhaust pulsation generated in the exhaust passage is used to draw in the nitrogen-rich air. Nitrogen-rich air can be discharged without the need for a special pump, and the fuel efficiency improvement effect due to the acceleration of combustion by supplying oxygen-rich air can be fully demonstrated, especially at low load with low engine output. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は不発1#]の実施庸様を例示し、第1図は概略構
成図、第、2図は制御装置の一例を示すブロック図、第
3図は変形例を示す酸素濃度富化装置の構成図である。 1・・・・・・エンジン、2・・・・・吸気通路、4・
・・・・排気通路、12.37・・・・・酸素濃度富化
装置、14・・・・・酸素透過膜、15・・・・空気導
入通路、16・・・・・・酸素リッチ空気供給通路、1
7 ・・窒素リッチ空気排出通路、24・・・・・・リ
ード弁、27・・・・・・制御装置、38.39・・・
・答器、40・・合成ゼオライト○ 348−
The drawings illustrate the implementation of the misfire 1#], with Fig. 1 being a schematic configuration diagram, Figs. 2 and 2 being a block diagram showing an example of a control device, and Fig. 3 showing a modification of the oxygen concentration enrichment device FIG. 1...Engine, 2...Intake passage, 4.
...Exhaust passage, 12.37...Oxygen concentration enrichment device, 14...Oxygen permeable membrane, 15...Air introduction passage, 16...Oxygen-rich air supply passage, 1
7...Nitrogen-rich air discharge passage, 24...Reed valve, 27...Control device, 38.39...
・Answer, 40...Synthetic zeolite ○ 348-

Claims (1)

【特許請求の範囲】[Claims] (1)空気中の酸素含有比率を増大させる酸素濃度富化
装置と、該酸素濃度富化装置によって富化された酸素リ
ッチ空気をエンジンに供給する酸素IJ ノチ空気供給
通路と、上記酸素濃度富化装置の窒素IJ ノチ空気を
排出する窒素IJ 、チ空気排出通路とを備え、該窒素
リッチ空気排出通路をリード弁を介して排気通路に接続
し、排気脈動を利用して窒素リンチ空気を吸引すること
を特徴とするエンジンの燃焼促進装置。
(1) An oxygen concentration enrichment device that increases the oxygen content ratio in the air; an oxygen IJ air supply passageway that supplies the oxygen-rich air enriched by the oxygen concentration device to the engine; The nitrogen rich air exhaust passage is connected to the exhaust passage via a reed valve, and the nitrogen rich air is sucked using the exhaust pulsation. An engine combustion accelerator characterized by:
JP3865282A 1982-03-10 1982-03-10 Combustion acceleration device of engine Pending JPS58155262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3865282A JPS58155262A (en) 1982-03-10 1982-03-10 Combustion acceleration device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3865282A JPS58155262A (en) 1982-03-10 1982-03-10 Combustion acceleration device of engine

Publications (1)

Publication Number Publication Date
JPS58155262A true JPS58155262A (en) 1983-09-14

Family

ID=12531186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3865282A Pending JPS58155262A (en) 1982-03-10 1982-03-10 Combustion acceleration device of engine

Country Status (1)

Country Link
JP (1) JPS58155262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221784A (en) * 2007-03-15 2008-09-25 Casio Electronics Co Ltd Duplication-proof printed matter and printing machine for creating duplication-proof printed matter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221784A (en) * 2007-03-15 2008-09-25 Casio Electronics Co Ltd Duplication-proof printed matter and printing machine for creating duplication-proof printed matter

Similar Documents

Publication Publication Date Title
JPH10252584A (en) Method and device for condensing oxygen content in intake of internal combustion engine
JPS6321019B2 (en)
JPS58155262A (en) Combustion acceleration device of engine
US6132693A (en) Process and device for reducing pollutants, especially nitrogen oxides in combustion exhaust gases
US4586481A (en) Secondary air supply for internal combustion engine
JPS58155219A (en) Device for promoting combustion in engine
JPH0368229B2 (en)
JPS58187573A (en) Combustion promoting device for engine
JPS6229759A (en) Combustion controller for engine
JPS60173362A (en) Suction device for diesel engine
JPS58158316A (en) Auxiliary chamber type internal-combustion engine
JPS58187574A (en) Combustion promoting device for engine controlled in number of operating cylinders
JPS58155218A (en) Device for promoting combustion in engine
JPS58158317A (en) Combustion accelerating device of engine with supercharger
JPS58143119A (en) Suction device for engine
GB2176318A (en) Air intake side secondary air supply system for an internal combustion engine
US4617891A (en) Secondary air supply for internal combustion engine
JPS58155268A (en) Air-intake device in engine
JPS58183817A (en) Combustion promoting device for engine
JPH0341069Y2 (en)
JPS58138239A (en) Suction device of engine
JPS6318177A (en) Suction system for internal combustion engine
JPS58140451A (en) Intake apparatus for engine
JPH0295766A (en) Oxygen enriching air controller for oxygen enriched engine
JPH0375733B2 (en)