JPS58154649A - Method and apparatus for measuring various abnormal forms in metallic deformation - Google Patents

Method and apparatus for measuring various abnormal forms in metallic deformation

Info

Publication number
JPS58154649A
JPS58154649A JP3778982A JP3778982A JPS58154649A JP S58154649 A JPS58154649 A JP S58154649A JP 3778982 A JP3778982 A JP 3778982A JP 3778982 A JP3778982 A JP 3778982A JP S58154649 A JPS58154649 A JP S58154649A
Authority
JP
Japan
Prior art keywords
measured
specimen
displacement meter
deformation
test chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3778982A
Other languages
Japanese (ja)
Inventor
Hiroyuki Minematsu
峰松 裕行
Michiyoshi Takeda
武田 道善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Denpa Koki Kk
Fuji Electronics Industry Co Ltd
Original Assignee
Fuji Denpa Koki Kk
Fuji Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Denpa Koki Kk, Fuji Electronics Industry Co Ltd filed Critical Fuji Denpa Koki Kk
Priority to JP3778982A priority Critical patent/JPS58154649A/en
Publication of JPS58154649A publication Critical patent/JPS58154649A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To obtain a method and an apparatus for measuring various abnormal forms in metallic deformation which can easily measure abnormal phenomena generated just after the application of deformation working similar to hot working to a test chip to be measured, by optically measuring the deformation due to the expansion/contraction of the test chip to be measured. CONSTITUTION:Although the test chip 1' to be measured is contracted at its diameter by the change (cooling e.g.) of temperature, the contraction coefficient is changed or the test chip 1' is expanded at the generation of an abnormal form. An optical displacement meter 8 measures said change of the diameter as the change of light flux by irradiating beam light (light flux) 7 from an optical source 6 so as to be the tangent of the external circumference of the test chip 1'. The optical displacement meter 8 records the change of the diameter D of the test chip 1' as an expansion/contraction curve, so that the abnormal point can be measured. In order to measure fine displacement, the optical displacement meter 8 is provided with a high speed shifting means to make the movement of the center axis for measurement in the Z and X axial directions follow to a deformation working program.

Description

【発明の詳細な説明】 本発明は金属を誘導加熱及び機械的加圧加工して変形せ
しめた後に、その金属の膨張収縮を光学的に測定する金
属の変形下にお打る各糧変態測定方法及び装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for measuring the transformation of metal under deformation, which optically measures the expansion and contraction of the metal after deforming the metal by induction heating and mechanical pressure processing. METHODS AND APPARATUS.

一般に、鉄鋼材料等の金属は熱処理条件を決定する為に
、連続冷却変態図(C,(’、T図)、恒温変態図(T
、T、T図)等が変1m測定によって求められるが、こ
れらは殆んど試片形状が原形のままの静的状態で電気炉
又は誘導加熱により加熱冷却して、膨張収縮曲線を測定
することにより変態点を求める方法が採用されていた(
%公昭48−43837号公報参照)。
Generally, in order to determine the heat treatment conditions for metals such as steel materials, continuous cooling transformation diagrams (C, (', T diagrams), isothermal transformation diagrams (T diagrams),
, T, T diagram) etc. are determined by 1-meter measurements, but these are mostly measured in a static state with the specimen shape in its original shape, heated and cooled in an electric furnace or induction heating, and the expansion and contraction curves are measured. A method was adopted to find the metamorphosis point by
% Publication No. 48-43837).

しかし、実際の鉄鋼材料の製造過程においてに連続鋳造
法また燻インゴ、ト法にしても、加熱された鋼塊が何ら
かO方法により圧延等の工程を経ることにより変形加工
を受ける。これらの熱間加工は加工後の温度低下過1M
(冷却)において生じる変態現象に強い影響を与えるも
ので、従来の単なる静的無変形の状態で測定され九変態
測定結果と椋鶴間加工条件例えば加工温度、加工量f(
ひずみ速[)、加工量(ひずみ)により相当に測定結果
が異なる場合がある。4Iに最近の熱間加工のl1条件
の制御と各種合金設計の組合せにより圧延鋼材の114
11性の向上を図る技術が進歩するに従って熱間加工後
O変m測定が重畳となった。
However, in the actual manufacturing process of steel materials, even if the continuous casting method or the smoking ingot method is used, the heated steel ingot undergoes deformation processing by going through a process such as rolling by some O method. These hot workings result in a temperature drop of over 1M after processing.
It has a strong influence on the transformation phenomenon that occurs during cooling (cooling), and is measured in a conventional static, non-deformed state.
The measurement results may vary considerably depending on the strain rate [) and the amount of processing (strain). 114 of rolled steel by combining recent hot working l1 conditions and various alloy designs.
As the technology for improving 11 properties has progressed, measurements of O-density m after hot working have become increasingly important.

従来の静的熱#gt測定法では被測定試片から直接試片
の膨張収11i1に#う長さの微小変化を差動変圧器に
直接連動させて計測を行っていたが、熱間加工と同様の
変形、加工を被測定試片に付与し九厘後に自動的に変I
III[l定を行うことは愉履的に諸制約を受ける。即
ち、変形加工@WC,加工工具を試片から取り除いた後
に差動変圧器の接触手を変形された試片の上にあてがわ
なければならないが、変形後試片に所定の冷却を与える
ために冷媒ガスを吹付ける場合もあり、また逆に加熱す
ることもある。このように、加エエ^の除去、試片の冷
却または加熱といった緒作用条件を与えると同時に、試
片の膨張収縮の計測を三者一致のタイミング下で行うこ
とは難しい・本発明社上記の事情に鑑みてなされたもの
で、被測定試片の膨張収縮(よる変位を光学的に#j定
することにより、熱間加工と同様の変形加工を被測定試
片に付与した直後の変態現象を容易に測定し得る金属の
変形下における各種変11測定方法及び装置を提供する
ことを目的とする。
In the conventional static heat #gt measurement method, minute changes in the length of the test specimen were directly linked to the differential transformer to measure expansion contraction 11i1 of the specimen directly from the test specimen. Apply the same deformation and processing to the specimen to be measured, and automatically transform it after 90 minutes.
III. Making decisions is subject to various constraints. In other words, in deformation processing @WC, after removing the processing tool from the specimen, the contact hand of the differential transformer must be placed on the deformed specimen, but the specimen must be cooled to a specified level after deformation. In some cases, refrigerant gas is sprayed to prevent this, and in other cases, heating is performed. In this way, it is difficult to provide initial working conditions such as removing the additive, cooling or heating the specimen, and at the same time measure the expansion and contraction of the specimen at the same timing. This was done in consideration of the circumstances, and by optically determining the expansion/contraction (displacement due to #j) of the specimen to be measured, it was possible to detect the transformation phenomenon immediately after applying deformation processing similar to hot working to the specimen to be measured. It is an object of the present invention to provide a method and apparatus for measuring various deformities under deformation of metals, which can easily measure 11.

以下図面を参照して本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

即ち、第1図は本発明に係る変形加工及び加熱冷却装置
の概略図である。1は金属よりなる被測定試片で、通常
直径10■φ、高さ12〜15■位の略円柱体に形成さ
れる。前記被測定試片1の上下には加圧機構の加工治具
2.3が設けられ、且つ前記被測定試片1の周囲には内
側に冷却ノズル4♀する紡導加熱コイル5が設けられる
。而して、被測定試片1の加熱は誘導加熱コイル5に通
電して行い、又、被測定試片1の冷却は誘導加熱コイル
50通電電流の変化若しくは冷却ノズル4からの噴射に
より行う。更に、被測定試片1の変形加工は所定の温度
にて加圧機構より加工治具2,3を介して行う。
That is, FIG. 1 is a schematic diagram of a deformation processing and heating/cooling apparatus according to the present invention. Reference numeral 1 denotes a specimen to be measured made of metal, which is usually formed into a substantially cylindrical shape with a diameter of 10 mm and a height of about 12 to 15 inches. A processing jig 2.3 of a pressurizing mechanism is provided above and below the specimen 1 to be measured, and a spinning heating coil 5 with a cooling nozzle 4♀ inside is provided around the specimen 1 to be measured. . The specimen 1 to be measured is heated by applying current to the induction heating coil 5, and the specimen 1 to be measured is cooled by changing the current applied to the induction heating coil 50 or by spraying from the cooling nozzle 4. Furthermore, the deformation of the specimen 1 to be measured is carried out at a predetermined temperature using a pressurizing mechanism via processing jigs 2 and 3.

第2図は被測定試片1の変形下の変態測定における温度
変化を示す。先ず被測定試片1を1100℃付近まで加
熱してその温度で一定時間保持して後、被測定試片1は
変形加工目標温度900℃に制御され、この加工温度A
において、所定の加工速度で所定の加工量(ひずみ)が
与えられて第3図に示すように略円板状に変形し九被測
定臥片1′となる。その状独において、被測定試片1′
は冷却過程に移行すると同時に変態測定が開始される。
FIG. 2 shows temperature changes during transformation measurement under deformation of the specimen 1 to be measured. First, the specimen 1 to be measured is heated to around 1100°C and held at that temperature for a certain period of time, and then the specimen 1 to be measured is controlled to a deformation processing target temperature of 900°C, and this processing temperature A
At this time, a predetermined processing amount (strain) is applied at a predetermined processing speed, and as shown in FIG. 3, the piece is deformed into a substantially disk shape, resulting in nine measured seat pieces 1'. In that situation, the sample to be measured 1'
Transformation measurement begins at the same time as the cooling process begins.

即ち、第4図に示すように、被測定試片1′は温度の変
化(この場合冷却)41Cより直径りが収縮するが、変
態が生じれば収縮率が変化するか、膨張の方向に変化す
る。この様な直径の変化は、光源6よりのビーム状光線
(光束)7を被測定試片I′の外周の接線となるように
照射し、その光束の変化を例えばイメージディセクタチ
ューブ等を用いた受光器に相当する光学的変位計8によ
り計測することにより測定することができる。この被測
定試片1′の直径りの変化は膨張収縮曲線として光学的
変位計8で記録され変態点の測定が可能となる。而して
、光学的変位計8は微小変位を計測するためには測定視
野を200μm8FIILに絞る必要がある。
That is, as shown in FIG. 4, the diameter of the specimen 1' to be measured shrinks due to a change in temperature (in this case cooling) 41C, but if transformation occurs, the shrinkage rate changes or the diameter changes in the direction of expansion. Change. Such a change in diameter can be achieved by irradiating a beam of light (light flux) 7 from a light source 6 so as to be tangential to the outer periphery of the specimen I', and detecting the change in the light flux using, for example, an image dissector tube. It can be measured by measuring with an optical displacement meter 8 corresponding to the light receiver. This change in the diameter of the specimen 1' to be measured is recorded as an expansion/contraction curve by the optical displacement meter 8, making it possible to measure the transformation point. Therefore, in order to measure minute displacements, the optical displacement meter 8 needs to narrow down its measurement field to 200 μm8 FIIL.

このような狭視野のために、第5図に示すように、変形
前被測定試片1の計測中心点(ターグ、ト)がa点にあ
るとすれば、加工変形後は計測中心点(ターゲット)が
0点に移動する。従って、光学的変位計8は測定中心軸
の2軸移動及びX軸移動を変形加工グログラ4に追従さ
せる高速移動機構を設けている。
Due to such a narrow field of view, as shown in Fig. 5, if the measurement center point (Tag, T) of the specimen 1 to be measured before deformation is at point a, after processing deformation, the measurement center point ( target) moves to 0 point. Therefore, the optical displacement meter 8 is provided with a high-speed movement mechanism that allows the two-axis movement of the measurement center axis and the X-axis movement to follow the deformed grout 4.

次に、光学的変位計8の移動機構について述べると、第
5図に示すように、光学的変位計8は先ず変形前の被測
定試片1の外周面の中心1点に視野の中心点が合致する
ようにセットされている。光学的変位計8の中心光軸は
図面上に描かれた位置になる。一方、加圧加工後、変形
後の被測定試片1′の外周面の中心はC点に移行する。
Next, to describe the moving mechanism of the optical displacement meter 8, as shown in FIG. are set to match. The central optical axis of the optical displacement meter 8 is at the position drawn on the drawing. On the other hand, after the pressure processing, the center of the outer circumferential surface of the deformed specimen 1' to be measured moves to point C.

この場合、変形後の被測定試片1′の外周面中心C点を
分解して考えると、a点は垂直軸(2軸)でHby点に
移行し、水平軸(X軸)でVibx点に移行する。従っ
て、被測定試片の材質、温度等による多少の差異はある
が、a点は点線のような軌跡を描いてC点に移行する。
In this case, if we disassemble point C, the center of the outer peripheral surface of the specimen 1' to be measured after deformation, point a moves to point Hby on the vertical axis (two axes), and point Vibx on the horizontal axis (X axis). to move to. Therefore, although there are some differences depending on the material of the specimen to be measured, temperature, etc., point A moves to point C along a trajectory like a dotted line.

この場合、被測定試片の2軸方向の加工量(ひずみ)は
あらかじめきめられているため、変形加工時に、あらか
じめ設定されたグログラム信号PSを2軸信号回路9に
加えて2軸用ステ、ピングモータ10を回転させ、カメ
ラz、X軸移動機構11を駆動して光学的変位計8を矢
印y方向に移動する。これと同時に、変形された被測定
試片1′の外周面のX方向の変位に追従する信号をX軸
茎追従回路12から得、この信号をX軸周ステ、ピング
モータ13に加えて回転させ、カメラz、X軸移動機構
11を駆動して光学的変位計8を矢印X方向に移動する
。このようにして、光学的変位計8は中心光軸を被測定
試片1′のC点に一致すると停止し、この位置で変態の
計測を開始する。即ち、変形した被測定試片1′に変態
による体積変化が生じると、被測定試片1′の直径の変
化(膨張または収縮)となって現われるのでC点の変位
として計測が可能となる。
In this case, since the amount of machining (strain) in the two-axis directions of the specimen to be measured is determined in advance, a preset grogram signal PS is added to the two-axis signal circuit 9 during deformation processing, and the two-axis step The ping motor 10 is rotated, the camera z and the X-axis moving mechanism 11 are driven, and the optical displacement meter 8 is moved in the direction of the arrow y. At the same time, a signal that follows the displacement in the X direction of the outer circumferential surface of the deformed specimen 1' to be measured is obtained from the X-axis stem tracking circuit 12, and this signal is applied to the Then, the camera z and the X-axis moving mechanism 11 are driven to move the optical displacement meter 8 in the direction of the arrow X. In this way, the optical displacement meter 8 stops when its central optical axis coincides with point C of the sample to be measured 1', and starts measuring the transformation at this position. That is, when a volume change occurs in the deformed specimen 1' to be measured due to transformation, this appears as a change (expansion or contraction) in the diameter of the specimen 1' to be measured, which can be measured as the displacement at point C.

次に、X軸茎追従回路12の動作について述べると、第
6図に示すように、変形前の被測定試片1ではa点を中
心として光学的変位針の視野13が暗部131と明部1
32に縦境界を中心として左右にふり分けるようにセッ
トされる。
Next, to describe the operation of the X-axis stalk tracking circuit 12, as shown in FIG. 1
32 and is set to be distributed left and right centering on the vertical border.

この場合のX軸茎追従回路12の信号出力は零レベルで
ある。この状態がら被測定試片1が変形されると、被−
]定試片1′の外周面中心はa点からC点に点線矢印方
向に移動するので、X軸茎追従回路12の出力には正又
は負の方向に信号が生じる。この信号出力はX軸周ステ
、ピングモータ13を回転し、カメラz、X軸移動機構
11を駆動して、光学的変位計8は光軸中心が0点方向
になるように移動する。そして、光学的変位計8の光軸
中心がC点と一致する位置で、X軸茎追従回路12の出
力は零となり、光学的変位計8は停止する。光学的変位
計8が停止すると、移動機構に関連するすべての回路は
停止し光学的変位計8は固定され、被測定試片1′のC
点の微小変位を固定された視野の範囲内で計測する。
In this case, the signal output of the X-axis stem following circuit 12 is at zero level. When the specimen 1 to be measured is deformed in this state, the
] Since the center of the outer circumferential surface of the fixed specimen 1' moves from point a to point C in the direction of the dotted line arrow, a signal is generated in the output of the X-axis stalk tracking circuit 12 in the positive or negative direction. This signal output rotates the X-axis circumferential steering wheel and the ping motor 13, drives the camera z and the X-axis movement mechanism 11, and moves the optical displacement meter 8 so that the optical axis center is in the direction of the zero point. Then, at a position where the optical axis center of the optical displacement meter 8 coincides with point C, the output of the X-axis stem follower circuit 12 becomes zero, and the optical displacement meter 8 stops. When the optical displacement meter 8 stops, all circuits related to the moving mechanism stop, the optical displacement meter 8 is fixed, and the C of the specimen 1' to be measured is
Measure minute displacements of points within a fixed field of view.

このように、被測定試片の温度側−を誘導加熱により行
うことにより、プログラムによる連続的な温度制御が容
易になり、又、所定温度における被測定試片の変形加工
が容易となる。又、被#1足試片の膨張収縮による変化
を光学的に銅駕することにより、熱間加工と同様の変形
加工を被測定試片に付与した直後の変態現象を容易に測
定することができる。特に、光学的変位計のカメラ部の
測定視野を200μ程度に絞ることにより、被測定試片
の微小変位を正確に測定することができる。この場合、
光学的変位計のカメラ部の光軸中心を被測定試片の外周
面の中心部に一致させるように、被測定試片の変形加工
と同時に光学的変位計のカメラ部を移動することにより
、被測定試片の微小変位を正確に測定することができる
By performing induction heating on the temperature side of the specimen to be measured in this manner, continuous temperature control by a program is facilitated, and deformation of the specimen to be measured at a predetermined temperature is facilitated. In addition, by optically measuring the changes caused by expansion and contraction of the #1 specimen, it is possible to easily measure the transformation phenomenon immediately after the specimen is subjected to a deformation process similar to hot working. can. In particular, by narrowing down the measurement field of view of the camera section of the optical displacement meter to about 200 microns, minute displacements of the specimen to be measured can be accurately measured. in this case,
By moving the camera section of the optical displacement meter simultaneously with the deformation of the specimen to be measured so that the center of the optical axis of the camera section of the optical displacement meter coincides with the center of the outer peripheral surface of the specimen to be measured, It is possible to accurately measure minute displacements of the specimen to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る加熱冷却装置及び加圧機構の一例
を示す概略的構成図、第2図は本発明に係る温度プログ
ラム特性の一例を示す図、第3図は本発明に係る被測定
試片の変形後の状態の一例を示す側面図、第4図は本発
明に係る光学的測定部の一例を示す概略的構成図、第5
図は本発明に係る光学的変位計の移動部の一例を示す構
成説明図、第6図は本発明に係る被測定試片とカメラ部
視野との関係の一例を説明する丸めの図である。 1.1′・・・金属よりなる被測定試片、2,3・・・
号回路、10・・・2軸用ステ傘ピングモータ、11・
・・カメラZ、X軸移動機構、12・・・X軸茎追従回
路。
FIG. 1 is a schematic configuration diagram showing an example of a heating/cooling device and a pressurizing mechanism according to the present invention, FIG. 2 is a diagram showing an example of temperature program characteristics according to the present invention, and FIG. 3 is a diagram showing an example of a temperature program characteristic according to the present invention. FIG. 4 is a side view showing an example of the state of the measurement specimen after deformation; FIG. 4 is a schematic configuration diagram showing an example of the optical measuring section according to the present invention; FIG.
The figure is a configuration explanatory diagram showing an example of the moving part of the optical displacement meter according to the present invention, and FIG. 6 is a rounded diagram illustrating an example of the relationship between the specimen to be measured and the field of view of the camera unit according to the present invention. . 1.1'...Measurement specimen made of metal, 2,3...
No. circuit, 10... 2-axis steering umbrella ping motor, 11.
...Camera Z, X-axis movement mechanism, 12...X-axis stalk tracking circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)金属よりなる被測定試片を所定のプログラムにし
たがって誘導加熱若しくは冷却し、所定温度の被測定試
片を加圧加工して変形し、前記被ill定試片の外周面
に光源よりの光を照射し、この光の照射され九被測定試
片の外周面の1点に光学的変位針の光軸が一致するよう
に被測定試片の外周面の変位に追随して光学変位計の光
軸を移動してその光学的変位計の光軸の変化から被測定
試片の膨張、収縮t−111定することを特徴とする金
属の変形下における各種変態測定方法。
(1) A test specimen made of metal is induction heated or cooled according to a predetermined program, the test specimen at a predetermined temperature is deformed by pressure processing, and a light source is applied to the outer peripheral surface of the illumination test specimen. The optical displacement needle follows the displacement of the outer peripheral surface of the specimen to be measured so that the optical axis of the optical displacement needle coincides with one point on the outer peripheral surface of the specimen to be measured that is irradiated with this light. A method for measuring various transformations of metal under deformation, characterized by moving the optical axis of a displacement meter and determining expansion and contraction t-111 of a specimen to be measured from changes in the optical axis of the optical displacement meter.
(2)金属よりなる被測定試片を所定のグロ、ダラムに
したがってI導加熱若しくは冷却する装置と、この装置
により所定温度にされた被測定試片を加圧加工して変形
する装置と、前記被−j定試片の外周面に光を照射する
光源と、この光源により光が照射された被測定試片の外
周面の1点に光軸中心を一致させるように移動機構を備
えた光学的変位計とを具備し、前記光学的変位計の光軸
の移動を検出することにより被測定
(2) A device that heats or cools a test piece made of metal according to a predetermined temperature and durham, and a device that pressurizes and deforms the test piece that has been brought to a predetermined temperature by this device; A light source that irradiates the outer peripheral surface of the specimen to be measured with light, and a moving mechanism that aligns the center of the optical axis with one point on the outer peripheral surface of the specimen to be measured that is irradiated with light by the light source. an optical displacement meter, and detects the movement of the optical axis of the optical displacement meter.
JP3778982A 1982-03-10 1982-03-10 Method and apparatus for measuring various abnormal forms in metallic deformation Pending JPS58154649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3778982A JPS58154649A (en) 1982-03-10 1982-03-10 Method and apparatus for measuring various abnormal forms in metallic deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3778982A JPS58154649A (en) 1982-03-10 1982-03-10 Method and apparatus for measuring various abnormal forms in metallic deformation

Publications (1)

Publication Number Publication Date
JPS58154649A true JPS58154649A (en) 1983-09-14

Family

ID=12507254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3778982A Pending JPS58154649A (en) 1982-03-10 1982-03-10 Method and apparatus for measuring various abnormal forms in metallic deformation

Country Status (1)

Country Link
JP (1) JPS58154649A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617452A (en) * 1984-06-22 1986-01-14 Shinagawa Refract Co Ltd Apparatus for measurement of displacement of ceramic in hot processing
JPS61172041A (en) * 1985-01-28 1986-08-02 Shinagawa Refract Co Ltd Apparatus for measuring hot displacement of ceramic
CN102866173A (en) * 2011-07-05 2013-01-09 贝尔-热分析有限公司 Dilatometer for measuring metallic samples

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4722636U (en) * 1971-03-24 1972-11-14
JPS5336262A (en) * 1976-09-16 1978-04-04 Gakei Denki Seisakusho Method of and apparatus for measuring thermal expansion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4722636U (en) * 1971-03-24 1972-11-14
JPS5336262A (en) * 1976-09-16 1978-04-04 Gakei Denki Seisakusho Method of and apparatus for measuring thermal expansion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617452A (en) * 1984-06-22 1986-01-14 Shinagawa Refract Co Ltd Apparatus for measurement of displacement of ceramic in hot processing
JPS61172041A (en) * 1985-01-28 1986-08-02 Shinagawa Refract Co Ltd Apparatus for measuring hot displacement of ceramic
CN102866173A (en) * 2011-07-05 2013-01-09 贝尔-热分析有限公司 Dilatometer for measuring metallic samples
JP2013036980A (en) * 2011-07-05 2013-02-21 Baehr Thermoanalyse Gmbh Dilatometer for measuring metallic sample

Similar Documents

Publication Publication Date Title
Farshidianfar et al. Real-time control of microstructure in laser additive manufacturing
Bennett et al. Cooling rate effect on tensile strength of laser deposited Inconel 718
US10209199B2 (en) Surface inspection method, surface inspection device, manufacturing system, method of identifying defect formed area, and manufacturing method of steel pipe
US3368588A (en) Smooth precision dimensional bodies of vitreous material and method and apparatus for producing the same
Vasudevan et al. Real-time monitoring of weld pool during GTAW using infra-red thermography and analysis of infra-red thermal images
US3648009A (en) Method and device for inspecting and/or controlling thermally produced mechanical joints
JP2017122579A (en) Phase transformation acquisition device, phase transformation acquisition method, and manufacturing apparatus
Davies et al. High bandwidth thermal microscopy of machining AISI 1045 steel
CN108608119B (en) Laser additive manufacturing online monitoring method
JPS58154649A (en) Method and apparatus for measuring various abnormal forms in metallic deformation
JP2007513855A (en) Vertical stretching method for producing a cylindrical glass body and apparatus for carrying out the method
JP2011031388A (en) Processing method for workpiece
US5666287A (en) Quench-hardening testing method and apparatus
Thompson et al. Thermal expansion measurements on coating materials by digital image correlation
JPH04127984A (en) Method and device for laser welding
Hong et al. Optical method for inspecting surface defects inside a small bore
Kurp et al. Metal expansion joints manufacturing by a mechanically assisted laser forming hybrid method–concept
JP2010111557A (en) Method and device for manufacturing tubular part
JP2007101326A (en) Method and instrument for measuring ductility value of metal material
Peng et al. Penetration control of GTAW process for aluminum alloy using vision sensing
JPH10101352A (en) Production of quartz glass tube and device for the production
CN109719413B (en) Zero-deformation defect-free welding control method
JP2021072294A (en) Substrate etching method
CN109894378B (en) Online automatic detection method for steering heat-saving forge piece
JPH05104257A (en) Squeeze quantity measuring and calculating method and control method for resistance welded tube