JPS58154520A - Preparation of ethylene glycol - Google Patents

Preparation of ethylene glycol

Info

Publication number
JPS58154520A
JPS58154520A JP3700082A JP3700082A JPS58154520A JP S58154520 A JPS58154520 A JP S58154520A JP 3700082 A JP3700082 A JP 3700082A JP 3700082 A JP3700082 A JP 3700082A JP S58154520 A JPS58154520 A JP S58154520A
Authority
JP
Japan
Prior art keywords
ethylene glycol
formaldehyde
rhodium
light
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3700082A
Other languages
Japanese (ja)
Other versions
JPS6019896B2 (en
Inventor
Hironori Arakawa
裕則 荒川
Kazuhiko Takeuchi
和彦 竹内
Yoshihiro Sugi
義弘 杉
Kenichiro Bando
阪東 憲一郎
Yasuo Takami
高味 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3700082A priority Critical patent/JPS6019896B2/en
Publication of JPS58154520A publication Critical patent/JPS58154520A/en
Publication of JPS6019896B2 publication Critical patent/JPS6019896B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare ethylene glycol in one step, by irradiating formaldehyde with light under normal temperature and pressure, if necessary in the presence of a ketone compound and/or a rhodium compound. CONSTITUTION:Formaldehyde is irradiated with light (preferably white light radiation from mercury lamp) under normal temperature and pressure to obtain ethylene glycol. The yield of ethylene glycol can be increased by carrying out the reaction in the presence of a ketone compound (e.g. acetone, benzophenone, etc.) and/or a rhodium compound (e.g. chlorotristriphenylphosphine rhodium (I)complex). The formaldehyde is used preferably as a solution, and the formalin (solution) available at a low cost is sufficient for the purpose. The solution may contain methanol as a stabilizer.

Description

【発明の詳細な説明】 本発明はホルムアルデヒドからエチレングリコールを製
造する全く新規な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a completely new process for producing ethylene glycol from formaldehyde.

さらに詳しくいえば本発明は光化学反応によりホルムア
ルデヒドからエチレングリコールを一段反応で製造する
方法に関するものである。エチレングリコールはポリエ
ステル繊維、フィルム等の原料、有機化学品の中間体、
有機溶媒、不凍液、冷却剤などとして工業的に重要かつ
、需要の多い基礎化学品である。このエチレングリコー
ルは現在エチレンを原料とする石油化学法により製造さ
れている。しかしながら原油価格の高騰や石油資源の枯
渇化により、石油化学誘導品の原料転換が求められてい
る。
More specifically, the present invention relates to a method for producing ethylene glycol from formaldehyde in a single step by photochemical reaction. Ethylene glycol is used as a raw material for polyester fibers and films, as an intermediate for organic chemicals,
It is a basic chemical product that is industrially important and in high demand as an organic solvent, antifreeze, coolant, etc. This ethylene glycol is currently produced by a petrochemical method using ethylene as a raw material. However, due to the soaring price of crude oil and the depletion of petroleum resources, there is a need to switch to raw materials for petrochemical derivatives.

石油以外の原料源としては、メタンを主成分とする天然
ガスや石炭などから容易に入手し得る合成ガス及びそれ
から誘導されるメタノール、ホルムアルデヒドなどの炭
素数1の化合物が有用である。
As raw material sources other than petroleum, synthetic gas which is easily available from natural gas or coal containing methane as a main component, and compounds having one carbon number such as methanol and formaldehyde derived therefrom are useful.

例えば、ロジウム触媒による合成ガスから直接エチレン
グリコールを製造する方法(特開昭50−32117、
同51−32507号など)やホルムアルデヒドと合成
ガスを原料とする方法(特開昭51−128903、同
53−53607号など)、ホルムアルデヒドの第二級
アセタールと合成ガスを反応させて、エチレングリコー
ルモノエーテルとし次いて加水分解によりエチレングリ
コールを得る方法(特開昭56−118026号)、ホ
ルムアルデヒドと一酸化炭素の共重合により得られる重
合体をアルコールで加溶媒分解し、グリコール酸エステ
ルとし、これの水素化によりエチレングリコールを製造
する方法(特開昭54−106408号など)が知られ
ているが、これらの方法はいずれも高圧の一酸化炭素又
は合成ガスの存在下で反応を行う必要があり、また一部
の方法は反応工程が多いという改良すべき点がある。
For example, a method for producing ethylene glycol directly from synthesis gas using a rhodium catalyst (Japanese Unexamined Patent Publication No. 50-32117,
51-32507, etc.), a method using formaldehyde and synthesis gas as raw materials (JP-A-51-128903, JP-A-53-53607, etc.), and a method in which a secondary acetal of formaldehyde and synthesis gas are reacted to produce ethylene glycol monomer. A method of obtaining ethylene glycol by converting it into an ether and then hydrolyzing it (Japanese Unexamined Patent Publication No. 56-118026), solvolyzing a polymer obtained by copolymerizing formaldehyde and carbon monoxide with alcohol to obtain a glycolic acid ester; Methods for producing ethylene glycol by hydrogenation are known (e.g., Japanese Patent Application Laid-open No. 106408/1983), but all of these methods require the reaction to be carried out in the presence of high pressure carbon monoxide or synthesis gas. In addition, some methods require many reaction steps, which should be improved.

また濃硫酸中銅がかるぼにるの存在下で、常温常圧でホ
ルムアルデヒドと一酸化炭素を反応させ次いでメタノー
ルで処理をしてグリコール酸とし、これを水素化し、エ
チレングリコールを得る方法(相鳴芳枝、佐野寛、触媒
23、48(1981)などもあるが、この方法でも反
応工程が多く、また多量の硫酸を使用するので、この腐
蝕性及び廃棄処理の面倒さのため困難を伴う。
Alternatively, copper in concentrated sulfuric acid is reacted with formaldehyde and carbon monoxide at room temperature and pressure in the presence of carbon, then treated with methanol to produce glycolic acid, which is then hydrogenated to obtain ethylene glycol (Ainari). Yoshie, Hiroshi Sano, Catalyst 23, 48 (1981), etc., but this method also involves many reaction steps and uses a large amount of sulfuric acid, which is difficult due to its corrosivity and troublesome disposal.

本発明者らは、このような従来知られているエチレング
リコールの製造法の欠点、問題点を克服するため検討を
重ねた結果、常温常圧でホルムアルデヒドに光照射を行
うことにより 一段反応直接エチレングリコールが得ら
れることを見またケトン化合物あるいはロジウム化合物
の存在下、またはその両方の存在下で、その収量が増大
することを見出し、この知見に基づき本発明をなすに至
った。
As a result of repeated studies to overcome the drawbacks and problems of conventionally known ethylene glycol production methods, the inventors of the present invention succeeded in producing a one-step reaction of direct ethylene by irradiating formaldehyde with light at room temperature and normal pressure. It was found that glycol can be obtained, and that the yield thereof is increased in the presence of a ketone compound, a rhodium compound, or both, and based on this finding, the present invention was accomplished.

すなわち、本発明はホルムアルデヒドに光照射すること
を特徴とするエチレングリコールの製造法及びケトン化
合物存在下またはロジウム化合物存在下でホルムアルデ
ヒドに光照射することを特徴とするエチレングリコール
の製造法。ケトン化合物とロジウム化合物の存在化でホ
ルムアルデヒドに光照射することを特徴とするエチレン
グリコールの製造法を提供するものである。
That is, the present invention relates to a method for producing ethylene glycol, which is characterized by irradiating formaldehyde with light, and a method for producing ethylene glycol, which is characterized by irradiating formaldehyde with light in the presence of a ketone compound or in the presence of a rhodium compound. The present invention provides a method for producing ethylene glycol, which is characterized in that formaldehyde is irradiated with light in the presence of a ketone compound and a rhodium compound.

本発明において用いられるホルムアルデヒドは任意の形
態で良いが、溶液状態で用いるのが好ましい、一般には
安価に入手できるホルマリン(水溶液)で充分であり、
この溶媒中に安定剤としてメタノールが含有されている
もので良く、必ずしも純粋なホルムアルデヒドである必
要はない。
Formaldehyde used in the present invention may be in any form, but it is preferable to use it in the form of a solution. Generally, inexpensively available formalin (aqueous solution) is sufficient,
This solvent may contain methanol as a stabilizer, and does not necessarily need to be pure formaldehyde.

本発明において用いられるケトンは一般式で表わされる
ものであり (R1、R2は脂肪族基、脂環式基又は芳
香族基を示す)好ましいものの具体例としては、アセト
ン、2−ブタン3−ペンタノン、アセトフェノン、ベン
ゾフェノンなどがあげられる。ケトンとホルムアルデヒ
ドの使用割合は任意に定めることができるが好ましくは
ケトン/ホルムアルデヒド(mol比)比は0〜10が
良い。
The ketones used in the present invention are represented by the general formula (R1 and R2 represent an aliphatic group, an alicyclic group, or an aromatic group), and specific examples of preferable ones include acetone, 2-butane 3-pentanone, , acetophenone, benzophenone, etc. The ratio of ketone and formaldehyde to be used can be determined arbitrarily, but preferably the ketone/formaldehyde (molar ratio) ratio is 0 to 10.

本発明において用いられるロジウム化合物は特に制限は
ないが、溶解性の化合物が好ましい。好ましいものとし
てはクロロトリストリフェニルホスフィンロジウム(I
)錯体クロロカルボニルビストリフェニルホスフィンロ
ジウム (I)錯体のようなホスフィン、ハロゲン、一
酸化炭素等が配位しているI価の単核錯体、あるいはロ
ジウムアセテートダイマー{Rh2(O2CCH3)4
}のようなII価の複核錯体、ロジウムアセチルアセト
ナート{Rh(C5H702)3}のようなIII価の
錯体、ヘキサロジウムへキサドテ力力ルボニル{Rh6
(CO)16}のようなO価の複核錯体などがよい。こ
のロジウム化合物の使用量は特に制限はないが、5.O
×10−2〜1×10−3mmol/molホルムアル
デヒドの範囲が好ましい。本発明方法においてはホルム
アルデヒド、ケトン化合物、ロジウム化合物の混合は通
常空気雰囲気下で行うが、酸素雰囲気下で行って■■。
The rhodium compound used in the present invention is not particularly limited, but soluble compounds are preferred. Preferred is chlorotristriphenylphosphine rhodium (I
) Complex chlorocarbonylbistriphenylphosphine Rhodium (I) I-valent mononuclear complex coordinated with phosphine, halogen, carbon monoxide, etc., such as the complex, or rhodium acetate dimer {Rh2(O2CCH3)4
}, III-valent dinuclear complexes such as rhodium acetylacetonate {Rh(C5H702)3}, hexalodium hexadotyl carbonyl {Rh6
An O-valent dinuclear complex such as (CO)16} is preferable. There is no particular restriction on the amount of this rhodium compound used, but 5. O
A range of x10-2 to 1 x10-3 mmol/mol formaldehyde is preferred. In the method of the present invention, formaldehyde, a ketone compound, and a rhodium compound are usually mixed in an air atmosphere, but they are mixed in an oxygen atmosphere.

本発明方法における光照射の照射光として■■紫外光か
ら可視光に至る広範囲の白色光又は単色光が使用可能で
あるが、好ましくは、水銀灯から発生する白色光を用い
る。
As the irradiation light in the method of the present invention, a wide range of white light or monochromatic light ranging from ultraviolet light to visible light can be used, but white light generated from a mercury lamp is preferably used.

光照射時間は特に制限はなく、光源の強さや照射距離な
どの照射条件、反応容量などによって異なる。本発明方
法において光照射は、通常、常温下、行なわれるが、必
要に応じて、加熱もしくは冷却下で行ってもよい。
The light irradiation time is not particularly limited and varies depending on the irradiation conditions such as the intensity of the light source and the irradiation distance, the reaction capacity, etc. In the method of the present invention, light irradiation is usually carried out at room temperature, but may be carried out under heating or cooling if necessary.

このように本発明方法によれはホルムアルデヒドを必要
に応じて、ケトン化合物、ロジウム化合物の存在下で、
光照射することにより、常温、常圧で一段反応でエチレ
ングリコールを製造することができ、全く新しい反応シ
ステムに基づくエチレングリコールの製造方法を提供す
るものとしてその意義は大きい。
In this way, according to the method of the present invention, formaldehyde is optionally added in the presence of a ketone compound and a rhodium compound.
By irradiating light, ethylene glycol can be produced in a one-step reaction at room temperature and pressure, and is of great significance as it provides a method for producing ethylene glycol based on a completely new reaction system.

次に本発明を実施例に基づきさらに詳細に説明する。Next, the present invention will be explained in more detail based on examples.

実施例1 ガラス製300ml容の内部照射型反応容器にホルマリ
ン水溶液(35%ホルムアルデヒド含有)200mlを
仕込み空気雰囲気下で30分撹拌した。
Example 1 200 ml of a formalin aqueous solution (containing 35% formaldehyde) was placed in a 300 ml glass internal irradiation type reaction vessel and stirred for 30 minutes under an air atmosphere.

次に反応溶液を撹拌しながら100Wの高圧水銀灯によ
り光照射を開始した。反応温度は20℃に保った。照射
開始、5時間後の反応溶液を分析した結果エチレングリ
コール1.5ml(26,8mmol)が生成していた
Next, while stirring the reaction solution, light irradiation was started using a 100 W high pressure mercury lamp. The reaction temperature was kept at 20°C. Analysis of the reaction solution 5 hours after the start of irradiation revealed that 1.5 ml (26.8 mmol) of ethylene glycol had been produced.

実施例2 ガラス製300ml容の内部照射型反応容器にホルマリ
ン水溶液(35%ホルムアルデヒド含有)190ml、
アセトン10m1を仕込み空気雰囲気下で30分撹拌し
た。次に反応溶液を撹拌しながら、100Wの高圧水銀
灯により光照射を開始した。
Example 2 190 ml of formalin aqueous solution (containing 35% formaldehyde) was placed in a 300 ml glass internal irradiation type reaction vessel.
10 ml of acetone was charged and stirred for 30 minutes under an air atmosphere. Next, while stirring the reaction solution, light irradiation was started using a 100 W high pressure mercury lamp.

反応温度は20℃に保った。照射開始5時間後の反応溶
液を分析した結果、エチレングリコール3.32ml(
59.4mmol)が生成していた。
The reaction temperature was kept at 20°C. As a result of analyzing the reaction solution 5 hours after the start of irradiation, 3.32 ml of ethylene glycol (
59.4 mmol) was produced.

実施例3 ガラス製300ml容の内部照射型反応容器にホルマリ
ン水溶液(3.5%ホルムアルデヒド含有)160ml
、アセトン40mlを仕込み、空気雰囲気下で30分撹
拌した。次に反応溶液を撹拌しながら100Wの商用水
銀灯により光照射を開始した、反応温度は20℃に保っ
た。照射開始11時間後の反応溶液を分析した結果、エ
チレングリコール4.48ml(80.1mmol)が
生成していた。
Example 3 160 ml of formalin aqueous solution (containing 3.5% formaldehyde) was placed in a 300 ml glass internal irradiation type reaction vessel.
, 40 ml of acetone was charged, and the mixture was stirred for 30 minutes under an air atmosphere. Next, while stirring the reaction solution, light irradiation was started using a 100 W commercial mercury lamp, and the reaction temperature was maintained at 20°C. Analysis of the reaction solution 11 hours after the start of irradiation revealed that 4.48 ml (80.1 mmol) of ethylene glycol had been produced.

実施例4 ガラス製300ml容の内部照射型反応容器にホルマリ
ン水溶液(35%ホルムアルデヒド含有)160ml、
アセトン40ml及びクロロトリストリフェニルホスフ
ィンロジウム40mg(0.041mmol)を仕込み
、空気雰囲気下で30分撹拌した。次に反応溶液を撹拌
しなから100Wの高圧水銀灯により光照射を開始した
。反応温度は20℃に保った。照射開始11時間後の反
応溶液を分析した結果エチレングリコール5.36ml
(95.9mmol)が生成していた。
Example 4 160 ml of formalin aqueous solution (containing 35% formaldehyde) was placed in a 300 ml glass internal irradiation type reaction vessel.
40 ml of acetone and 40 mg (0.041 mmol) of chlorotristriphenylphosphine rhodium were charged and stirred for 30 minutes under an air atmosphere. Next, while stirring the reaction solution, light irradiation was started using a 100 W high pressure mercury lamp. The reaction temperature was kept at 20°C. Analysis of the reaction solution 11 hours after the start of irradiation revealed 5.36 ml of ethylene glycol.
(95.9 mmol) was produced.

実施例5 ガラス製300ml容の内部照射型反応容器にホルマリ
ン水溶液(35%ホルムアルデヒド含有)200ml、
アセトン20ml及びクロロトリストリフェニルホスフ
ィンロジウム40mg(0.041mmol)を仕込み
、空気雰囲気下で30分撹拌した。次に反応溶液を撹拌
しながら100Wの高圧水銀灯により光照射を開始した
。反応温度は20℃に保った。照射開始5時間後の反応
溶液を分析した結果、エチレングリルコール3.476
ml(62.2mmol)が生成していた。
Example 5 200 ml of formalin aqueous solution (containing 35% formaldehyde) was placed in a 300 ml glass internal irradiation type reaction vessel.
20 ml of acetone and 40 mg (0.041 mmol) of chlorotristriphenylphosphine rhodium were charged, and the mixture was stirred for 30 minutes under an air atmosphere. Next, while stirring the reaction solution, light irradiation was started using a 100 W high pressure mercury lamp. The reaction temperature was kept at 20°C. As a result of analyzing the reaction solution 5 hours after the start of irradiation, ethylene glycol was found to be 3.476.
ml (62.2 mmol) was produced.

実施例6 ガラス製500ml容の内部照射型反応容器にホルマリ
ン水溶液(35%ホルムアルデヒド含有)360ml、
アセトン40ml及びクロロトリストリフェニルホスフ
ィンロジウム40mg(0.041mmol)を仕込み
空気雰囲気下で30分撹拌した。次に反応溶液を撹拌し
ながら400Wの高圧水銀灯により光照射を開始した。
Example 6 360 ml of formalin aqueous solution (containing 35% formaldehyde) was placed in a 500 ml glass internal irradiation type reaction vessel.
40 ml of acetone and 40 mg (0.041 mmol) of chlorotristriphenylphosphine rhodium were charged and stirred for 30 minutes under an air atmosphere. Next, while stirring the reaction solution, light irradiation was started using a 400 W high-pressure mercury lamp.

反応温度は20℃に保った。照射開始5時間後の反応溶
液を分析した結果エチレングリコ−ル4.48ml(8
0.1mmol)が生成していた。
The reaction temperature was kept at 20°C. Analysis of the reaction solution 5 hours after the start of irradiation revealed that ethylene glycol was 4.48 ml (8
0.1 mmol) was produced.

Claims (2)

【特許請求の範囲】[Claims] (1)ホルムアルデヒドに光照射し、エチレングリコー
ルを生成させることを特徴とするエチレングリコールの
製造方法。
(1) A method for producing ethylene glycol, which comprises irradiating formaldehyde with light to produce ethylene glycol.
(2)ケトン化合物の存在下およびまたはロジウムエチ
レングリコールを生成させることを特徴とするエチレン
グリコールの製造方法。
(2) A method for producing ethylene glycol, which comprises producing rhodium ethylene glycol in the presence of a ketone compound.
JP3700082A 1982-03-09 1982-03-09 Manufacturing method of ethylene glycol Expired JPS6019896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3700082A JPS6019896B2 (en) 1982-03-09 1982-03-09 Manufacturing method of ethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3700082A JPS6019896B2 (en) 1982-03-09 1982-03-09 Manufacturing method of ethylene glycol

Publications (2)

Publication Number Publication Date
JPS58154520A true JPS58154520A (en) 1983-09-14
JPS6019896B2 JPS6019896B2 (en) 1985-05-18

Family

ID=12485448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3700082A Expired JPS6019896B2 (en) 1982-03-09 1982-03-09 Manufacturing method of ethylene glycol

Country Status (1)

Country Link
JP (1) JPS6019896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571289A (en) * 1983-12-30 1986-02-18 The British Petroleum Company, P.L.C. Photochemical process for the production of alkylene glycols

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571289A (en) * 1983-12-30 1986-02-18 The British Petroleum Company, P.L.C. Photochemical process for the production of alkylene glycols

Also Published As

Publication number Publication date
JPS6019896B2 (en) 1985-05-18

Similar Documents

Publication Publication Date Title
Cortese et al. Palladium-catalyzed reductions of. alpha.,. beta.-unsaturated carbonyl compounds, conjugated dienes, and acetylenes with trialkylammonium formates
Schreiber et al. Application of the furan carbonyl photocycloaddition reaction to the synthesis of the bis (tetrahydrofuran) moiety of asteltoxin
FR2577217A1 (en) PROCESS FOR HYDROGENATION OF ACETIC ACID
SU1530084A3 (en) Method of preparing catalyst for hydroformylation of propylene
US4332654A (en) Photoactivated catalytic hydrosilylation of carbonyl compounds
Matteoli et al. Asymmetric synthesis by chiral ruthenium complexes: XI. Asymmetric hydrogenation of tiglic acid in the presence of phosphine substituted ruthenium carbonyl carboxylates
Slough et al. (. eta. 3-Oxaallyl) rhodium (I) Complexes as Catalyst Precursors for the Disproportionation of Aldehydes
JPS58154520A (en) Preparation of ethylene glycol
JPS5826836A (en) Manufacture of aldehyde
CN1042128C (en) Process for preparation of alcohols
CA1316945C (en) Process for the condensation of alcohols
GB2075857A (en) Making hydroformylation catalysts
JPS6140658B2 (en)
FR2623799A1 (en) PROCESS FOR THE PREPARATION OF UNSATURATED ALCOHOLS
JPS5869834A (en) Preparation of methyl methoxyacetate
JPS63295528A (en) Production of glyoxylic acids
JPS58124724A (en) Preparation of ethylene glycol
JPH0196143A (en) Method for oxidizing ethane
JPH08245477A (en) Production of formaldehyde by catalytic hydrogenation of carbon dioxide
JP2918696B2 (en) Method for producing amino acids
JPS62258346A (en) Production of n,n-dialkylaminophenol
JPH05502447A (en) Oxidation method of 2-hydroxy-ethylphosphonic acid dialkyl ester
JPS6232736B2 (en)
JPS606931B2 (en) Method for producing vicinal glycol
SU765268A1 (en) 3,4-dihydropyrrolo-/1,2-alpha/-pyrazine as intermediate product for the synthesis of physiologically active compounds and its preparation method