JPS606931B2 - Method for producing vicinal glycol - Google Patents

Method for producing vicinal glycol

Info

Publication number
JPS606931B2
JPS606931B2 JP2674982A JP2674982A JPS606931B2 JP S606931 B2 JPS606931 B2 JP S606931B2 JP 2674982 A JP2674982 A JP 2674982A JP 2674982 A JP2674982 A JP 2674982A JP S606931 B2 JPS606931 B2 JP S606931B2
Authority
JP
Japan
Prior art keywords
glycol
methanol
light
acetone
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2674982A
Other languages
Japanese (ja)
Other versions
JPS58144331A (en
Inventor
裕則 荒川
和彦 竹内
義弘 杉
憲一郎 阪東
康雄 高味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2674982A priority Critical patent/JPS606931B2/en
Publication of JPS58144331A publication Critical patent/JPS58144331A/en
Publication of JPS606931B2 publication Critical patent/JPS606931B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はメタノールとアセトンを原料として、それらよ
り炭素原子数の多いビシナルグリコールを製造する全く
新規な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a completely new method for producing vicinal glycol having a higher number of carbon atoms from methanol and acetone as raw materials.

さらに詳しくは本発明は、メタノールをアセトンとの共
存下に光照射して、メタノール、アセトン又はメタノー
ルとアセトンが2分子結合した形のビシナルグリコール
を製造する方法に関する。現在ビシナルグリコールは、
工業的に多量に生産され、有機合成化学中間体として、
また、不猿剤やポリエステル繊維及びフィルム、ポリグ
リコールなどに広く用いられており、非常に重要な化合
物である。
More specifically, the present invention relates to a method for producing methanol, acetone, or vicinal glycol in the form of two molecules of methanol and acetone bonded together by irradiating methanol with light in the coexistence of acetone. Currently, vicinal glycol is
It is industrially produced in large quantities and is used as an intermediate for organic synthetic chemicals.
It is also widely used in antimony agents, polyester fibers and films, polyglycols, etc., and is a very important compound.

このビシナルグリコールは、従釆、エチレンを原料とす
る石油化学法により製造されているが、石油資源が世界
的に不足してきているという近年の状況下では、今後エ
チレンやプロピレンのような重要な原料の供聯合不足な
いいま価格の高騰は避けられない。それ故、将来に備え
、石油以外の原料から、ビシナルグリコールのような有
機基礎化学品を製造する方法の開発が特に待望されてい
る。そこで、エチレンのような石油誘導体原料を用いる
代わりに、例えばメタノールを原料として、エチレング
リコールのようなビシナルグリコールを製造する方法が
、従来の石油化学法による製造法よりも有利であるとし
て注目されてきており、具体的にいくつかの方法が提案
されている。
This vicinal glycol is produced by a petrochemical method using ethylene as a raw material, but in recent years, with the global shortage of petroleum resources, important products such as ethylene and propylene will be used in the future. Due to the lack of raw material supply, it is inevitable that prices will rise. Therefore, in preparation for the future, the development of methods for producing organic basic chemicals such as vicinal glycols from raw materials other than petroleum is particularly desired. Therefore, instead of using petroleum derivative raw materials such as ethylene, a method of producing vicinal glycols such as ethylene glycol using methanol as a raw material is attracting attention as it is more advantageous than conventional petrochemical production methods. A number of specific methods have been proposed.

例えばアルコールからビシナルグリコールを製造するに
当り、有機過酸化物を用いる方法が知られているが(例
えばK.Schwe0ick,W.Geyer及び日.
日ねrtmannり、AngeW.Chem, 72
779(1960))、この方法は目的のビシナル
グリコールの選択率が悪い。そのため、アルコールの水
酸基をトリアルキルシリル基で保護して有機過酸化物を
用いる方法が提案されている(椿関昭53−73506
号)。しかし、この方法にしても、トリアルキルシリル
基を用いること、有機過酸化物を用いること、生成した
カップリング中間体をアルコール分解しなければいけな
いことなどによって反応工程が多くなり、処理が複雑で
あるという欠点を有していた。本発明者らはこうした従
来のアルコールからのビシナルグリコールの製造方法の
欠点を克服するため鋭意検討を重ねた結果、メタノール
をアセトンの共存下で光照射することにより、一段の反
応で、有機過酸化物を使用することなく、常温、常圧で
ピシナルグリコールを製造することができることを見出
し、本発明をなすに至ったものである。
For example, in producing vicinal glycol from alcohol, a method using an organic peroxide is known (see, for example, K. Schweick, W. Geyer, et al.
Hinermannri, AngeW. Chem, 72
779 (1960)), and this method has poor selectivity for the target vicinal glycol. Therefore, a method has been proposed in which the hydroxyl group of alcohol is protected with a trialkylsilyl group and an organic peroxide is used (Tsubaki Seki Sho 53-73506
issue). However, even with this method, there are many reaction steps due to the use of trialkylsilyl groups, the use of organic peroxides, and the necessity of alcoholysis of the generated coupling intermediate, making the treatment complicated. It had some drawbacks. The present inventors have conducted intensive studies to overcome the drawbacks of the conventional method for producing vicinal glycol from alcohol, and found that by irradiating methanol with light in the coexistence of acetone, organic glycol can be produced in one step. The inventors discovered that picinal glycol can be produced at normal temperature and pressure without using oxides, and have thus come up with the present invention.

本発明方法の反応は、一般的に、次の反応式で表わすこ
とができる。
The reaction of the method of the present invention can generally be expressed by the following reaction formula.

メタノールとアセトンの使用割合は任意に定めることが
できるが、好ましくは、目的生成物のビシナルグリコー
ルに応じてメタノール/アセトン比(モル比)で100
0〜0.01の浪合比の範囲で定められ、エチレングリ
コールの製造に関しては「20〜1の範囲が好ましい。
The ratio of methanol and acetone used can be determined arbitrarily, but preferably the methanol/acetone ratio (molar ratio) is 100 depending on the vicinal glycol of the target product.
It is determined in the range of 0 to 0.01, and for the production of ethylene glycol, the range of 20 to 1 is preferable.

本発明方法において、メタノールとアセトンの混合は通
常、空気雰囲気下で行うが、不活性ガス雰囲気下及び酸
素雰囲気下で行ってもよい。本発明方法における光照射
の照射光としては、紫外光から可視光に至る広範囲の白
色光又は単色光が使用可能であるが、好まいま、水銀灯
から発生する白色光を用いる。光照射時間は特に制限は
なく、光源の強さや照射距離などの照射条件、反応容量
などによって異なるが、通常1〜10斑時間の範囲であ
る。
In the method of the present invention, mixing of methanol and acetone is usually carried out under an air atmosphere, but it may also be carried out under an inert gas atmosphere or an oxygen atmosphere. As the irradiation light in the method of the present invention, a wide range of white light or monochromatic light ranging from ultraviolet light to visible light can be used, but white light generated from a mercury lamp is preferably used. The light irradiation time is not particularly limited and varies depending on the irradiation conditions such as the intensity of the light source and the irradiation distance, the reaction capacity, etc., but is usually in the range of 1 to 10 hours.

本発明方法において光照射は、通常、常温で行われるが
、必要に応じて、加熱もしくは冷却下で行ってもよい。
このように本発明方法によれば、メタノールをアセトン
の共存下に光照射することにより、常温、常圧下で、一
段反応でビシナルグリコール容易に製造することができ
、有機過酸化物を用いない全く新しい非石油化学法とし
てその意義は大きい。
In the method of the present invention, light irradiation is usually carried out at room temperature, but may be carried out under heating or cooling if necessary.
As described above, according to the method of the present invention, by irradiating methanol with light in the coexistence of acetone, vicinal glycol can be easily produced in a one-step reaction at room temperature and pressure, without using organic peroxides. It has great significance as a completely new non-petrochemical method.

次に本発明を実施例に基づきさらに詳細に説明する。Next, the present invention will be explained in more detail based on examples.

実施例 1 パィレックスガラス製300凧【客の水冷式内部照射型
光反応容器にメタノール154.8夕(4.8mol)
とアセトン4.0夕(68.3hmol)を空気雰囲気
下に仕込み、30分蝿拝した。
Example 1 300 kites made of Pyrex glass [154.8 moles (4.8 mol) of methanol was placed in the customer's water-cooled internally irradiated photoreaction container.
and acetone 4.0 mol (68.3 hmol) were placed in an air atmosphere and incubated for 30 minutes.

次に反応溶液を燈拝しながら、100Wの高圧水銀灯に
より反応溶液に光を照射した。反応温度は2000に保
った。照射開始後5時間後に反応溶液を分析した結果、
エチレングリコール1.1夕(18.2mmol)、イ
ンブチレングリコール1.4夕(15.6hmol)〜
ピナコール0.4夕(3.4mmol)が生成してい
ることがわかった。実施例 2パィレックスガラス製3
00の【容の水冷式内部照射型光反応容器にメタノール
150.9夕(4.7mol)とアセトン7.9夕(1
36.5hmol)を空気雰囲気下に位込みト3び分蝿
拝した。
Next, the reaction solution was irradiated with light from a 100 W high-pressure mercury lamp while the reaction solution was illuminated. The reaction temperature was kept at 2000℃. As a result of analyzing the reaction solution 5 hours after the start of irradiation,
Ethylene glycol 1.1 units (18.2 mmol), inbutylene glycol 1.4 units (15.6 hmol) ~
It was found that 0.4 mmol (3.4 mmol) of pinacol was produced. Example 2 Pyrex glass 3
In a water-cooled, internally irradiated photoreaction vessel with a capacity of
36.5 hmol) was placed in an air atmosphere for 3 minutes.

次に反応溶液を欄拝しながら、100Wの高圧水銀灯に
より反応溶液に光を照射した。反応温度は2000に保
った。照射開始後5時間後に反応溶液を分析した結果、
エチレングリコール2.5夕(39.5mmol)、イ
ソブチレングリコ−ル6.1夕(68仇hmol)、ピ
ナコール1.1夕(9.2hmol)が生成しているこ
とがわかった。実施例 3パィレツクスガラス製300
の【客の水冷式内部照射型光反応容器にメタノール14
2.9夕(4.5mol)とアセトン15.9夕(27
3.1mmol)を空気雰囲気下に仕込み、30分嬢拝
した。
Next, the reaction solution was irradiated with light from a 100 W high-pressure mercury lamp while inspecting the reaction solution. The reaction temperature was kept at 2000℃. As a result of analyzing the reaction solution 5 hours after the start of irradiation,
It was found that 2.5 units (39.5 mmol) of ethylene glycol, 6.1 units (68 hmol) of isobutylene glycol, and 1.1 units (9.2 hmol) of pinacol were produced. Example 3 Pyrex glass 300
[14 methanol was added to the customer's water-cooled internally irradiated photoreaction vessel.
2.9 mol (4.5 mol) and acetone 15.9 mol (27 mol)
3.1 mmol) was placed in an air atmosphere and incubated for 30 minutes.

次に反応溶液を損拝しながら、100Wの高圧水銀灯に
より反応溶液に光を照射した。反応温度は2000に保
った。照射開始後1畑時間後に反応溶液を分析した結果
、エチレングリコール4.9夕(78.3hmol入イ
ンプチレングリコール1342夕(146.1mmol
)、ピナコール2.4夕(20.仇hmol)が生成し
ていることがわかった。実施例 4パィレックスガラス
製300の‘客の水冷式内部照射型光反応容器にメタノ
ール127.0夕(4.仇hol)とアセトン31.7
夕(546.1mol)を空気雰囲気下に仕込み、30
分嬢拝した。
Next, the reaction solution was irradiated with light from a 100 W high-pressure mercury lamp while the reaction solution was exposed. The reaction temperature was kept at 2000℃. As a result of analyzing the reaction solution one field hour after the start of irradiation, it was found that ethylene glycol was 4.9 mmol (78.3 hmol) and imptylene glycol was 1342 mmol (146.1 mmol).
) and pinacol 2.4 mol (20. h mol) were found to be produced. Example 4 127.0 methanol (4.0 hol) and 31.7 ml of acetone were placed in a Pyrex glass 300' water-cooled internal irradiation type photoreaction vessel.
Prepare Yu (546.1 mol) in an air atmosphere, and add 30
I worshiped Bunjo.

次に反応溶液を鷹拝しながら「 100Wの高圧水銀灯
により反応溶液に光を照射した。反応温度は2びCに保
った。照射開始後2期時間後に反応溶液を分析した結果
、エチレングリコール6.4夕(103.4mmol)
、インブチレングリコール20.4夕(226.2hm
ol)、ピナコール4.6夕(38.5hmol)が生
成していることがわかった。実施例 5パィレツクスガ
ラス製300の‘客の水冷式内部照射型光反応容器にメ
タノール79.4夕(2.5hol)とアセトン79.
3夕(1.4mol)を空気雰囲気下に仕込み、30分
蝿拝した。
Next, while observing the reaction solution, the reaction solution was irradiated with light using a 100W high-pressure mercury lamp.The reaction temperature was maintained at 2℃.As a result of analyzing the reaction solution two hours after the start of irradiation, it was found that ethylene glycol 6 .4 evenings (103.4 mmol)
, inbutylene glycol 20.4 pm (226.2 hm
It was found that 4.6 hmol of pinacol (38.5 hmol) was produced. Example 5 79.4 liters of methanol (2.5 liters) and 79 liters of acetone were placed in a water-cooled, internally irradiated photoreaction vessel made of Pyrex glass 300 mm.
3 mols (1.4 mol) were placed in an air atmosphere and incubated for 30 minutes.

Claims (1)

【特許請求の範囲】[Claims] 1 メタノールをアセトンとの共存下に光照射すること
を特徴とするビシナルグリコールの製造方法。
1. A method for producing vicinal glycol, which comprises irradiating methanol with light in the coexistence of acetone.
JP2674982A 1982-02-23 1982-02-23 Method for producing vicinal glycol Expired JPS606931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2674982A JPS606931B2 (en) 1982-02-23 1982-02-23 Method for producing vicinal glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2674982A JPS606931B2 (en) 1982-02-23 1982-02-23 Method for producing vicinal glycol

Publications (2)

Publication Number Publication Date
JPS58144331A JPS58144331A (en) 1983-08-27
JPS606931B2 true JPS606931B2 (en) 1985-02-21

Family

ID=12201937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2674982A Expired JPS606931B2 (en) 1982-02-23 1982-02-23 Method for producing vicinal glycol

Country Status (1)

Country Link
JP (1) JPS606931B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045540A (en) * 1983-08-22 1985-03-12 T Hasegawa Co Ltd Ethylene glycol derivative
GB8334612D0 (en) * 1983-12-30 1984-02-08 British Petroleum Co Plc Production of alkylene glycols
JP2000178216A (en) 1998-12-16 2000-06-27 Mitsubishi Gas Chem Co Inc Production of isobutylene glycol

Also Published As

Publication number Publication date
JPS58144331A (en) 1983-08-27

Similar Documents

Publication Publication Date Title
CN107382699B (en) Technique for preparing acrylate by epoxides
Schreiber et al. Application of the furan carbonyl photocycloaddition reaction to the synthesis of the bis (tetrahydrofuran) moiety of asteltoxin
Schreiber et al. A photochemical route to the formation of threo aldols
Rakowski et al. Catalytic homogeneous hydrogenation of arenes. 4. Characterization of the basic reaction and the catalysts
US3382276A (en) Mixtures of oxygenated acyclic terpenes
KR960007001A (en) Novel photocatalyst and its production method and hydrogen production method using the same
Karsch et al. Molecular Structure of a 1, 3‐Diphosphaallene:(2, 4, 6‐tBu3C6H2) P C P (2, 4, 6‐tBu3C6H2), a Phosphorus Analogue of Carbon Disulfide
JPS606931B2 (en) Method for producing vicinal glycol
Liu et al. Photochemistry of iron and ruthenium carbonyl complexes: evidence for light-induced loss of carbon monoxide and reductive elimination of triethylsilane from cis-mer-HM (SiEt3)(CO) 3 (PPh3)
US1179421A (en) Manufacture of peracids from aldehydes.
Adam et al. Singlet oxygenation of ketene acetals: formation of 1, 2-dioxetanes and their thermal rearrangement to. alpha.-peroxy esters
Yamamoto et al. Direct and sensitized photodecompositions of 1-phenyldiazoethane: The spin state in the 1, 2-hydrogen migration to the carbene center
US4443310A (en) Photoinitiated synthesis of mercaptans
Zhou et al. Synthesis of a Heavy-Atom-Free BODIPY and its Photooxygenation of 1-Naphthol to 1, 4-Naphthoquinone
JPH01242554A (en) Production of alkyl pyruvicacid
Kurihara et al. Cleavage of the Nb: O Bond of Oxoniobium (V) Porphyrins. Synthesis and Characterization of Novel Niobium (V) Porphyrins with Two Distinct Catechols
Toda et al. A new host 2, 3, 6, 7, 10, 11‐hexahydroxy triphenylene which forms chiral inclusion crystalline lattice: X‐ray structural study of the chiral crystalline lattice
JPS6019896B2 (en) Manufacturing method of ethylene glycol
JPS61210057A (en) Purification of carbonate compound
JPS6264807A (en) Production of polyvinyl alcohol of high degree of polymerization
US3658668A (en) Method preparing phosphonic acid derivatives
Kokke Synthesis of ((1-R)-[2-18O]-. alpha.-fenchocamphoronequinone. Specific labeling of one carbonyl group in a norbornane-2, 3-dione
SU765268A1 (en) 3,4-dihydropyrrolo-/1,2-alpha/-pyrazine as intermediate product for the synthesis of physiologically active compounds and its preparation method
Duncanson et al. 733. Gladiolic acid. Part III. The structures of nor iso gladiolic acid, dihydrogladiolic acid, and cyclopolic acid
JPH09291085A (en) Epoxy compound and its synthetic intermediate