JPS58153902A - Fabry-perot type optical modulator - Google Patents

Fabry-perot type optical modulator

Info

Publication number
JPS58153902A
JPS58153902A JP57037691A JP3769182A JPS58153902A JP S58153902 A JPS58153902 A JP S58153902A JP 57037691 A JP57037691 A JP 57037691A JP 3769182 A JP3769182 A JP 3769182A JP S58153902 A JPS58153902 A JP S58153902A
Authority
JP
Japan
Prior art keywords
fabry
plates
perot
modulation
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57037691A
Other languages
Japanese (ja)
Other versions
JPS628765B2 (en
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57037691A priority Critical patent/JPS58153902A/en
Publication of JPS58153902A publication Critical patent/JPS58153902A/en
Publication of JPS628765B2 publication Critical patent/JPS628765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To improve the degree of modulation, by constituting a Fabry-Perot interferometer of three pieces of transparent flat plates. CONSTITUTION:Flat plates 31, 33 are fixed to a holding base 35 and a central flat plate 32 is set to the holding base by means of a laminated piezoelectric element 34. The respective spacings (d) between the plates 31, 32, 33 are 7.5mu. The element 34 is so constituted as to decrease the thickness by 1mum when applied with voltage from an electric power source 36 for modulation; therefore, when the voltage is applied to the element, the spacing between the plates 31 and 32 decreases by 1mum to 6.5mum, and the spacing between the plates 32 and 33 increases by 1mum to 8.5mum. As a result, the combined transmittance of the Fabry-Perot interferometer is roughly zero.

Description

【発明の詳細な説明】 本発明はファブリペロ型光学変調器に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Fabry-Perot optical modulator.

第1図に示すように2枚の透明な平板1,2を微少な間
隔dをもたせて、ヌペーサ3を介して平行に配置すると
、いわゆるファブリペロ干渉器になり、第2甲に示すよ
うな光学透過特性を持つようになる。ここで平板1,2
の内側の向い合う面の反射率をRとし外側の面は反射率
ゼロとすると、垂直入射光の場合 λ=2nd/mなる
波長の光の透過率は100%である。こζで、nは空気
または真空の屈折率であり、n = 1であり、mは正
の整数である。一方、 λ= 4nd/(2m−1)な
る時、透過率が最低になり。
As shown in Fig. 1, when two transparent flat plates 1 and 2 are arranged in parallel with a small distance d between them via a Nupaca 3, it becomes a so-called Fabry-Perot interferometer, and the optical Becomes transparent. Here, flat plates 1 and 2
Assuming that the reflectance of the inner facing surfaces is R and the reflectance of the outer surface is zero, the transmittance of light with a wavelength of λ=2nd/m is 100% in the case of vertically incident light. where n is the refractive index of air or vacuum, n = 1, and m is a positive integer. On the other hand, when λ=4nd/(2m-1), the transmittance is the lowest.

でm1n=(1−R)/(1千R)   −−−−(1
)であられされる。
So, m1n=(1-R)/(1,000R) -----(1
).

ここで、τminは最低透過率、mは正の整数であり、
n = 1である。
Here, τmin is the minimum transmittance, m is a positive integer,
n=1.

m = 1の透過ピ〜りの半値巾WはHの値で決まり第
3図に示すようになシ、式(2)で表わすことができる
The half-width W of the transmission peak when m=1 is determined by the value of H, and can be expressed by equation (2) as shown in FIG.

但し、λ0==2nd  である。However, λ0==2nd.

さて、ここで微少間隔dを変化させることによリ、透過
帯域を変化させることができる。従って、赤外フィルタ
などと組み合せて、特定波長帯域の光を変調することが
できる。
Now, by changing the minute distance d, the transmission band can be changed. Therefore, in combination with an infrared filter or the like, light in a specific wavelength band can be modulated.

ところが、この場合の変調度は大きくとれない。However, in this case, the degree of modulation cannot be increased.

たとえばRm66%とすると、(2)式又は第3図より
!=0,133X2dとなシ、このとき波長のスケール
で半値幅に相当する分だけ振らしたときの透過特性は第
4図のようになゐ。図において、曲線6は微少間隔dを
変化させないときの特性、曲線6は微少間隔dをd−W
に変化させたときの特性である。このとき、特定波長帯
域(λ=2d−〜2d+!−)における光の透過率は、
曲2       2 線6については図中7で示した領域となり、rON中8
0q6となる。一方向線6については8で示した領域と
なり゛roty−キ25%となり、結局変調度としては
でON −rotyキ8O−25=55%程度であり大
きく変調できない。。
For example, if Rm is 66%, then from equation (2) or Figure 3! =0.133X2d, and in this case, when the wavelength scale is swung by an amount corresponding to the half width, the transmission characteristics are as shown in Fig. 4. In the figure, curve 6 is the characteristic when the minute distance d is not changed, and curve 6 is the characteristic when the minute distance d is changed to d-W.
This is the characteristic when changed to . At this time, the light transmittance in the specific wavelength band (λ=2d-~2d+!-) is
For song 2 2 line 6, the area is indicated by 7 in the figure, and 8 in rON.
It becomes 0q6. Regarding the one-way line 6, it is in the area indicated by 8, and the rotary key is 25%, and the modulation degree is approximately 55% (ON-roty key 8O-25), and cannot be significantly modulated. .

本発明はこの変調度を大きく改善することのできるファ
ブリペロ型光学変調器を提供するものである。以下図面
を用いてその一実施例を詳細に説萌する。
The present invention provides a Fabry-Perot optical modulator that can greatly improve the degree of modulation. One embodiment will be explained in detail below using the drawings.

第6図は本発明によるファブリペロ型光変調器の原理を
示すダブルファブリペロ干渉器の構成である。図におい
て、11.12.13は透明な平板で、平板11.13
の外側の面は反射率ゼロとし、内側の面は反射率Rとす
る。平板12は両面ともに反射率Rとする。各平板11
.12.13はスペーサ14により一定間隔dを保って
配される。この構成で平板12の位置のみが微変動(Δ
d)すれば、各面間隔は一方はd+Δd、他方はd−Δ
dとなり、この2重ファブリペロ干渉器は第6図に示す
ような光変調機能を発揮することになる。ここで、21
はΔd =O,すなわちダブルファブリペロ型変調器が
01gのときの光透過特性、23.24はΔdも0のと
き、すなわち各ダブルファブリペロ干渉器がOFFのと
きの各光透過特性、22は曲線23,24を合成して得
られるダブルファブリペロ型変調器がOFFのときの光
透過特性である。
FIG. 6 shows the configuration of a double Fabry-Perot interferometer showing the principle of the Fabry-Perot optical modulator according to the present invention. In the figure, 11.12.13 is a transparent flat plate, and the flat plate 11.13
The outer surface of is assumed to have a reflectance of zero, and the inner surface is assumed to have a reflectance of R. The flat plate 12 has a reflectance R on both sides. Each flat plate 11
.. 12 and 13 are arranged at a constant distance d by a spacer 14. With this configuration, only the position of the flat plate 12 changes slightly (Δ
d) Then, the spacing between each surface is d + Δd on one side and d - Δ on the other.
d, and this double Fabry-Perot interferometer exhibits an optical modulation function as shown in FIG. Here, 21
are the light transmission characteristics when Δd = O, that is, the double Fabry-Perot modulator is 01 g, 23.24 are the light transmission characteristics when Δd is also 0, that is, when each double Fabry-Perot interferometer is OFF, and 22 is the light transmission characteristic when the double Fabry-Perot interferometer is OFF. This is a light transmission characteristic obtained by combining curves 23 and 24 when the double Fabry-Perot modulator is OFF.

ここで、前記と同様Rm66俤、 W =Q、133X
2d 。
Here, as above, Rm66, W = Q, 133X
2d.

Δci=wとすると、特定波長帯域における曲線21に
よる光透過率は70)lキ、76チ、曲線22による光
透過率70yyキ 4チである。したがって特定波長帯
域の光変調度は約70%に向上する。これはファブリペ
ロを2重にし、両者t−1e逆方向に変調したことによ
る効果で、特に光を遮断する機能が改善されていること
が明らかである。透過機能は若干低下するが、透過帯の
珍状が、急傾斜で立上り、立下っているので、透過率低
下の程度は少ない。
When Δci=w, the light transmittance according to the curve 21 in the specific wavelength band is 70)l, 76ch, and the light transmittance according to the curve 22 is 70yyx4. Therefore, the degree of optical modulation in the specific wavelength band is improved to about 70%. This is the effect of duplicating Fabry-Perot and modulating both in t-1e opposite directions, and it is clear that the light blocking function is particularly improved. Although the transmission function is slightly reduced, since the transmission band has a unique shape with steep slopes rising and falling, the degree of reduction in transmittance is small.

変調器の機能として重要なものは、変調率であるが、こ
の変調率は微少間隔の金動率に左右されると同時に使用
する特定波長帯域の幅にも影響をうける。この特定波長
帯域の幅にあわせて、透過領域の半値幅を決定すること
が望ましい。
An important function of a modulator is the modulation rate, which is influenced by the metal dynamic rate of minute intervals and also by the width of the specific wavelength band used. It is desirable to determine the half-width of the transmission region in accordance with the width of this specific wavelength band.

式(2)で示すように、この半値幅は平行平面の反射率
Rで決まるので、要求される仕様に基づいてR値の設計
をすることになる。但し、第2図に示すように、高次の
透過ピークが短波長側に存在するので、特定波長帯域の
幅には上限があり、最大で、中心波長(λo=2nd)
の60チ程度である。
As shown in equation (2), this half-width is determined by the reflectance R of the parallel plane, so the R value is designed based on the required specifications. However, as shown in Figure 2, since the higher-order transmission peak exists on the short wavelength side, there is an upper limit to the width of the specific wavelength band, and the maximum is the center wavelength (λo = 2nd).
It is about 60 inches.

従って、第3図に示すように、平行平面の反射率は約2
4係以上でなければ、本変調器は機能を発揮しないこと
がわかる。
Therefore, as shown in Figure 3, the reflectance of parallel planes is approximately 2.
It can be seen that this modulator does not function unless the ratio is 4 or higher.

特定波長帯域が狭くてよい場合、R値を大きくして透過
ピークの半値幅を狭くして、微少間隔の変動率を少くて
すむようにできる。従って、R値は変調器の要求仕様に
あわせて決定することになるが、この場合も24チ以上
の反射率が必要である。
If the specific wavelength band can be narrow, the R value can be increased to narrow the half-width of the transmission peak, so that the rate of fluctuation of minute intervals can be reduced. Therefore, the R value is determined according to the required specifications of the modulator, and in this case as well, a reflectance of 24 or more is required.

一方、外側に面する平面は、干渉現象になんらのかかわ
りもないことが望ましく、干渉面と平行でなくわすかな
角をなし又理想的には反射率Rはゼロがよい。現実には
、反射率をゼロにすることは不可能なので、なるべく反
射率を低くする。その反射率をRmとすると、この反射
による損失率は(21m −1m2)である。実用上は
、Rm=0.1で損失率が約20チ程度まで許される。
On the other hand, it is preferable that the plane facing the outside has no relation to the interference phenomenon, is not parallel to the interference surface but forms a slight angle, and ideally has a reflectance R of zero. In reality, it is impossible to reduce the reflectance to zero, so the reflectance is made as low as possible. If the reflectance is Rm, then the loss rate due to this reflection is (21 m -1 m2). In practice, when Rm=0.1, a loss rate of about 20 inches is allowed.

揶7図に本発明によるファブリペロ型変調器の一実施例
を示す。平板31.33はゲルマニウム板で外側の面は
硫化亜鉛蒸着膜で反射防止コーティングしてあり、特定
波長帯域14〜16μmで平均反射率2チになっている
。中央の平板32に対向した面と、中央の平板32の両
面は反射率66チにしてあり各々の間隔dは7.6μで
、平行度はλ/10o(λ=15.ci)である。平板
31.33は保持台36に固定されており、中央の平板
32は、積層圧電素子34を介し゛て保持台にセットさ
れている。積層圧電素子34は変調用電源36から、電
圧を加えられることにより、厚さが1μm減少するよう
構成されており、したがって電圧印加により、平板31
と32の間隔は1μm減じ6.6μmとなり、一方、平
板32と33の間隔は1μm増すので8.6μmとなる
。この結果、各ファブリペロ干渉計の光透過特性は第6
図の曲線23及び24の状態になり両者の合成透過率は
曲線22の状態になり、はとんど光を通さない。この実
施例ではRmによる光学損失を加味すると、電圧印加時
の光透過率(14〜16μm帯)は7oyシ=4チ印加
していない時の透過率は701 = 72 all、で
あり、光変調率は68チを達成している。
FIG. 7 shows an embodiment of a Fabry-Perot modulator according to the present invention. The flat plates 31 and 33 are germanium plates whose outer surfaces are anti-reflection coated with a zinc sulfide vapor-deposited film, and have an average reflectance of 2 cm in a specific wavelength band of 14 to 16 μm. The surface facing the central flat plate 32 and both sides of the central flat plate 32 have a reflectance of 66 inches, the distance d between each is 7.6 μ, and the parallelism is λ/10o (λ=15.ci). The flat plates 31 and 33 are fixed to a holding stand 36, and the central flat plate 32 is set on the holding stand via a laminated piezoelectric element 34. The laminated piezoelectric element 34 is configured such that its thickness decreases by 1 μm when a voltage is applied from the modulation power source 36.
The distance between the plates 32 and 32 is reduced by 1 μm to 6.6 μm, while the distance between the flat plates 32 and 33 is increased by 1 μm to 8.6 μm. As a result, the light transmission characteristics of each Fabry-Perot interferometer are
The state of curves 23 and 24 in the figure is reached, and the combined transmittance of both becomes the state of curve 22, where almost no light passes through. In this example, when optical loss due to Rm is taken into account, the light transmittance (14 to 16 μm band) when voltage is applied is 7oy = 4 The transmittance when no voltage is applied is 701 = 72 all, and the light modulation The rate has achieved 68chi.

実施例1の場合と同様の構成で、中央板を固定し、両側
の平板を積層圧電素子で変動させる方式を第8図8に示
す。図中第7図と同一部分には同一符号を付して説明を
省略する。44.45は積層圧電素子である。この場合
、平板31と33は互に同一方向に変位するように設計
する。実施例1と異るのは、この場合、変位の程度をそ
れぞれ別々に加減できるので、たとえば長波長側にかた
よらせる割合を少し押え気味にして、高次の透過ピーク
が特定波長帯域にかからないようにし、一方、短波長側
への変位は、゛ピークのすそ引きを考慮して大きめにす
ることができる。これによシ変調効率は70%を越える
ことが出来た。
FIG. 8 shows a system in which the center plate is fixed and the flat plates on both sides are moved by laminated piezoelectric elements, with the same configuration as in Example 1. Components in the figure that are the same as those in FIG. 7 are designated by the same reference numerals, and their explanation will be omitted. 44 and 45 are laminated piezoelectric elements. In this case, the flat plates 31 and 33 are designed to be mutually displaced in the same direction. The difference from Embodiment 1 is that in this case, the degree of displacement can be adjusted separately, so for example, the ratio of shifting toward longer wavelengths can be slightly suppressed so that the high-order transmission peak does not fall in a specific wavelength band. On the other hand, the displacement toward the short wavelength side can be made larger in consideration of the narrowing of the peak. As a result, the modulation efficiency was able to exceed 70%.

尚、第6図かられかるように本発明によるファプリペロ
ー変調器は、利用波長帯域のみに注目すると、フィルタ
の併用なしで変調できる。但し、1’ ”’f1 高次の透過ピークを遮断しなければいけないので、利用
波長帯域及びそれよシ長波長帯域を透過し、隣接する高
次の透過ピーク及びそれよ〕短波長帯域を遮断するよう
なローパスフィルタの併用が必要である。
As can be seen from FIG. 6, the Fabry-Perot modulator according to the present invention can perform modulation without using a filter if only the wavelength band to be used is focused. However, since it is necessary to block the higher-order transmission peak, the wavelength band used and the longer wavelength band are transmitted, and the adjacent higher-order transmission peak and the shorter wavelength band are blocked. It is necessary to use a low-pass filter such as

しかし、ローパスフィルタより比較的高価で、透過効率
が悪い帯域フィルタを使う必要はなくなる。
However, it is no longer necessary to use a bandpass filter, which is relatively more expensive and has lower transmission efficiency than a low-pass filter.

また、積層圧電素子を用いることにより、第7図、第8
図に示すように、比較的容易に本発明の7アプリペロ変
調器を構成することができた。
In addition, by using a laminated piezoelectric element, it is possible to
As shown in the figure, it was possible to construct the 7-approximate modulator of the present invention relatively easily.

以上のように本発明は3社の平板を利用して、各平板間
に形成される微少な間隔を、=方の間隔が減少した′と
き他方の間隔が増大するよう変化させたブアブリベロ型
光学変調器あり、従来のファブν・σb型光孝変、調器
に比して変調度を大幅に向上させることができる。
As described above, the present invention utilizes flat plates from three companies and changes the minute distance formed between each flat plate so that when the distance on the = side decreases, the distance on the other side increases. With a modulator, the degree of modulation can be significantly improved compared to conventional fab ν/σb type optical modulators and modulators.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のファブリペロ干渉器の構成を示す断面図
、第2図は第1図の7アプリペロ干渉器の透過特性を示
す図、第3図はファブリペロ干渉器し1次透過帯の半値
巾と平行平面の反射率の関堡を示す図、第4図は従来の
ファブリペロ変調器め変調の様子を示す図、第5図は本
発明のダブルファブリペロ干渉器の原理構成を示す断面
図、第6図は本発明によるファブリペロ型光変調器の変
調の様子を示す図、第7図は本発明によるファブリペロ
型光変調器の一実施例を示す断面図、第8図は本発明に
よるファブリペロ型光変調器の他の実施例を示す断面図
である。 11.12,13・・・・・・透明な平板、14・・・
・・・スペーサ、31.32.33・・・・・・ゲルマ
ニウム平板、34.44.45・・・・・・積層圧電素
子、35・・・・・・保持台、36・・・・・・電源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 d ボ眠艮(入λ 第3t!1 第4図 第5図 4 第6図 第7図
Figure 1 is a cross-sectional view showing the configuration of a conventional Fabry-Perot interferometer, Figure 2 is a diagram showing the transmission characteristics of the 7-application-Perot interferometer shown in Figure 1, and Figure 3 is a diagram showing the half-width of the first-order transmission band of the Fabry-Perot interferometer. 4 is a diagram showing the state of modulation in a conventional Fabry-Perot modulator, and FIG. 5 is a sectional view showing the principle configuration of the double Fabry-Perot interferometer of the present invention. FIG. 6 is a diagram showing the state of modulation of the Fabry-Perot optical modulator according to the present invention, FIG. 7 is a sectional view showing an embodiment of the Fabry-Perot optical modulator according to the present invention, and FIG. 8 is a diagram showing the Fabry-Perot optical modulator according to the present invention. FIG. 7 is a cross-sectional view showing another example of the optical modulator. 11.12,13...Transparent flat plate, 14...
... Spacer, 31.32.33 ... Germanium flat plate, 34.44.45 ... Laminated piezoelectric element, 35 ... Holding stand, 36 ... ·power supply. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. d Bo Sleep (Enter λ) 3rd t! 1 Fig. 4 Fig. 5 Fig. 4 Fig. 6 Fig. 7

Claims (2)

【特許請求の範囲】[Claims] (1)特定の波長帯に対し透明で、両面が反射率24%
以上の平面である光学板を中央に配し微少な間隔を介し
てその両側に前記平板をはさむように2枚の透明平板を
配装置し、中央部の平板の各面と両側の平板との向い合
う面との微少な間隔を、一方の間隔が減じている時は他
方は増大するように変化させることを特徴とするファブ
リペロ型光学変調器。
(1) Transparent to a specific wavelength band, with a reflectance of 24% on both sides
The above-mentioned flat optical plate is placed in the center, and two transparent flat plates are placed on both sides of the flat plate with a slight interval between them, and each surface of the central flat plate is connected to the flat plates on both sides. A Fabry-Perot optical modulator characterized in that the minute distance between opposing surfaces is changed so that when one distance is decreased, the other distance is increased.
(2)積層圧電素子に通電することによシ、平行平面の
微少間隔を変化させることを特徴とする特許請求の範囲
第1項記載のファプリペロ 型光学変調器。
(2) The Fappre-Perot optical modulator according to claim 1, characterized in that the minute spacing between the parallel planes is changed by energizing the laminated piezoelectric element.
JP57037691A 1982-03-09 1982-03-09 Fabry-perot type optical modulator Granted JPS58153902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57037691A JPS58153902A (en) 1982-03-09 1982-03-09 Fabry-perot type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57037691A JPS58153902A (en) 1982-03-09 1982-03-09 Fabry-perot type optical modulator

Publications (2)

Publication Number Publication Date
JPS58153902A true JPS58153902A (en) 1983-09-13
JPS628765B2 JPS628765B2 (en) 1987-02-24

Family

ID=12504580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57037691A Granted JPS58153902A (en) 1982-03-09 1982-03-09 Fabry-perot type optical modulator

Country Status (1)

Country Link
JP (1) JPS58153902A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271322A (en) * 1987-04-30 1988-11-09 Olympus Optical Co Ltd Transmissivity characteristic varying element
JPS6446720A (en) * 1987-07-15 1989-02-21 American Telephone & Telegraph Fabry-perot cavity
JPH0194312A (en) * 1987-10-06 1989-04-13 Sharp Corp Variable interference device
JPH02262024A (en) * 1989-02-21 1990-10-24 Internatl Business Mach Corp <Ibm> Tunable optical filter
JPH02278132A (en) * 1989-02-21 1990-11-14 Internatl Business Mach Corp <Ibm> Optical filter
JPH04226412A (en) * 1990-04-30 1992-08-17 Internatl Business Mach Corp <Ibm> Optical filter
JPH04232910A (en) * 1990-05-31 1992-08-21 Alcatel Nv Optical apparatus
EP0667548A1 (en) * 1994-01-27 1995-08-16 AT&T Corp. Micromechanical modulator
JP2004012642A (en) * 2002-06-04 2004-01-15 Nec Corp Tunable filter, method of manufacturing the same, and optical switching apparatus using the same
JP2006189575A (en) * 2005-01-05 2006-07-20 Ricoh Co Ltd Optical element, laser machining apparatus, and laser manipulation apparatus
JP2012108370A (en) * 2010-11-18 2012-06-07 Denso Corp Wavelength-selective filter
JP2014233344A (en) * 2013-05-31 2014-12-15 Hoya株式会社 Optical filter element, wavelength variable optical bandpass filter module, wavelength variable light source apparatus, and spectroscopic endoscope apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271322A (en) * 1987-04-30 1988-11-09 Olympus Optical Co Ltd Transmissivity characteristic varying element
JPS6446720A (en) * 1987-07-15 1989-02-21 American Telephone & Telegraph Fabry-perot cavity
JPH0194312A (en) * 1987-10-06 1989-04-13 Sharp Corp Variable interference device
JP2528533B2 (en) * 1989-02-21 1996-08-28 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Tunable optical filter
JPH02262024A (en) * 1989-02-21 1990-10-24 Internatl Business Mach Corp <Ibm> Tunable optical filter
JPH02278132A (en) * 1989-02-21 1990-11-14 Internatl Business Mach Corp <Ibm> Optical filter
JPH04226412A (en) * 1990-04-30 1992-08-17 Internatl Business Mach Corp <Ibm> Optical filter
JPH04232910A (en) * 1990-05-31 1992-08-21 Alcatel Nv Optical apparatus
EP0667548A1 (en) * 1994-01-27 1995-08-16 AT&T Corp. Micromechanical modulator
JP2004012642A (en) * 2002-06-04 2004-01-15 Nec Corp Tunable filter, method of manufacturing the same, and optical switching apparatus using the same
JP2006189575A (en) * 2005-01-05 2006-07-20 Ricoh Co Ltd Optical element, laser machining apparatus, and laser manipulation apparatus
JP4523420B2 (en) * 2005-01-05 2010-08-11 株式会社リコー Optical element, laser processing apparatus and laser manipulation apparatus
JP2012108370A (en) * 2010-11-18 2012-06-07 Denso Corp Wavelength-selective filter
JP2014233344A (en) * 2013-05-31 2014-12-15 Hoya株式会社 Optical filter element, wavelength variable optical bandpass filter module, wavelength variable light source apparatus, and spectroscopic endoscope apparatus

Also Published As

Publication number Publication date
JPS628765B2 (en) 1987-02-24

Similar Documents

Publication Publication Date Title
JPS58153902A (en) Fabry-perot type optical modulator
US4729640A (en) Liquid crystal light modulation device
US7301700B2 (en) Polarization beam splitter and optical system using the same, and image displaying apparatus, using the same
US6850366B2 (en) Multi-cavity optical filter
US6947215B2 (en) Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system
US7236655B2 (en) Polarization element and optical device using polarization element
JPS61501798A (en) optical spatial frequency filter
JPH09292591A (en) Band-pass filter
CN101295076A (en) Polarization spectroscopic device and projection display device using the same
Kitson et al. Surface profile dependence of surface plasmon band gaps on metallic gratings
US6606197B2 (en) Dual grating filtering system
JP2006350126A (en) Wavelength selection element
JPH03213802A (en) Diffraction grating
JPS6278501A (en) Optical device having antireflection film
JPS5919920A (en) Multibeam acoustooptic modulator
JP4017127B2 (en) Hologram color filter system
JP2005321562A5 (en)
JP3859261B2 (en) Color filter using volumetric diffraction grating
JPS5983102A (en) Fabry-perot type infrared rays modulator
JP2002236206A (en) Optical device and spectroscopic apparatus using the same
JPS5983101A (en) Fabry-perot type infrared rays modulator
JPH0461181A (en) Etalon
JPH05173019A (en) Polarization canceler
Booth et al. Tunable large angular aperture TeO 2 acousto-optic filters for use in the 1.0–1.6 μm region
JPH0138287B2 (en)