JPS58151310A - Manufacture of silicon nitride - Google Patents

Manufacture of silicon nitride

Info

Publication number
JPS58151310A
JPS58151310A JP2879682A JP2879682A JPS58151310A JP S58151310 A JPS58151310 A JP S58151310A JP 2879682 A JP2879682 A JP 2879682A JP 2879682 A JP2879682 A JP 2879682A JP S58151310 A JPS58151310 A JP S58151310A
Authority
JP
Japan
Prior art keywords
silicic acid
silicon nitride
carbon
starting material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2879682A
Other languages
Japanese (ja)
Inventor
Masami Yamaguchi
山口 昌美
Yoshiro Tazane
田実 佳郎
Ryoji Kitahama
北浜 良治
Isamu Iwami
岩見 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2879682A priority Critical patent/JPS58151310A/en
Publication of JPS58151310A publication Critical patent/JPS58151310A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon

Abstract

PURPOSE:To form fine powder of alpha-type silicon nitride suitable for use in the manufacture of a high strength sintered body of silicon nitride by using a precipitate obtd. by bringing a carbonaceous starting material into contact with a silicic acid soln. as a starting material and heating the precipitate in a nonoxidizing atmosphere contg. nitrogen. CONSTITUTION:A soln. or a liq. dispersion prepared by dissolving or dispersing a carbonaceous starting material such as saccharides or a vinyl polymer in water, alcohol or the like is mixed with a (modified) silicic acid soln. so that about 0.4-5pts.wt. as C of the carbonaceous starting material and about 1 part as SiO2 of silicic acid are contained, and a formed solid precipitate is used as a starting material. The solid precipitate is heat treated at about 1,300-1,600 deg.C in a nonoxidizing atmosphere contg. nitrogen to manufacture fine powder of silicon nitride.

Description

【発明の詳細な説明】 本発明は、α型窒化ケイ素の製造方法に関するものであ
り、特に、高強度窒化ケイ素焼結体を製造するだめの原
料として好適なα型窒化ケイ素微粉体の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing α-type silicon nitride, and in particular to a method for producing α-type silicon nitride fine powder suitable as a raw material for producing a high-strength silicon nitride sintered body. .

窒化ケイ素は耐熱性、高温強度が優れており、焼結体と
して高温ガスタービン部材など各種の高温構造用材料へ
の応用が期待されている。これら焼結体の熱的、機械的
性質は焼結体原料の性状に依存するところが大きく、窒
化ケイ素としてα型をできるだけ多く含んでおシ、且つ
、粒径の小さい窒化ケイ素が望まれている。
Silicon nitride has excellent heat resistance and high-temperature strength, and is expected to be applied as a sintered body to various high-temperature structural materials such as high-temperature gas turbine components. The thermal and mechanical properties of these sintered bodies largely depend on the properties of the raw materials for the sintered bodies, and silicon nitride that contains as much α-type silicon nitride as possible and has small particle size is desired. .

窒化ケイ素の合成法としては、 (1)金属ケイ素を窒化する方法、 (11)四塩化ケイ素とアンモニアを原料とする方法、
(iil)シリカ(5i02 )粉末をカーボン粉末と
共に窒素中加熱して還元窒化する方法、 などが知られている。
Methods for synthesizing silicon nitride include (1) a method of nitriding metallic silicon, (11) a method using silicon tetrachloride and ammonia as raw materials,
(iii) A method of reducing and nitriding silica (5i02) powder by heating it together with carbon powder in nitrogen is known.

これらの方法の中で、Q++)の方法は、原料が安価で
あり、反応操作が単純容易であること、装置を腐食する
恐れのある原料を用いないこと、など工業的に利点の多
い方法である。
Among these methods, method Q++) has many industrial advantages, such as inexpensive raw materials, simple and easy reaction operations, and no use of raw materials that may corrode the equipment. be.

しかしながら、(fil)の方法において、7リカ粉末
の窒化は容易には進行しに<<1.特!結晶質シリカの
窒化は困難であるので、非晶質しυ力粉末を使用するの
が一般である。しかし、比較的反応性の良い非晶質シリ
カ粉末を使用した場合でも反応性を高めるためにフッ化
物、珪フッ化物を付着せしめた非晶質シリカ粉末を用い
たり(特公昭51−12320参照)、特殊な蒸発シリ
カ粉末を用いたりする(特開昭53−75200参照)
工夫がなされてきた。しかし、7ツ化物等の添加は生成
する窒化ケイ素の純度を低下させ、また特殊なシリカ粉
末の使用は高価につく欠点がある。
However, in the method of (fil), nitriding of the 7-liquor powder does not proceed easily and <<1. Special! Since it is difficult to nitride crystalline silica, it is common to use amorphous powder. However, even when amorphous silica powder with relatively good reactivity is used, amorphous silica powder to which fluoride or silica fluoride is attached is used to increase the reactivity (see Japanese Patent Publication No. 12320/1983). , using special evaporated silica powder (see JP-A-53-75200)
Efforts have been made. However, the addition of heptadide and the like lowers the purity of the silicon nitride produced, and the use of special silica powder has the drawback of being expensive.

さらに、(Ill)の方法の生成物は、一般にα型窒化
ケイ素、β型窒化ケイ素、炭化ケイ素などの混合物であ
り、場合によっては未反応のシリカ、シリコンオキシナ
イトライドなども混在しく特公昭4B−22919参照
)、目的とするα型窒化ケイ素の含有率が小さい生成物
となる欠点がある。
Furthermore, the product of the method (Ill) is generally a mixture of α-type silicon nitride, β-type silicon nitride, silicon carbide, etc., and in some cases, unreacted silica, silicon oxynitride, etc. are also mixed in. -22919), there is a drawback that the product has a low content of the target α-type silicon nitride.

これらの欠点を克服し、工業的″に利点の多い(Ill
)の方法でα型窒化ケイ素含有率の高い生成物を得よう
として、これまでに多くの方法が提示されている。例え
ば、(Ill)の方法の反応系にさらに、金属ケイ素(
特開昭52−38500.特開昭53−137899参
照)、窒化ケイ素、炭化ケイ素など(特公昭54−23
917参照ン、シリコンニトロゲンイミド(特開昭54
−126696参照)女どの第三成分を添加したり、あ
るいは特定のカーボン粉末を用いる(%開昭52−90
499参照)ことが開示されている。しかし、第三成分
を添加する方法は、開示されている第三成分が主原料の
シリカ、カーボンよシ高価なので、経済的に好ましい方
向、でなく、さらに第三成分自体に特殊な要件、例えば
金属ケイ素の場合、平均粒径0.5μ以下の超微細粉末
(特開昭53−137899)が必要とされることは、
この傾向を一層強めている。また、特定のカーボン粉末
を用い”る方法は、生成する窒化ケイ素の形状が不均一
であり、且つ粒径が大きい。
It overcomes these drawbacks and has many industrial advantages (Ill.
) Many methods have been proposed so far in an attempt to obtain a product with a high α-type silicon nitride content. For example, metallic silicon (
Japanese Patent Publication No. 52-38500. JP-A-53-137899), silicon nitride, silicon carbide, etc. (see JP-A-54-23)
917 reference, Silicon Nitrogenimide (Japanese Unexamined Patent Publication No. 1983
-126696) Adding a third component or using specific carbon powder (%Kasho 52-90)
499) is disclosed. However, the disclosed method of adding the third component is not economically preferable because the third component is more expensive than the main raw materials silica and carbon, and furthermore, the third component itself has special requirements, e.g. In the case of metallic silicon, ultrafine powder with an average particle size of 0.5μ or less (Japanese Patent Application Laid-Open No. 137899) is required because
This trend is becoming stronger. Furthermore, in the method using a specific carbon powder, the shape of the silicon nitride produced is non-uniform and the particle size is large.

本発明者らは、工業的に有利なα型窒化ケイ素の製造法
について種々検討の結果、炭素質粉末をシリカ粉末では
なく、ケイ酸液で処理し、これを窒化原料とすることに
よって、高純度のα型窒化ケイ素が容易に得られること
を先に〜見出し、特許出願(特願昭55−’11.84
63号ン”し・た。
As a result of various studies on industrially advantageous production methods for α-type silicon nitride, the present inventors have found that by treating carbonaceous powder with silicic acid liquid instead of silica powder and using this as the nitriding raw material, a high We first discovered that α-type silicon nitride of high purity could be easily obtained, and filed a patent application (Japanese Patent Application 1984-'11.84).
No. 63.

この方法によれば、シリカ粉末の代わシにケイ酸液を用
いるという単純簡易な手段に工り、第3成分を添加しな
いでもα型窒化ケイ素含有率の高い微細な生成物が得ら
れる。
According to this method, a fine product with a high α-type silicon nitride content can be obtained by simply using a silicic acid liquid instead of silica powder without adding a third component.

しかしながら、ケイ酸液に由来する溶媒を除去する必要
があり、実用的見地からは成可くエネルギーコストの低
い除去法が望まれ、出来得れば、熱エネルギーを要する
留去もしくは乾燥によらずその大半を除去できることが
望ましい。
However, it is necessary to remove the solvent derived from the silicic acid liquid, and from a practical standpoint, a removal method that is possible and has low energy costs is desired. It is desirable to be able to remove most of it.

本発明者らは、ケイ酸液を使用することによるメリット
を生かしつつ、さらに実用化に有利な方法を確立すべく
検討の結果、炭素質原料とケイ酸液を接触させ、ついで
沈殿させる方法を見出し、本発明に至ったものである。
The inventors of the present invention have conducted studies to establish a method that is more advantageous for practical application while taking advantage of the advantages of using silicic acid liquid. As a result, they have developed a method in which a carbonaceous raw material and silicic acid liquid are brought into contact and then precipitated. This is the heading that led to the present invention.

すなわち、本発明は、シリカ質と炭素質とを含む原料を
、窒素を含む非酸化性雰囲気中で加熱して窒化ケイ素を
得る方法において、原料として炭素もしくは炭素前駆物
質の粉末、または、炭素前駆゛物質の溶液をケイ酸液ま
だは変性ケイ酸液と接触させついで、沈殿して得られる
混合物を用いることを特徴とする窒化ケイ素の製法であ
る。
That is, the present invention provides a method for obtaining silicon nitride by heating a raw material containing siliceous material and carbonaceous material in a non-oxidizing atmosphere containing nitrogen. This is a method for producing silicon nitride, which is characterized by using a mixture obtained by contacting a solution of a substance with a silicic acid solution or a modified silicic acid solution and precipitating the mixture.

本発明によれば、溶媒の大半の除去はf過もしくは遠心
分離、プレス脱水など熱を要しない通常の固液分離手段
により行ない得るので、エネルギーコストの上で有利で
あるばかシでなく、還元窒化反応により粒径の均一度が
高く微細な窒化ケイ素が得られる。
According to the present invention, most of the solvent can be removed by ordinary solid-liquid separation means that do not require heat, such as f-filtration, centrifugation, or press dehydration. The nitriding reaction yields fine silicon nitride with highly uniform particle size.

本発明の詳細な説明 とは、St(OH)4もしくはその脱水網金物を意味す
る。ケイ酸は公知の種々の方法により容易に作成するこ
とができる。例えば、ケイ酸アルカリを原料として、そ
の水溶液の酸分解、電解透析あるいはイオン交換法によ
る脱アルカリにより作成する方法、エチルシリケートな
どケイ酸エステルあるいはハロゲン化ケーイ素のような
加水分解性ケイ素化合物を原料として加水分解により作
成する方法などで容易に得ることができる。経済的に好
ましいのはケイ酸アルカリを原料とする方法である。
The detailed description of the present invention refers to St(OH)4 or a dehydrated mesh thereof. Silicic acid can be easily produced by various known methods. For example, using an alkali silicate as a raw material, it can be prepared by acid decomposition of its aqueous solution, electrolytic dialysis, or dealkalization using an ion exchange method, or a method using a silicate ester such as ethyl silicate or a hydrolyzable silicon compound such as a silicon halide as a raw material. It can be easily obtained by methods such as hydrolysis. Economically preferred is a method using an alkali silicate as a raw material.

また、本発明において、変性ケイ酸液とは、アンモニウ
ムイオン、有機アミン、第4級’アンモニウムイオンか
らなる群から選ばれた少なくとも一つを溶存しているケ
イ酸溶液もしくはゾ尤を意味する。
Furthermore, in the present invention, the modified silicic acid solution refers to a silicic acid solution or silicic acid solution in which at least one selected from the group consisting of ammonium ions, organic amines, and quaternary ammonium ions is dissolved.

本発明で用いる変性ケイ酸液は公知の種々の方法によっ
て容易に作成することができる。もつとも工業的に好ま
しいのは、ケイ酸アルカリ水溶液をアンモニウムイオン
、有機アミンもしくは第4級アンモニウムイオンを保持
するイオン交換樹脂で処理する方法である。
The modified silicic acid solution used in the present invention can be easily prepared by various known methods. Industrially preferred is a method in which an aqueous alkali silicate solution is treated with an ion exchange resin that retains ammonium ions, organic amines, or quaternary ammonium ions.

ケイ酸液もしくは変性ケイ酸液中のケイ酸濃度は、5i
02分換算50%以下、好ましくは20%以下、特に1
5%以下が望ましい。高濃度ではゲル化しやすく、ゲル
化すると炭素質との接触が不均一になるので好ましくな
い。濃度の低限は経済性によりきまるが、0.5重量%
以上、好ましくは1重量%以上特に4%以上がよい。
The silicic acid concentration in the silicic acid liquid or modified silicic acid liquid is 5i
02 minutes equivalent: 50% or less, preferably 20% or less, especially 1
5% or less is desirable. High concentrations tend to cause gelation, and gelation makes contact with carbonaceous material uneven, which is not preferable. The lower limit of concentration is determined by economics, but 0.5% by weight
Above, preferably 1% by weight or more, particularly 4% or more.

変性ケイ酸液中のアンモニウムイオンなど変性剤の量は
ケイ酸のSiに対して4倍モル以下、通常は2倍モル以
下が経済的にみて好ましいが、過剰に存在していても技
術的に不都合はない。
The amount of modifier such as ammonium ion in the modified silicic acid solution is preferably 4 times the mole or less, usually 2 times the mole or less, relative to the Si in the silicic acid from an economical point of view, but even if it is present in excess, it is technically There is no inconvenience.

炭素質としては粉末状の炭素または粉末状の炭素前駆物
質または炭素前駆物質の溶液を用いることができ、これ
らとケイ酸液もしくは変性ケイ酸液と組合せることによ
って高品位の窒化ケイ素を容易に得ることができる。
Powdered carbon, a powdered carbon precursor, or a solution of a carbon precursor can be used as the carbon material, and by combining these with a silicic acid liquid or a modified silicic acid liquid, high-grade silicon nitride can be easily produced. Obtainable.

粉末状の炭素としては、カーボンブラック、活性炭など
がある。
Examples of powdered carbon include carbon black and activated carbon.

本発明で炭素前駆物質とは高温で炭素を生成する物質、
すなわち200〜1500’Cの温度範囲内のいずれか
の温度に、少なくとも非酸化性雰囲気下で加熱した場合
に炭素質残留物となる有機物を意味する。例えば、澱粉
、セルロース、ヘミセルロース、ペクチン、天然カム、
テキストリン、デキストランなど多糖類およびその誘導
体、蔗糖、マルトース、グルコースなど少糖類、単糖類
およびその誘導体、グルテンなどタンパク質およびその
誘導体、ポリビニルアルコール、ポリアクリロニトリル
、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニ
ル、ポリプタジェントるいは、これらを主成分とする共
重合体などビニル重合体およびその誘導体、フェノール
樹脂など熱硬化型樹脂、その他、石油ピッチなど多くの
ものがある。
In the present invention, carbon precursors are substances that generate carbon at high temperatures;
That is, it means an organic substance that becomes a carbonaceous residue when heated to any temperature within the temperature range of 200 to 1500'C, at least in a non-oxidizing atmosphere. For example, starch, cellulose, hemicellulose, pectin, natural cum,
Polysaccharides and their derivatives such as textrin and dextran, oligosaccharides and monosaccharides and their derivatives such as sucrose, maltose and glucose, proteins and their derivatives such as gluten, polyvinyl alcohol, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate There are many types of polymers, such as vinyl polymers and their derivatives, such as polyptagent, copolymers containing these as main components, thermosetting resins such as phenolic resins, and petroleum pitch.

炭素前駆物質の形態は粉末状もしくは溶液状がよく、特
に溶液状が好ましい。
The form of the carbon precursor is preferably a powder or a solution, and a solution is particularly preferred.

本発明において、溶液状態の炭素前駆物質とは、炭素前
駆物質が溶質または分散質として存在している溶液また
はゾルの状態の炭素前駆物質を意味する。したがって本
発明に特に適した炭素前駆物質は、溶液もしくはゾルに
なる炭素前駆物質であり、単糖類、少糖類、多糖類、ビ
ニル重合体およびこれらの誘導体が特に適する。
In the present invention, a carbon precursor in a solution state means a carbon precursor in a solution or sol state in which the carbon precursor is present as a solute or a dispersoid. Particularly suitable carbon precursors for the present invention are therefore carbon precursors that are in solution or sol, and monosaccharides, oligosaccharides, polysaccharides, vinyl polymers and their derivatives are particularly suitable.

溶液状態の炭素前駆物質の濃度は広範囲にわたって有効
であるが、高濃度では高粘度になり取扱いにくい場合が
あり、低濃度では経済的に好ましくないので、0.1〜
80重量%、好ましくは0.5〜60重量%、特に好ま
しくは1〜50重量%である。
The concentration of the carbon precursor in solution is effective over a wide range, but at high concentrations it may become highly viscous and difficult to handle, and at low concentrations it is economically unfavorable.
80% by weight, preferably 0.5-60% by weight, particularly preferably 1-50% by weight.

溶液状態の炭素前駆物質の溶媒もしくは分散媒としては
、その炭素前駆物質に適したものを用いればよいが、特
に好適なのはケイ酸に親和性の高い溶媒もしくは分散媒
であり、水、極性有機溶剤、例えばアルコール、ケトン
、エステル、有機酸、アミド、スルホキシドなどがあげ
られる。
As the solvent or dispersion medium for the carbon precursor in solution, any solvent or dispersion medium suitable for the carbon precursor may be used, but particularly preferred are solvents or dispersion media that have a high affinity for silicic acid, such as water, polar organic solvents, etc. Examples include alcohols, ketones, esters, organic acids, amides, sulfoxides, and the like.

炭素または炭素前駆物質とケイ酸液もしくは変性ケイ酸
液の割合は、ケイ酸液もしくは変性ケイ酸液中のケイ酸
分を5i02に換算して、その5i021重量部に対し
、炭素または炭素前駆物質中のC004〜5重量部、特
に0.4〜2重量部が好ましい。
The ratio of carbon or carbon precursor to silicic acid liquid or modified silicic acid liquid is calculated by converting the silicic acid content in the silicic acid liquid or modified silicic acid liquid to 5i02, and the ratio of carbon or carbon precursor to 5i021 parts by weight. Of these, 4 to 5 parts by weight, particularly 0.4 to 2 parts by weight, of C00 is preferred.

Cが少なすぎると、未反応の5i02分の残存が見られ
る。Cが多すぎても、特に不都合はないが、経済的に好
ましくない。
If C is too small, unreacted 5i02 remains. Even if there is too much C, there is no particular disadvantage, but it is economically unfavorable.

このような割合で、炭素質をケイ酸液または変性ケイ酸
液と接触させるが、その手段としては、浸漬、含浸、噴
霧、塗付、混練、混合など種々の手段を用いることがで
きる。なお、本発明における炭素質とケイ酸液または変
性ケイ酸液の接触は、炭素質の存在する系内においてケ
イ酸を生成せしめてなる接触ではなく、別個の系で生成
せしめたケイ酸液で行なうものである。具体−的には、
例えば、炭素もしくは炭素前駆物質の粉末す流動状態に
しておきケイ酸液を噴霧してもよいし、ケイ酸液中に炭
素もしくは炭素前駆物質の粉末を加えて高速ミキサーで
攪拌、混合してもよい。また、炭素前駆物質の溶液もし
くはゾルとケイ酸液を混合してもよいし、炭素前駆物質
をケイ酸液に添加して溶解させて混和してもよい、要す
るに、炭素または炭素前駆物質とケイ酸液もしくは変性
ケイ酸液を均一な混合状態にすることが肝要である、炭
素もしくは炭素前駆物質とケイ酸液もしくは変性ケイ酸
液とを均一に混合してから、ケイ酸もしくは変性ケイ酸
を沈殿させた後、固形分と液を分離し反応に供する。
The carbonaceous material is brought into contact with the silicic acid liquid or the modified silicic acid liquid at such a ratio, and various methods such as dipping, impregnation, spraying, coating, kneading, and mixing can be used. In addition, the contact between the carbonaceous material and the silicic acid liquid or the modified silicic acid liquid in the present invention is not a contact in which silicic acid is produced in a system where the carbonaceous material is present, but a silicic acid liquid produced in a separate system. It is something to do. Specifically,
For example, a powder of carbon or a carbon precursor may be made into a fluid state and then a silicic acid solution is sprayed on it, or a powder of carbon or a carbon precursor may be added to a silicic acid solution and mixed by stirring with a high-speed mixer. good. Alternatively, the solution or sol of the carbon precursor may be mixed with the silicic acid liquid, or the carbon precursor may be added to the silicic acid liquid and dissolved and mixed. In other words, carbon or the carbon precursor and the silicic acid liquid may be mixed. It is important to uniformly mix the acid liquid or modified silicic acid liquid. After uniformly mixing the carbon or carbon precursor and the silicic acid liquid or modified silicic acid liquid, the silicic acid or modified silicic acid is added. After precipitation, the solid content and liquid are separated and subjected to reaction.

ケイ酸の沈殿は、アンモニウム塩存在下でのpH調整、
界面活性剤存在下でのpH調整、非溶媒の利用など種々
の方法を用い得る。
Precipitation of silicic acid is achieved by adjusting the pH in the presence of ammonium salts,
Various methods can be used, such as adjusting the pH in the presence of a surfactant and using a non-solvent.

微細な窒化ケイ素粉末を得るのに、特に有効な沈殿法は
、界面活性剤存在下でのpH調整による方法、溶液状の
炭素前駆物質をケイ酸液と混合して、両者を共に沈殿さ
せる方法である。
Particularly effective precipitation methods for obtaining fine silicon nitride powder include adjusting the pH in the presence of a surfactant and mixing a carbon precursor in solution with a silicic acid solution and precipitating both together. It is.

また、生成した沈殿を含む固形分と液の分離は、濾過、
遠心分離など通常の固液分離の方法によればよい。分離
した後、乾燥もしくは乾燥せずして還元窒化反応に供す
る。
In addition, separation of the solid content including the generated precipitate and the liquid can be done by filtration,
A conventional solid-liquid separation method such as centrifugation may be used. After separation, it is subjected to a reductive nitriding reaction with or without drying.

還元窒化反応は窒素を含む非酸化性雰囲気中で、130
0〜1600°C1好ましくは1350〜1550℃に
加熱することによっておこなわれる。工、鼠、素の代わ
りにアンモニアを用いることもできる。さらにこれらの
ガスと水素もしくはヘリウム、アルゴン、ネオンなどの
不活性ガスからなる雰囲気を用いることができるが、窒
素単独が最も実用的である。温度は1600°C以下で
は反応が起こりにくく、1600°C以上は炭化ケイ素
がやや生成する。
The reductive nitriding reaction is carried out in a non-oxidizing atmosphere containing nitrogen at 130
This is carried out by heating to 0 to 1600°C, preferably 1350 to 1550°C. Ammonia can also be used in place of chlorine, methane, and chlorine. Furthermore, an atmosphere consisting of these gases and hydrogen or an inert gas such as helium, argon, or neon can be used, but nitrogen alone is most practical. At temperatures below 1,600°C, the reaction is difficult to occur, and at temperatures above 1,600°C, silicon carbide is slightly produced.

本発明の方法で生成する窒化ケイ素のα含量は少なくと
も80%以上、通常90%以上である。
The alpha content of silicon nitride produced by the method of the present invention is at least 80% or more, usually 90% or more.

また、生成する窒化ケイ素の粒径も小さく、通常1.5
μ以下、溶液状の炭素前駆物質を用い、ケイ酸と共に沈
殿させた場合は特に微細で0.5μ以下にも達する。
In addition, the particle size of the silicon nitride produced is small, usually 1.5
When a solution carbon precursor is used and precipitated together with silicic acid, the fineness is particularly fine, reaching 0.5 μ or less.

以下、実施例において本発明を説明゛する。なお、窒化
ケイ素中のα型結晶の割合はX線回折(Cu−にα、2
θ)図よりα型窒化ケイ素の(1・02)、(210)
回折線およびβ型窒化ケイ素の([N)、(210)回
折線の強度(I)を測定し、次式よシ求めた・ (102)  (210) Iα   十■α α型割合(%)=×100 実施例1 水ガラス3号希釈水溶液(濃度: 5i02分8%)6
0y−を陽イオン交換樹脂アンバーライト200C(H
生型) 6 Q7dを充填したカラム(径1歯×長さ9
0川、保冷外管付きガラスカラム)に流速4.5mA/
smで通して脱ナトリウムをおこない、ケイ酸水溶液(
濃度:5i02分5重量%)を得た。
The present invention will be explained below with reference to Examples. The proportion of α-type crystals in silicon nitride can be determined by X-ray diffraction (α, 2
θ) From the figure, α-type silicon nitride (1・02), (210)
The intensity (I) of the diffraction line and the ([N), (210) diffraction line of β-type silicon nitride was measured and calculated using the following formula. =×100 Example 1 Water Glass No. 3 diluted aqueous solution (concentration: 5i02min 8%) 6
0y- to cation exchange resin Amberlite 200C (H
Raw mold) 6 Column filled with Q7d (diameter 1 tooth x length 9
0 river, glass column with cold outer tube) at a flow rate of 4.5 mA/
Desodium was removed by passing it through sm, and a silicic acid aqueous solution (
Concentration: 5i02min 5% by weight) was obtained.

得られたケイ酸水溶液901にカーボンブラック2?お
よび塩化アンモニウム21を加え、ホモジナイザーで1
5分間処理した後、2%アンモニア水でpH7:2に調
整、濾過して沈殿物を得た。
Carbon black 2? is added to the obtained silicic acid aqueous solution 901? Add 21 parts of ammonium chloride and 1 part with a homogenizer.
After treating for 5 minutes, the pH was adjusted to 7:2 with 2% aqueous ammonia and filtered to obtain a precipitate.

これを窒素雰囲気中、1510°Cに4時間加熱して窒
化ケイ素を得た。炭化ケイ素、シリコンオキシナイトラ
イドなど副成物の生成はみられなかった。窒化ケイ素中
のα型結晶の割合は94%、粒径約1.2μであった。
This was heated to 1510° C. for 4 hours in a nitrogen atmosphere to obtain silicon nitride. No formation of by-products such as silicon carbide and silicon oxynitride was observed. The proportion of α-type crystals in silicon nitride was 94%, and the grain size was about 1.2 μm.

実施例2 ノニオン界面活性剤(日本油脂、MS−230)0.3
%溶液101をカーボ/ブラック1.81に加えて混合
し、さらに6%ケイ酸水溶液301を加えた。よく攪拌
しながら、これに2%エチレンジアミン水溶液を加えp
H7,1に中和し、直ちに濾過して、沈殿物を得た。
Example 2 Nonionic surfactant (NOF, MS-230) 0.3
% solution 101 was added to Carbo/Black 1.81 and mixed, and further 6% silicic acid aqueous solution 301 was added. While stirring well, add 2% ethylenediamine aqueous solution to this.
Neutralized to H7,1 and immediately filtered to obtain a precipitate.

これを実施例1と同様に反応させ、窒化ケイ素を得だ。This was reacted in the same manner as in Example 1 to obtain silicon nitride.

粒径は約0.8μ、α型結晶割合95%であり未反応の
S、io2の残存は認められなかった。
The particle size was approximately 0.8μ, the α-type crystal ratio was 95%, and no unreacted S or io2 remained.

実施例ろ 水ガラス3号希釈液(Si02分7.5%)を7%アン
モニア水で処理、水洗したイオン交換樹脂アンバーライ
)IRC50のカラムに通して、変性ケイ酸液を得た。
Example A filtered water glass No. 3 diluted solution (Si02: 7.5%) was treated with 7% aqueous ammonia and passed through a column of ion exchange resin Amberly (IRC50) washed with water to obtain a modified silicic acid solution.

この変性ケイ酸液およびアルギン酸アンモニウムを用い
て、アルギン酸アンモニウム3.5%−ケイ酸(5i0
2として1.5%)混合水溶液を作成した。
Using this modified silicic acid solution and ammonium alginate, ammonium alginate 3.5%-silicic acid (5i0
2 (1.5%) mixed aqueous solution was prepared.

これを、はげしく攪拌している2%HCQ−10%NH
ACQ水溶液に添加し、微粉状の凝固物を得、水洗して
から、1500°C、5hr+ N2流通下、反応させ
た。
This was mixed with 2% HCQ-10% NH while stirring vigorously.
It was added to an ACQ aqueous solution to obtain a finely powdered coagulum, which was washed with water and then reacted at 1500°C for 5 hours + N2 flow.

得られた窒化ケイ素は、粒径的0.3μ、α型結晶割合
96%であった。
The obtained silicon nitride had a grain size of 0.3 μm and an α type crystal ratio of 96%.

実施例4 実施例3で用いたアルギン酸アンモニウム/ケイ酸混合
水溶液を、沸とうしているイソプロピルアルコール中に
滴下して、沈殿を得た。これをN2流通下、1510℃
、4hr 反応させた。得られた窒化ケイ素は粒径的1
.1μ、α型結晶の割合92%であった。
Example 4 The ammonium alginate/silicic acid mixed aqueous solution used in Example 3 was dropped into boiling isopropyl alcohol to obtain a precipitate. This was heated at 1510℃ under N2 flow.
, 4 hours of reaction. The obtained silicon nitride has a particle size of 1
.. The proportion of 1 μ and α type crystals was 92%.

出願人旭ダウ株式会社 代理人 豊  1) 善  雄Applicant Asahi Dow Co., Ltd. Agent Yutaka 1) Yoshio

Claims (1)

【特許請求の範囲】[Claims] 1)シリカ質と炭素質とを含む原料を、窒素を含む非酸
化性雰囲気中で加熱して窒化ケイ素を得る方法において
、原料として炭素もしくは炭素前駆物質の粉末、または
炭素前駆物質の溶液をケイ酸液または変性ケイ酸液と接
触させついで、沈殿して得られる混合物を用いることを
特徴とする窒化ケイ素の製法。
1) A method for obtaining silicon nitride by heating a raw material containing siliceous material and carbonaceous material in a non-oxidizing atmosphere containing nitrogen, in which carbon or a powder of a carbon precursor, or a solution of a carbon precursor is used as a raw material. A method for producing silicon nitride, characterized by using a mixture obtained by contacting with an acid solution or a modified silicic acid solution and then precipitation.
JP2879682A 1982-02-26 1982-02-26 Manufacture of silicon nitride Pending JPS58151310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2879682A JPS58151310A (en) 1982-02-26 1982-02-26 Manufacture of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2879682A JPS58151310A (en) 1982-02-26 1982-02-26 Manufacture of silicon nitride

Publications (1)

Publication Number Publication Date
JPS58151310A true JPS58151310A (en) 1983-09-08

Family

ID=12258384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2879682A Pending JPS58151310A (en) 1982-02-26 1982-02-26 Manufacture of silicon nitride

Country Status (1)

Country Link
JP (1) JPS58151310A (en)

Similar Documents

Publication Publication Date Title
EP0052487B1 (en) Method for manufacture of silicon carbide
JP3507527B2 (en) Method for producing carbide and nitride
EP0047143B1 (en) Method for manufacture of silicon nitride
KR20120120265A (en) Composite inorganic particles and methods of making and using the same
US5064791A (en) Method of preparing ceramic composite powders and the powders obtained thereby
JPH1087324A (en) Production of acidic aqueous alumina sol
JP3674009B2 (en) Method for producing amorphous titanium oxide sol
JPS58151310A (en) Manufacture of silicon nitride
JPS58185424A (en) Preparation of silicon carbide
CN108439449B (en) Method for efficiently preparing micron-sized spindle-shaped calcium carbonate
JP2008050201A (en) Method for producing silicon carbide powder, and silicon carbide powder
US4606901A (en) Deagglomeration of porous siliceous crystalline materials
JP3362793B2 (en) Method for producing silica sol
JP4234800B2 (en) Method for producing silicon carbide powder
US4774068A (en) Method for production of mullite of high purity
JPH0142886B2 (en)
JP3119270B2 (en) Alumina sol and method for producing the same
JPH05170411A (en) Production of ultra-fine pulverized titanium nitride
JPH0457604B2 (en)
JP2607118B2 (en) Method for producing spherical organosilicic acid and spherical silica powder
JPS61168514A (en) Production of easily sinterable silicon carbide
JP3362792B2 (en) Method for producing silica sol
JPS58223698A (en) Silicon carbide fiber and its production
JP3224298B2 (en) Method for producing acicular alkali titanate
JPS62132710A (en) Production of aluminum nitride powder