JPS5815078B2 - Radioactive waste gas treatment equipment - Google Patents

Radioactive waste gas treatment equipment

Info

Publication number
JPS5815078B2
JPS5815078B2 JP53071490A JP7149078A JPS5815078B2 JP S5815078 B2 JPS5815078 B2 JP S5815078B2 JP 53071490 A JP53071490 A JP 53071490A JP 7149078 A JP7149078 A JP 7149078A JP S5815078 B2 JPS5815078 B2 JP S5815078B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
storage tank
waste gas
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53071490A
Other languages
Japanese (ja)
Other versions
JPS54163298A (en
Inventor
喜多薫
鬼沢秀夫
船越俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP53071490A priority Critical patent/JPS5815078B2/en
Publication of JPS54163298A publication Critical patent/JPS54163298A/en
Publication of JPS5815078B2 publication Critical patent/JPS5815078B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 原子力発電プラントに於ける放射性廃ガス処理装置は、
従来一定期間貯蔵タンクに同量ガスをとどめた後充分放
射能の減衰を待って放出する方式をとっていた。
[Detailed description of the invention] A radioactive waste gas treatment device in a nuclear power plant is
Conventionally, the same amount of gas was kept in a storage tank for a certain period of time and then released after the radioactivity had sufficiently decayed.

しかし最近では更に放出量を少なくすることを目的とし
て、化学体積制御系統の体積制御タンクへ放射性希ガス
(Kr 、Xe )を抽出するために水素ガスを連続パ
ージし、発生した放射性希ガスを含む水素量ガスから水
素のみを分離することにより、放射性希ガスを濃縮減容
し、貯蔵タンクに長期間貯蔵する方式を採用することが
多くなっている。
However, recently, with the aim of further reducing the amount released, hydrogen gas is continuously purged to extract radioactive rare gases (Kr, Xe) into the volume control tank of the chemical volume control system, and the generated radioactive rare gases are included. A method of concentrating and reducing the volume of the radioactive rare gas by separating only hydrogen from the hydrogen gas and storing it in a storage tank for a long period of time is increasingly being adopted.

この放射性希ガスを含む水素ガスの処理装置の1つとし
て、パラジウム合金膜が水素のみを選択的に透過させ他
の一切のガスを透過しない性質を利用した水素分離方式
の廃ガス処理システムが従来より知られている。
As one type of treatment equipment for hydrogen gas containing this radioactive rare gas, conventional waste gas treatment systems employ a hydrogen separation method that utilizes the property of a palladium alloy membrane to selectively permeate only hydrogen and prevent all other gases from permeating. better known.

この従来のシステムは第1図に示すようなもので、体積
制御タンク1よりパージされた放射性希ガスを微量に含
む水素量ガスは、貯蔵タンク2より再循環された水素ガ
スと共にパラジウム合金膜を使った水素分離装置3(以
下水素分離装置と云う)に圧送され、一部水素を分離さ
れる。
This conventional system is as shown in Figure 1, in which a hydrogen gas containing a trace amount of radioactive rare gas purged from a volume control tank 1 is passed through a palladium alloy membrane together with hydrogen gas recirculated from a storage tank 2. It is fed under pressure to the used hydrogen separator 3 (hereinafter referred to as hydrogen separator), and a portion of the hydrogen is separated.

この一部の水素を分離された後の放射性希ガスを微量に
含む水素量ガスは、水素分離装置3出口の圧力制御弁4
を経て貯蔵タンク2に送られ、一部分離された水素は、
パラジウム合金膜の水素の選択透過性により純水素とな
っているため、体積制御タンク1のパージ用水素として
再使用される。
After this part of the hydrogen has been separated, the hydrogen gas containing a small amount of radioactive rare gas is transferred to the pressure control valve 4 at the outlet of the hydrogen separation device 3.
The partially separated hydrogen is sent to storage tank 2 through
Since the hydrogen is pure hydrogen due to the hydrogen permselectivity of the palladium alloy membrane, it is reused as hydrogen for purging the volume control tank 1.

しかしながら前記システムの欠点は、水素分離装置3で
処理した水素量ガスを貯蔵タンク2に送った後、再び水
素分離装置3へ再循環させており、設備容量が本来処理
すべき体積制御タンク1からのパージガス量に比較して
大巾に大きくなっていたこと、貯蔵タンク2には運転開
始前に水素を充填しておかなければならないこと、及び
長期運転時には貯蔵タンク2内への放射性希ガスの蓄積
により、水素分離装置3で処理すべき水素量ガス中の水
素濃度が低下し、所定の分離水素量を長期にわたって必
要とする場合には非常に大きなパラジウム合金膜の膜面
積が必要であった。
However, the disadvantage of the above system is that the hydrogen amount gas processed by the hydrogen separator 3 is sent to the storage tank 2 and then recirculated to the hydrogen separator 3, and the installed capacity is reduced from the volume control tank 1 that should originally be processed. The amount of purge gas was significantly larger than the amount of purge gas in storage tank 2, and storage tank 2 must be filled with hydrogen before starting operation. Due to the accumulation, the hydrogen concentration in the hydrogen gas to be processed by the hydrogen separation device 3 decreases, and when a predetermined amount of separated hydrogen is required for a long period of time, a very large membrane area of the palladium alloy membrane is required. .

即ち、本来処理すべき体積制御タンク1よりのパージガ
ス量に比較して、かなり大きな容量の設備が必要であっ
た。
That is, equipment with a considerably larger capacity was required compared to the amount of purge gas from the volume control tank 1 to be treated.

又長期間にわたり所定の分離水素量を得るために、必要
以上にパラジウム合金膜面積を大きくする必要があった
Furthermore, in order to obtain a predetermined amount of separated hydrogen over a long period of time, it was necessary to increase the area of the palladium alloy membrane more than necessary.

なお、周知の如くパラジウムは貴金属であって高価であ
るのでこれを大量に使用することは経済的に極めて不利
である。
As is well known, palladium is a precious metal and is expensive, so it is economically disadvantageous to use a large amount of it.

更に貯蔵タンク2内には運転開始前に水素を充填してお
かなければならないため、この設備全体がかなり多量の
水素を保有することになり防爆対策上からも非常に不利
であった。
Furthermore, since the storage tank 2 must be filled with hydrogen before the start of operation, this entire facility contains a considerable amount of hydrogen, which is very disadvantageous from an explosion-proofing point of view.

なお、図中5は圧縮機、6は圧力制御弁、7は圧縮機で
ある。
In addition, in the figure, 5 is a compressor, 6 is a pressure control valve, and 7 is a compressor.

前記の如〈従来システムが、貯蔵タンク2から水素ガス
を再循環しなければならなかったのは、再循環しない場
合は水素分離装置3出口の水素を分離された後の廃ガス
(極めて濃縮されており、以下ブリードガスと云う)の
流量が極端に小さくなり、水素分離装置3出ロラインの
圧力制御弁4が非常に特殊な要求を満たさなければなら
ない〔具体的には必要 Cu (バルブ容量)値は極端
に小さく、この要求を満すものが市場には皆無であった
〕ことによる。
As mentioned above, the reason why the conventional system had to recirculate hydrogen gas from the storage tank 2 is that if it is not recirculated, the waste gas (extremely concentrated Therefore, the flow rate of the bleed gas (hereinafter referred to as bleed gas) becomes extremely small, and the pressure control valve 4 of the hydrogen separation device 3 output line has to meet very special requirements [specifically, the required Cu (valve capacity) The value was extremely low, and there was nothing on the market that met this requirement.

即ち、体積制御タンク1よりの廃ガス中に含まれる放射
性希ガスは、ごく微量であって大部分が水素である。
That is, the amount of radioactive rare gas contained in the waste gas from the volume control tank 1 is extremely small, and most of it is hydrogen.

従って水素分離装置3にて大部分の水素が分離された後
のブリードガス流量は極端に小さく、この流量下に於け
る圧力制御弁の必要Cu値は10−8程度となり、この
ように極端に小さなCu値を有する圧力制御弁は市場に
は皆無であった。
Therefore, the flow rate of the bleed gas after most of the hydrogen has been separated in the hydrogen separator 3 is extremely small, and the required Cu value of the pressure control valve under this flow rate is about 10-8. There were no pressure control valves with a small Cu value on the market.

又再循環することにより、貯蔵タンク2内には運転開始
前に純水素を充填しておかなければならないため、この
設備全体の保有水素量が極端に増加しており、特に貯蔵
タンク2についての防爆対策が非常に困難であったが、
ブリードガスが高濃縮された極小流量であればタンク内
水素を循環する必要がなくなるので、ヘリウム等の不活
性ガスを充填しておけば防爆の完壁化が図れる。
Furthermore, due to recirculation, the storage tank 2 must be filled with pure hydrogen before the start of operation, so the amount of hydrogen held in this facility as a whole has increased dramatically, especially for the storage tank 2. Although explosion-proof measures were extremely difficult,
If the bleed gas is highly concentrated and has a minimal flow rate, there is no need to circulate the hydrogen in the tank, so if it is filled with an inert gas such as helium, it can be completely explosion-proof.

本発明は前記従来の欠点を解消するために提案されたも
ので、水素をキャリアガスとし、微量の放射性希ガスを
含む被処理ガスが充填された容器に導出管を介すでパラ
ジウム合金膜を使用する水素分離装置を連絡し、同水素
分離装置の分離孔に第1切換弁を介して真空ポンプを連
絡すると共に、前記分離装置の出口に微少流量流体圧力
制御装置を介して貯蔵タンクを連絡し、かつ前記導出管
と貯蔵タンクとを第2切換弁を介して連絡することによ
り、従来システムのように貯蔵タンクより水素量ガスを
再循環することのない放射性廃ガス処理装置を提供せん
とするものである。
The present invention was proposed in order to eliminate the above-mentioned conventional drawbacks.The present invention uses hydrogen as a carrier gas, and deposits a palladium alloy film into a container filled with a gas to be treated containing a small amount of radioactive rare gas through an outlet pipe. A hydrogen separation device to be used is connected, a vacuum pump is connected to the separation hole of the hydrogen separation device via a first switching valve, and a storage tank is connected to the outlet of the separation device via a micro flow rate fluid pressure control device. Moreover, by communicating the outlet pipe and the storage tank through a second switching valve, it is possible to provide a radioactive waste gas processing device that does not require recirculation of hydrogen gas from the storage tank as in conventional systems. It is something to do.

以下本発明の実施例を図面について説明すると、第2図
に於いて体積制御タンク8に連続的に水素をパージする
ことにより、1次冷却材中の放射性希ガス(Kr、Xe
)等を水素ガス中に抽出し、これら極く微量の放射性希
ガス等を含む水素量ガスを圧縮機9により水素分離に必
要な所定の圧力に加圧後、水素分離装置10に圧送する
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2, by continuously purging hydrogen into the volume control tank 8, radioactive rare gases (Kr, Xe,
), etc. are extracted into hydrogen gas, and the hydrogen gas containing extremely small amounts of radioactive rare gas, etc. is pressurized by the compressor 9 to a predetermined pressure necessary for hydrogen separation, and then is sent under pressure to the hydrogen separation device 10.

; 水素分離装置10では、所定の圧力、温度の条件下
に於いて大部分の水素は、パラジウム合金膜が水素のみ
を選択的に透過させ他の一切のガスを透過しない性質に
より分離される。
; In the hydrogen separator 10, most hydrogen is separated under predetermined pressure and temperature conditions due to the property of the palladium alloy membrane that selectively permeates only hydrogen and does not permeate any other gases.

もともと体積制御タンク8中の一次冷却材より抽出され
る放射;性希ガス等は、ごく微量であるため、大部分の
水素を分離された残りの廃ガス(ブリードガス)は非常
に少量で、極めて濃縮された状態であり、極小流量下に
於いて所定の圧力を確保するために微少流量流体圧力制
御装置11が設けられている。
Since the amount of radiation and rare gas originally extracted from the primary coolant in the volume control tank 8 is very small, the remaining waste gas (bleed gas) after most of the hydrogen has been separated is very small. It is in an extremely concentrated state, and a micro flow rate fluid pressure control device 11 is provided to ensure a predetermined pressure under extremely low flow rates.

ブリードガスはこの極小流量下に於ける圧力制御装置1
1を経て、運転開始前にヘリウム等の不活性ガスを充填
された貯蔵タンク12に送られ、そのまま長期間貯蔵さ
れる。
The bleed gas is controlled by the pressure control device 1 under this extremely small flow rate.
1, and is sent to a storage tank 12 filled with an inert gas such as helium before the start of operation, where it is stored for a long period of time.

一方分離された大部分の水素(パラジウム合金膜の水素
の選択透過性により純水素である)は、圧縮機13によ
り所定の圧力に加圧後体積制御タンク8のパージ用水素
として再使用される。
On the other hand, most of the separated hydrogen (which is pure hydrogen due to the hydrogen permselectivity of the palladium alloy membrane) is reused as hydrogen for purging the volume control tank 8 after being pressurized to a predetermined pressure by the compressor 13. .

貯蔵タンク12は実現可能な範囲のタンク容量にて、プ
ラント寿命期間中に放出することなく長期間貯蔵ができ
、しかもブリードガス中にごく微量に含まれる未分離の
水素が蓄積されても、1〜2年間は爆発限界以下とする
ことができるようになっている。
The storage tank 12 can be stored for a long period of time without being released during the life of the plant, with a tank capacity within a practical range, and even if a very small amount of unseparated hydrogen is accumulated in the bleed gas, It is now possible to keep the temperature below the explosive limit for up to two years.

又貯蔵タンク12内の水素濃度が爆発限界に近くなった
場合には、体積制御タンク8よりのパージラインを閉止
し、貯蔵タンク12内の廃ガスを水素分離装置10に循
環し、水素の透過側を真空ポンプ14で真空引きするこ
とにより、水素を除去できる。
In addition, when the hydrogen concentration in the storage tank 12 approaches the explosive limit, the purge line from the volume control tank 8 is closed, and the waste gas in the storage tank 12 is circulated to the hydrogen separation device 10 to prevent hydrogen permeation. By evacuating the side with the vacuum pump 14, hydrogen can be removed.

この場合にはブリードガス流量が大きくなるので、圧力
制御弁15によりブリ−ドガス圧力を制御する。
In this case, since the flow rate of the bleed gas increases, the pressure of the bleed gas is controlled by the pressure control valve 15.

即ち1通常運転時のラインアップでは支切弁16,17
,18を開くと共に、支切弁19,20,21が閉ざさ
れる。
In other words, in the lineup during normal operation, there are branch valves 16 and 17.
, 18 are opened, and the branch valves 19, 20, 21 are closed.

しかし貯蔵タンク12内の水素除去運転時のラインアッ
プでは、逆に支切弁16,17,18を閉とし、支切弁
19,20.21を開とする。
However, in the lineup during hydrogen removal operation in the storage tank 12, on the contrary, the branch valves 16, 17, and 18 are closed, and the branch valves 19, 20, and 21 are opened.

以上詳細に説明した如く本発明は、水素をキャリアガス
とし、微量の放射性希ガスを含む被処理ガスが充填され
た容器に導出管を介してパラジウム合金膜を使用する水
素分離装置を連絡するようにしたものであり、前記パラ
ジウム合金膜の分離効率(水素の透過効率)は、膜の両
側の水素分圧差に依存し、分離孔側は真空ポンプで引く
としても、希ガス含有側の圧力制御がキーポイントとな
る。
As explained in detail above, the present invention uses hydrogen as a carrier gas and connects a hydrogen separation device using a palladium alloy membrane to a container filled with a gas to be treated containing a small amount of radioactive rare gas through an outlet pipe. The separation efficiency (hydrogen permeation efficiency) of the palladium alloy membrane depends on the hydrogen partial pressure difference on both sides of the membrane. is the key point.

すなわち、放射性希ガスは極めて微量であるから、圧力
制御が極めて困難となる。
That is, since the amount of radioactive rare gas is extremely small, pressure control becomes extremely difficult.

本発明では、前記圧力制御装置により、水素がなくなっ
て濃縮された形の微量希ガスを滞留させながら圧力制御
を行ない、殆ど水素ガスを含まない希ガスが得られる。
In the present invention, the pressure control device performs pressure control while retaining a trace amount of rare gas in a concentrated form without hydrogen, thereby obtaining rare gas containing almost no hydrogen gas.

また容器と水素分離装置とを連絡する管路に第2切換弁
を介在させた構成となっていて、従来の如く貯蔵タンク
から水素ガスを再循環しないため、放射性希ガスの貯蔵
タンクへの蓄積による水素分離装置入口の水素濃度変化
が無いので、長期間運転に対し一定した水素分離性能が
得られる。
In addition, a second switching valve is interposed in the pipe connecting the container and the hydrogen separation device, and hydrogen gas is not recirculated from the storage tank as in the past, so radioactive rare gas is not accumulated in the storage tank. Since there is no change in the hydrogen concentration at the inlet of the hydrogen separator, constant hydrogen separation performance can be obtained over long periods of operation.

又水素分離装置の分離孔に第1切換弁を介して真空ポン
プを連絡したので、貯蔵タンク内水素濃度が爆発限界に
近くなってもこの真空ポンプを使えば、貯蔵タンク内水
素を水素分離装置により除去できるため爆発の危険を容
易に防止できる。
In addition, a vacuum pump is connected to the separation hole of the hydrogen separator through the first switching valve, so even if the hydrogen concentration in the storage tank approaches the explosive limit, if you use this vacuum pump, the hydrogen in the storage tank can be transferred to the hydrogen separator. The danger of explosion can be easily prevented as it can be removed by

更に貯蔵タンクに運転開始前にヘリウム等の不活性ガス
を充填しておくことにより、ブリードガス中に含まれる
ごく微量の未分離水素の蓄積があっても、長期間にわた
って爆発限界以下の水素濃度に押えることができる。
Furthermore, by filling the storage tank with an inert gas such as helium before starting operation, even if a very small amount of unseparated hydrogen in the bleed gas accumulates, the hydrogen concentration remains below the explosive limit for a long period of time. It can be held down to

従って本発明によると一次冷却材中の放射性希ガス濃度
が低下し、最終;的にプラントより放出される放射性希
ガス量が大巾に低減でき、かつ従来よりも小さなパラジ
ウム合金膜面積で高濃縮減容を達成できると共に、従来
よりも経済的な設備容量にて廃ガスの処理ができる。
Therefore, according to the present invention, the concentration of radioactive noble gas in the primary coolant is reduced, and the amount of radioactive noble gas ultimately released from the plant can be greatly reduced, and it is highly concentrated with a smaller palladium alloy membrane area than before. Not only can volume reduction be achieved, but waste gas can also be treated with more economical equipment capacity than before.

なお、貯蔵タンク容量を実現可能な範囲で適当に選べば
、プラント寿命中放出することなく放射性希ガスの長期
貯蔵が可能である。
Note that if the capacity of the storage tank is appropriately selected within a feasible range, it is possible to store the radioactive rare gas for a long period of time without releasing it during the life of the plant.

本発明は原子力発電プラントの放射性廃ガス処理設備と
して有効に応用できる。
The present invention can be effectively applied to radioactive waste gas treatment equipment for nuclear power plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放射性廃ガス処理装置の1例を示すシス
テム図、第2図は本発明の実施例を示す放射性廃ガス処
理装置のシステム図である。 図の主要部分の説明、8・・・・・・体積制御タンク(
容器)、10・・・・・・水素分離装置、11・・・・
・・微少流量流体圧力制御装置、12・・・・・・貯蔵
タンク、14・・・・・・真空ポンプ、19・・・・・
・支切弁(第2切換弁)、21・・・・・・支切弁(第
1切換弁)。
FIG. 1 is a system diagram showing an example of a conventional radioactive waste gas processing apparatus, and FIG. 2 is a system diagram of a radioactive waste gas processing apparatus showing an embodiment of the present invention. Explanation of the main parts of the figure, 8...Volume control tank (
container), 10...hydrogen separation device, 11...
...Minor flow rate fluid pressure control device, 12...Storage tank, 14...Vacuum pump, 19...
- Branch valve (second switching valve), 21... Branch valve (first switching valve).

Claims (1)

【特許請求の範囲】[Claims] 1 水素をキャリアガスとし、微量の放射性希ガスを含
む被処理ガスが充填された容器に導出管を介してパラジ
ウム合金膜を使用する水素分離装置を連絡し、同水素分
離装置の分離孔に第1切換弁を介して真空ポンプを連絡
すると共に、前記分離装置の出口に微少流量流体圧力制
御装置を介して貯蔵タンクを連絡し、かつ前記導出管と
貯蔵タンクとを第2切換弁を介して連絡したことを特徴
とする放射性廃ガス処理装置。
1. A hydrogen separation device using a palladium alloy membrane is connected to a container filled with a gas to be treated containing a small amount of radioactive noble gas using hydrogen as a carrier gas through an outlet pipe, and a second A vacuum pump is connected through a first switching valve, and a storage tank is connected to the outlet of the separation device through a minute flow rate fluid pressure control device, and the outlet pipe and the storage tank are connected through a second switching valve. Radioactive waste gas treatment equipment characterized by contact.
JP53071490A 1978-06-15 1978-06-15 Radioactive waste gas treatment equipment Expired JPS5815078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53071490A JPS5815078B2 (en) 1978-06-15 1978-06-15 Radioactive waste gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53071490A JPS5815078B2 (en) 1978-06-15 1978-06-15 Radioactive waste gas treatment equipment

Publications (2)

Publication Number Publication Date
JPS54163298A JPS54163298A (en) 1979-12-25
JPS5815078B2 true JPS5815078B2 (en) 1983-03-23

Family

ID=13462144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53071490A Expired JPS5815078B2 (en) 1978-06-15 1978-06-15 Radioactive waste gas treatment equipment

Country Status (1)

Country Link
JP (1) JPS5815078B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327799A (en) * 1976-08-25 1978-03-15 Hitachi Ltd Treating system for gas waste in light water type reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327799A (en) * 1976-08-25 1978-03-15 Hitachi Ltd Treating system for gas waste in light water type reactor

Also Published As

Publication number Publication date
JPS54163298A (en) 1979-12-25

Similar Documents

Publication Publication Date Title
TW517261B (en) Gas recovery system and gas recovery method
US4430293A (en) Containment hydrogen removal system for a nuclear power plant
JP4355834B2 (en) Method and apparatus for separating or removing gas components
US4976938A (en) Hydrogen isotope separation utilizing bulk getters
CN109036610B (en) Device and method for removing polymorphic tritium in tail gas of molten salt reactor
US3859807A (en) Cold trap system for recovering condensable gas from a vessel to be evacuated
JPS5815078B2 (en) Radioactive waste gas treatment equipment
US5041147A (en) Hydrogen isotope separation utilizing bulk getters
JP2832372B2 (en) Exhaust gas treatment method for organic solvent storage container
JPH0716575B2 (en) Used xenon gas recovery and purification equipment
JP2960992B2 (en) Hydrogen isotope separation method
JP2000241590A (en) Method and device for concentrating rare gas
JPH0746160B2 (en) Tritium removal equipment
JPH0566167B2 (en)
CN115325439B (en) Hydrogen isotope gas drawing and storing device and method for treating gas
JPS6223429A (en) Apparatus for recovering, storing and supplying hydrogen isotope
JP2948214B1 (en) Welding gas recovery device
JPH0550716B2 (en)
JP4441636B2 (en) Method and apparatus for recovering radioactive metal
JPH0118001B2 (en)
JPS6324479Y2 (en)
JPH0377626A (en) Device for refining hydrogen isotope
JPS56147618A (en) Recording method for mixture isotope of hydrogen
FR2581893A1 (en) Process for separating and enriching krypton and xenon from the gaseous hydrogen effluent from a nuclear reactor
JPS6057492B2 (en) liquid metal refining equipment