JPS58150524A - Separation method of di-halogenated benzene isomer - Google Patents

Separation method of di-halogenated benzene isomer

Info

Publication number
JPS58150524A
JPS58150524A JP3445782A JP3445782A JPS58150524A JP S58150524 A JPS58150524 A JP S58150524A JP 3445782 A JP3445782 A JP 3445782A JP 3445782 A JP3445782 A JP 3445782A JP S58150524 A JPS58150524 A JP S58150524A
Authority
JP
Japan
Prior art keywords
desorbent
adsorbent
adsorption
isomers
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3445782A
Other languages
Japanese (ja)
Other versions
JPH0112732B2 (en
Inventor
Kinoo Miwa
輝之男 三輪
Yukiko Nagaoka
長岡 由紀子
Takehisa Inoue
井上 武久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3445782A priority Critical patent/JPS58150524A/en
Publication of JPS58150524A publication Critical patent/JPS58150524A/en
Publication of JPH0112732B2 publication Critical patent/JPH0112732B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To improve the performance, selectivity and economic efficiency in adsorbing and separating a mixture of isomers of dihalogenated benzene with a zeolite adsorbent, by using an adsorbent containing 3,4-dihalogenated toluene, etc. CONSTITUTION:In adsorbing and separating a mixture of isomers of dihalogenated benzene with a zeolite adsorbent, a desorbing agent containing 3,4-di- halogenated toluene and/or 4-halogenated o-xylene as an essential component is used as the desorbing agents. The desorbing agent may be used alone or as a mixture and further with a diluent, e.g. paraffin or cycloparaffin hydrocarbon, etc. The method is particularly effective for repeating the adsorptive and desorptive operations and separating and recovering the isomers continuously from any one of them without damaging the selective adsorptivity for the strongly adsorptive component in the isomers in the adsorbent by the presence of the above-mentioned desorbing agents.

Description

【発明の詳細な説明】 本発明はジ−ハロゲン化ベンゼン異性体の吸着分離方法
に関するもので1)、詳しくは、ゼオライト系吸着剤を
用いてシーツ・ロゲン化べ″ンゼン異性体混合物からい
づれかのジ−ハロゲン化ベンゼン異性体を吸着分離する
方法における脱着剤の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adsorption and separation of di-halogenated benzene isomers1), and more specifically, the present invention relates to a method for adsorption and separation of di-halogenated benzene isomers1). The present invention relates to an improvement in a desorbent in a method for adsorbing and separating di-halogenated benzene isomers.

ゼオライト系吸着剤によシジーノ・ロゲン化ベンゼン異
性体が吸着分離されることは特公昭37−5155号に
よシ公知であシ、その際の脱着剤としてはクロルベンゼ
ンが知られている。
It is known from Japanese Patent Publication No. 37-5155 that sigino-logenated benzene isomers are adsorbed and separated by a zeolite adsorbent, and chlorobenzene is known as a desorbent in this case.

しかし、従来知られた脱着剤は十分な性能を示し得ない
However, conventionally known desorbents do not exhibit sufficient performance.

本発明の目的は、ゼオライト系吸着剤を用いてジ−ハロ
ゲン化ベンゼン異性体を吸着分離する際の脱着剤を提供
することにあり、特に吸着操作と脱着操作とを繰り返し
、連続的にジーハロゲン化ベン電ン異性体混合物からい
づれかのジ−ハロゲン化ベンゼン異性体を分離回収する
際に著効を示す新規脱着剤を提供することにある。
An object of the present invention is to provide a desorbent for adsorbing and separating di-halogenated benzene isomers using a zeolite-based adsorbent. The object of the present invention is to provide a novel desorbent that is highly effective in separating and recovering any di-halogenated benzene isomer from a benzene isomer mixture.

本発明におけるジ−ハロゲン化ベンゼン異性体混合物と
は、ベンゼンのジ−ハロゲン核置換体であ’)、o 1
m Ip−ジ−ハロゲン化ベンゼンから選ばれた少なく
とも2糧の異性体を含む混合物である。
The di-halogenated benzene isomer mixture in the present invention is a di-halogen nucleus-substituted product of benzene), o 1
It is a mixture containing at least two isomers selected from mIp-di-halogenated benzene.

上記したジ−ハロゲン化ベンゼン異性体の連続的吸着分
離は基本的操作として次に示す吸着操作と脱着操作を組
合せて構成される。(1)吸着操作においては、ジ−ハ
ロゲン化ベンゼン異性体混合物を含む原料供給物は、(
2)で述べる脱着操作を終えた吸着剤と接触させられ、
該原料供給物中の強吸着成分が吸着剤中に残存している
脱着剤の一部を追い出しつつ選択的に吸着される。この
時同時に原料供給物中の吸着されにくい成分は脱着剤と
共にラフィネート流れとして回収される。(2)脱着操
作においては、選択的に吸着された成分が脱着剤によっ
て吸着剤から追い出されエクストラクト流れとして回収
される。
The continuous adsorption separation of the di-halogenated benzene isomers described above is basically constituted by combining the following adsorption operation and desorption operation. (1) In an adsorption operation, a feedstock containing a mixture of di-halogenated benzene isomers is (
It is brought into contact with the adsorbent that has completed the desorption operation described in 2),
The strongly adsorbed components in the raw material feed are selectively adsorbed while displacing a portion of the desorbent remaining in the adsorbent. At the same time, the less adsorbable components of the raw material feed are recovered together with the desorbent as a raffinate stream. (2) In a desorption operation, selectively adsorbed components are expelled from the adsorbent by a desorbent and recovered as an extract stream.

さらに、強吸着成分の高純化のためには吸着も 操作を脱着操作の間にエクストラクト流れの一部を吸着
剤に接触させる。
Furthermore, for high purification of strongly adsorbed components, a portion of the extract stream is brought into contact with an adsorbent during the adsorption and desorption operations.

上記吸着分離方法に使用される脱着剤の選定に際しては
次の点が重要である。
The following points are important when selecting a desorbent to be used in the above adsorption separation method.

即ち、(])および(2)に示した吸着操作および脱着
操作を循環して連続的に行なわせしめるためには、脱着
剤は脱着操作で吸着剤上に吸着された強吸着成分を追い
出すことができ、かつその結果吸着剤上に残存した脱着
剤は、吸着操作において原料供給物中の強吸着成分によ
って追い出され、吸着剤が循環して連続的に使用できる
様にするものでなければならない。すなわち、脱着操作
では強吸着成分よシも強く吸着する脱着剤が好ましく、
吸着操作では強吸着成分よシも弱く吸着する脱着剤がよ
いことになる。かかる相反する票求を同時に満足させ名
ためには、吸着剤の強吸着成分に対する吸着力と脱着剤
に対する吸着力が似かよっている脱着剤の選定が必要で
ある。
That is, in order to cycle and continuously perform the adsorption operation and desorption operation shown in (]) and (2), the desorbent must be able to expel the strongly adsorbed components adsorbed onto the adsorbent during the desorption operation. The desorbent produced and thus remaining on the adsorbent must be driven out by the strongly adsorbed components in the feedstock in the adsorption operation, allowing the adsorbent to be recycled and used continuously. In other words, in the desorption operation, it is preferable to use a desorbent that strongly adsorbs both strongly adsorbed components.
In adsorption operations, it is better to use a desorbent that weakly adsorbs both strongly adsorbed components. In order to satisfy these conflicting demands at the same time, it is necessary to select a desorbent whose adsorption power for strongly adsorbed components is similar to that of the adsorbent for the desorbent.

また、かかる吸着分離方法では(2)の脱着操作におい
て強吸着成分を追い出すために脱着剤によって洗われた
吸着剤は脱着剤を含んだまま(1)の吸着操作に移され
、原料供給物中の強吸着成分の選択的吸着が行なわれる
ことになるから吸着操作では強吸着成分と吸着剤中に残
存する脱着剤との競争吸着が起る。
In addition, in this adsorption separation method, the adsorbent washed with a desorbent in order to drive out the strongly adsorbed components in the desorption operation (2) is transferred to the adsorption operation (1) while containing the desorbent, and the adsorbent is transferred to the adsorption operation (1) while containing the desorbent. Since selective adsorption of the strongly adsorbed components is carried out, competitive adsorption between the strongly adsorbed components and the desorbent remaining in the adsorbent occurs in the adsorption operation.

それ故に、゛脱着剤の選定に際して要求されるもう1つ
の重要な因子は、ジ−ハロゲン化ベンゼンの選択的吸着
が脱着剤の存在下で行なわれることになるので、吸着剤
の強吸着成分以外の異性体と比べたときの強吸着成分に
対する選択的吸着能力が脱着剤の存在によって損なわれ
てはならないことである。
Therefore, another important factor required when selecting a desorbent is that since the selective adsorption of di-halogenated benzene is carried out in the presence of the desorbent, other than the strongly adsorbed components of the adsorbent The selective adsorption capacity for strongly adsorbed components as compared to the isomers of the desorbent must not be impaired by the presence of the desorbent.

吸着剤の強吸着成分以外の異性体および脱着剤と比べた
ときの強吸着成分に対する選択的吸着能力は(H式で示
される強吸着成分の吸着選択率 α(A/ItたけD) で表示される。
The selective adsorption ability of the adsorbent for strongly adsorbed components when compared with isomers other than the strongly adsorbed components and the desorbent is expressed as the adsorption selectivity α (A/Ittake D) of the strongly adsorbed components expressed by the formula H. be done.

α(A/BまたはD) (非吸着相中のAの重量分率/非吸着相中のBまたはD
成分の重量分率)・・・・・・・・・ゐ ここでAは強吸着成分、Bは強吸着成分以外の他の異性
体、Dは脱着剤であり、吸着相と非吸着相とは平衡状態
にある。
α (A/B or D) (weight fraction of A in non-adsorbed phase/B or D in non-adsorbed phase
(Weight fraction of components)...Here, A is a strongly adsorbed component, B is an isomer other than the strongly adsorbed component, and D is a desorbent, which is divided into an adsorbed phase and a non-adsorbed phase. is in equilibrium.

(シ式において、α(A/13 ’)の値が1に比べて
大きければ大きい程強吸着成分が他の異性体に比べ、よ
シ一層選択的に吸着されることを示す。
(In the formula, the larger the value of α(A/13') is compared to 1, the more strongly adsorbed components are adsorbed more selectively than other isomers.

1に近いα(A/B )は、強吸着成分の吸着選択率が
小さいことを意味し、高純度の強吸着成分を回収しよう
とすればラフィネート流れ中の強吸着成分の濃度が増加
し、強吸着成分の回収率が低下する。強吸着成分の回収
率を向上させようとすれば、エクストラクト流れ中に強
吸着成分以外の異性体が増加し、回収された強吸着成分
の純度低下は避けられない。
α(A/B) close to 1 means that the adsorption selectivity of the strongly adsorbed component is small, and if a highly purified strongly adsorbed component is to be recovered, the concentration of the strongly adsorbed component in the raffinate stream will increase, The recovery rate of strongly adsorbed components decreases. If an attempt is made to improve the recovery rate of the strongly adsorbed components, isomers other than the strongly adsorbed components will increase in the extract stream, and a decrease in the purity of the recovered strongly adsorbed components will be unavoidable.

轟)式におけるα(A/D ’)は脱着剤と比べた強吸
着成分の吸着選択率を示すが、脱着剤と強吸着成分がほ
ぼ等しく吸着されるためには、α(A/D)は1近傍の
値、特にCL5〜2.0の範囲に入るのが好ましい。α
(A/D)が1より非常に大きいと脱着操作で選択的に
吸着した強吸着成分を吸着剤から追い出すのに多量の脱
着剤を必要とするか、あるいは強吸着成分を十分に追い
出すことができなくなり、強吸着成分の回収率を低下さ
せ不経済とな゛る。逆にα(A//D )が1よp余シ
小さすぎると吸着操作において原料供給物中の強吸着成
分によって脱着剤が追い出されにくくなり、その結果、
強吸着成分の吸着が妨害され強吸着成分の吸着容量の実
質的低下を来しラフィネート流れ中の強吸着成分濃度が
増加し、強吸着成分の回収率が低下し、これも不経済と
なる。
α(A/D') in the equation (Todoroki) indicates the adsorption selectivity of the strongly adsorbed component compared to the desorbent, but in order for the desorbent and the strongly adsorbed component to be adsorbed almost equally, α(A/D') is preferably in the vicinity of 1, particularly in the range of CL5 to 2.0. α
If (A/D) is much larger than 1, a large amount of desorbent is required to expel the strongly adsorbed components selectively adsorbed in the desorption operation from the adsorbent, or the strongly adsorbed components cannot be sufficiently expelled. This reduces the recovery rate of strongly adsorbed components and becomes uneconomical. On the other hand, if α(A//D) is too small by more than 1p, it will be difficult for the desorbent to be expelled by the strongly adsorbed components in the raw material feed during the adsorption operation, and as a result,
The adsorption of the strongly adsorbed components is hindered, resulting in a substantial decrease in the adsorption capacity of the strongly adsorbed components, the concentration of the strongly adsorbed components in the raffinate stream increases, and the recovery rate of the strongly adsorbed components decreases, which is also uneconomical.

従って、ジ−ハロゲン化ベンゼン異性体混合物を吸着分
離する方法に使用される脱着剤の選定に際し、脱着剤の
存在下で測定されたα(A/B)がよシ高く、かつα(
A/D )が1に近い様な脱着剤を選ぶことが、本発明
のような吸着分離法の経済性を高める上で極めて重要な
要件である。
Therefore, when selecting a desorbent to be used in a method for adsorptive separation of di-halogenated benzene isomer mixtures, it is important to consider that α(A/B) measured in the presence of the desorbent is higher and α(
Selecting a desorbent with A/D ) close to 1 is an extremely important requirement for improving the economic efficiency of the adsorption separation method of the present invention.

以上の様な観点から、本発明者等はよシすぐれた脱着剤
を見出すべく広範囲な研究を行なった結果、従来のもの
に比し、6,4−ジハロゲン化トルエン及び/又は4−
ノ・ロゲン化オルソキシレンを含む脱着剤が非常に高い
性能を示すことを見出し本発明に到達した。
From the above points of view, the present inventors conducted extensive research to find a better desorbent, and as a result, compared to conventional ones, 6,4-dihalogenated toluene and/or 4-
The present invention was achieved by discovering that a desorbent containing northo-logenated ortho-xylene exhibits extremely high performance.

すなわち、本発明は、ジー・・ロゲン化ベンゼン異性体
をゼオライト系吸着剤を用いて吸着分離する方法におい
て、脱着剤として6.4−ジノ・ロゲン化トルエン及び
/又は4−ノ・ロゲン化オルンキシレンを必須成分とし
て含む脱着剤を用いることからなるシーツ10ゲン化ベ
ンゼン異性体の分離方法を提供するものである。
That is, the present invention provides a method for adsorbing and separating di-logenated benzene isomers using a zeolite adsorbent, in which 6,4-dino-logenated toluene and/or 4-logenated orne are used as the desorbent. The present invention provides a method for separating benzene isomers using a desorbent containing xylene as an essential component.

脱着剤としての6,4−ジノ・ロゲン化トルエン及び/
又は4−ノ・ロゲン化オルンキシレンの有用性は後述す
る実施例から゛も明らかな様にノ・ロゲン化トルエン異
性体に対し高い選択吸着率(α(A/B))を保持し、
なおかつ脱着剤に対する強吸着成分の選択率α(A/D
 )は1に近い。
6,4-dino-logenated toluene and/or as desorbent
Alternatively, the usefulness of 4-no-logenated orun-xylene is that it maintains a high selective adsorption rate (α(A/B)) for the no-logenated toluene isomer, as is clear from the examples described below.
In addition, the selectivity α (A/D
) is close to 1.

従って、本発明の脱着剤を用いることによシ、よp経済
的なシーツ・ロゲン化ベンゼン異性体の分離が可能とな
る。
Therefore, by using the desorbent of the present invention, it becomes possible to separate the sheet rogogenated benzene isomers more economically.

本発明方法における脱着剤は、これらを単独で用いても
、混合して用いてもよく、またパラフィン、シクロパラ
フィン系炭化水素等の希釈剤と共に用いてもよい。又分
離対象となるジ−ハロゲン化ベンゼンと同種のノ・ロゲ
ンから成る上記脱着剤を使用するのが好ましい。
The desorbent used in the method of the present invention may be used alone or in combination, or may be used together with a diluent such as paraffin or cycloparaffinic hydrocarbon. Further, it is preferable to use the above-mentioned desorbent comprising the same type of dihalogenated benzene to be separated.

本発明方法で使用されるゼオライト系吸着剤は特定のも
のに限定されないが、主に第1A族、第1A族の金属及
びプロトンから選ばれた1種または2種以上のカチオン
を含むフォージャサイト型ゼオライト等は好ましい吸着
剤である。
The zeolite-based adsorbent used in the method of the present invention is not limited to a specific one, but mainly faujasite containing one or more cations selected from Group 1A, Group 1A metals, and protons. Type zeolites and the like are preferred adsorbents.

特にカチオンがナトリウム及び/あるいはカリウムであ
Ay型ゼオライトは好ましい。勿論これに他のカチオン
成分、例えば銀、銅、ストロンチウム、バリウム、ジル
コニウム、イツトリウム、プロトン等の他のカチオンの
少なくとも1種を付加的に含有したものも好ましく用い
ちれる。
In particular, Ay-type zeolites whose cations are sodium and/or potassium are preferred. Of course, it is also preferably used that additionally contains at least one other cation component such as silver, copper, strontium, barium, zirconium, yttrium, proton, and the like.

本発明の吸着分離法の操作条件としては、温度は0〜5
50℃、特に好ましくは室温から250℃が、また圧力
は大気圧から40Kf/cr/L、特に好ましくはほぼ
大気圧から30Ky/cr/lが選択される。
The operating conditions for the adsorption separation method of the present invention include a temperature of 0 to 5.
50° C., particularly preferably from room temperature to 250° C., and the pressure is selected from atmospheric pressure to 40 Kf/cr/L, particularly preferably from approximately atmospheric pressure to 30 Ky/cr/l.

本発明の吸着分離法は気相でも液相でも実施され得るが
、操作温度を低くし、原料供給物あるいは脱着剤の好ま
しくない副反応を減じるためには液相での実施がより好
ましい。
Although the adsorption separation process of the present invention can be carried out in either the gas phase or the liquid phase, it is more preferred to carry out the process in the liquid phase in order to lower operating temperatures and reduce undesirable side reactions of the feedstock or desorbent.

次に本発明方法を実施例をあげて説明する。Next, the method of the present invention will be explained by giving examples.

実施例1゜ 吸着剤はナトリウム型ゼオライトY1及びナトリウム型
ゼオライトYを硝酸カリウムを用いてナトリウムイオン
の90%以上をカリウムでイオン交換し、120℃で5
時間乾燥した後、500℃で1時間焼成して調整したに
−Y型吸着剤を使1した・       7゜ 内容積5 weのオートクレーX内に該吸着剤1.8f
及びジクロルベンゼン(DCB)異性体混合物、3,4
−ジクロルトルエン又は4−クロルオルソキシレン及び
n−ノナンからなる液相混合物2.5fを充填し、13
0℃で約1時間ときどき攪拌しながら放置した。
Example 1 The adsorbent was prepared by ion-exchanging sodium-type zeolite Y1 and sodium-type zeolite Y with potassium nitrate so that more than 90% of the sodium ions were ion-exchanged with potassium at 120°C.
After drying for 1 hour, 1.8 f of the adsorbent was prepared by baking at 500°C for 1 hour and placed in an autoclay
and dichlorobenzene (DCB) isomer mixture, 3,4
- Filled with 2.5f of a liquid phase mixture consisting of dichlorotoluene or 4-chloroorthoxylene and n-nonane,
The mixture was left at 0° C. for about 1 hour with occasional stirring.

ここで仕込まれた液相混合物の組成は、n −ノナン:
 o−DCB : m−DCB : p−DCB :3
.4−ジクロルトルエン51Jt4−クロルオルソキシ
レン=1:2:2:1:s(重量比)であシ、n−ノナ
ンはガスクロマトグラフィ分析での基準物質として添加
したもので、上記条件下でi実質的に吸着剤に対しては
不活性、な物質である。
The composition of the liquid phase mixture charged here is n-nonane:
o-DCB: m-DCB: p-DCB: 3
.. 4-dichlorotoluene 51Jt4-chloroorthoxylene = 1:2:2:1:s (weight ratio), n-nonane was added as a reference material in gas chromatography analysis, and under the above conditions It is a substance that is virtually inert to adsorbents.

吸着剤と接触させた後の液相混合物の組成をガスクロマ
トグラフィによシ分析し、液相混合物の組成変化量から
吸着選択率を算出した。結果を表1に示す。
The composition of the liquid phase mixture after contact with the adsorbent was analyzed by gas chromatography, and the adsorption selectivity was calculated from the amount of change in the composition of the liquid phase mixture. The results are shown in Table 1.

表1 実施例1.のに−Y型吸着剤へのジクロルベンゼン異性
体の被吸着力は0体〉9体〉m体の順である。従って、
o 、 m 、 p体温合物から0体及び/あるいはm
体の吸着分離回収が可能である。
Table 1 Example 1. The adsorption power of the dichlorobenzene isomer to the -Y type adsorbent is in the following order: 0 body>9 body>m body. Therefore,
0 body and/or m from the o, m, p temperature mixture
It is possible to adsorb and separate and recover the body.

さらに0体と9体の混合物、9体とm体の混合物の吸着
分離が可能である。上記いずれの場合においても、本発
明の脱着剤である3、4−ジクロルトルエン及び4−ク
ロルオルンキシレンはαI)/D及びα。/Dが1に近
くすぐれた脱着剤であることがわかる。
Furthermore, adsorption separation of a mixture of 0 and 9 bodies and a mixture of 9 and m bodies is possible. In any of the above cases, the desorbents of the present invention, 3,4-dichlorotoluene and 4-chloroornexylene, have αI)/D and α. /D is close to 1, indicating that it is an excellent desorbent.

−jり、Na−Y型吸着剤へのジクロルベンゼン異性体
の被吸着力は、9体〉0体〉m体の順である。従って、
O+ m + p体温合物から9体を分離回収するのに
有効である。さらに9体とm体の混合物の分離にも使用
できる。この場合も、本発明の脱着剤のαp/Dは1.
0に近くすぐれた脱着剤であることがわかる。
-j, the adsorption power of the dichlorobenzene isomer to the Na-Y type adsorbent is in the following order: 9-isomer>0-isomer>m-isomer. Therefore,
It is effective in separating and recovering 9 bodies from the O + m + p body mixture. Furthermore, it can be used to separate mixtures of 9-isomer and m-isomer. Also in this case, αp/D of the desorbent of the present invention is 1.
It can be seen that it is an excellent desorbent with a value close to 0.

比較例1゜ 実施例1.のに−Y型吸着剤を用い脱着剤としてトルエ
ン、クロルベンゼン及び2,4−ジクロルトルエンを使
用した時の吸着選択率を表2に示す。
Comparative example 1゜Example 1. Table 2 shows the adsorption selectivity when toluene, chlorobenzene, and 2,4-dichlorotoluene were used as desorbents using the -Y type adsorbent.

表2 比較例1.のトルエン及びクロルベンゼン脱着剤はαp
/mを1に近づけ9体とm体の分離を困難にしているし
、またαp/D値も本発明の脱着剤に比し悪い。
Table 2 Comparative example 1. The toluene and chlorobenzene desorbent is αp
/m approaches 1, making it difficult to separate the 9-isomer and the m-isomer, and the αp/D value is also worse than that of the desorbent of the present invention.

実施例2゜ 実施例1.で調整したに−Y型ゼオライト中のにカチオ
ンの30モル優に相当する銀イオンを含む硝酸銀水溶液
でに−Y型ゼオライトを60℃で処理しAf−に−Y型
吸着剤を調整しへ脱着剤として、3,4−ジクロルトル
エンを用い該吸着剤の吸着選択率を実施例1.と同様の
方法で測定した。
Example 2゜Example 1. The -Y type zeolite was treated at 60°C with a silver nitrate aqueous solution containing silver ions equivalent to approximately 30 moles of the cations in the -Y type zeolite, and the -Y type adsorbent was prepared and desorbed to Af-. Using 3,4-dichlorotoluene as the agent, the adsorption selectivity of the adsorbent was measured in Example 1. It was measured in the same manner as.

結果を表6に示す。The results are shown in Table 6.

表3 実施例2.のAy−に−Y型吸着剤へのジクロルベンゼ
ン異性体の被吸着力1t:o#>9体〉m体の順である
。従って、Q、m、p体温合物から0体及び/あるいは
m体の吸着分離回収が可能である。さらに0体と9体の
混合物、9体とm体の混合物の吸着分離が可能である。
Table 3 Example 2. The adsorption force of the dichlorobenzene isomer to the -Y type adsorbent is in the following order: o#>9 bodies>m bodies. Therefore, it is possible to adsorb and separate and recover the 0-form and/or the m-form from a Q, m, and p temperature mixture. Furthermore, adsorption separation of a mixture of 0 and 9 bodies and a mixture of 9 and m bodies is possible.

上記いずれの場合においても、本発明の脱着剤を会場ψ
・ ≠≠#ネはαp/D及びα。/Dが1に近くすぐれた脱
着剤であることがわかる。
In any of the above cases, the desorbent of the present invention can be used at the venue ψ
・≠≠#ne is αp/D and α. /D is close to 1, indicating that it is an excellent desorbent.

比較例2゜ 実施例2.において脱着剤としてクロルベンゼンゼンを
用いたときの吸着選択率を測定した。
Comparative Example 2゜Example 2. The adsorption selectivity was measured using chlorobenzene as a desorbent.

結果を表4に示す。The results are shown in Table 4.

表4 比較例2.ではクロルベンゼンの被吸着力が非常に強く
好ましくない脱着剤であることがわかる。
Table 4 Comparative example 2. It can be seen that chlorobenzene has a very strong adsorption power and is therefore an undesirable desorbent.

特許出願人 東し株式会社Patent applicant: Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)  ゼオライト系吸着剤を用いてシーツ・ロゲン
化ベンゼン異性体混合物を吸着分離する方法において、
脱着剤として3,4−ジハロゲン化トルエン及び/又は
4−ハロゲン化オルソキシレンを必須成分とする脱着剤
を用いることを特徴とするジ−ハロゲン化ベンゼン異性
体の分離方法。
(1) In a method of adsorbing and separating a sheet rogenated benzene isomer mixture using a zeolite-based adsorbent,
A method for separating di-halogenated benzene isomers, which comprises using a desorbent containing 3,4-dihalogenated toluene and/or 4-halogenated orthoxylene as an essential component.
JP3445782A 1982-03-04 1982-03-04 Separation method of di-halogenated benzene isomer Granted JPS58150524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3445782A JPS58150524A (en) 1982-03-04 1982-03-04 Separation method of di-halogenated benzene isomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3445782A JPS58150524A (en) 1982-03-04 1982-03-04 Separation method of di-halogenated benzene isomer

Publications (2)

Publication Number Publication Date
JPS58150524A true JPS58150524A (en) 1983-09-07
JPH0112732B2 JPH0112732B2 (en) 1989-03-02

Family

ID=12414774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3445782A Granted JPS58150524A (en) 1982-03-04 1982-03-04 Separation method of di-halogenated benzene isomer

Country Status (1)

Country Link
JP (1) JPS58150524A (en)

Also Published As

Publication number Publication date
JPH0112732B2 (en) 1989-03-02

Similar Documents

Publication Publication Date Title
JP2707240B2 (en) A method for the separation of ethylbenzene from xylene by selective adsorption on beta zeolite
US4605799A (en) Process for separating a halogenated toluene isomer
US4336410A (en) Process for absorptive separation of cyclohexene
JPS6323976B2 (en)
JPH0348892B2 (en)
JPS58150524A (en) Separation method of di-halogenated benzene isomer
JPH069438A (en) Separation of m-xylene
EP0180425A2 (en) A process for separating ethylebenzene from xylenes by selective adsorption on a cesium-substituted x zeolite
JPH10182512A (en) Separation of isopropenylbenzenes
JPS6364412B2 (en)
US4992622A (en) Method of separating 2,6-diisopropylnaphthalene from a mixture containing diisopropylnaphthalene isomers
JPS6212207B2 (en)
JPS6115049B2 (en)
JP5017952B2 (en) Method for separating p-dichlorobenzene
JPH10182511A (en) Separation of divinylbenzenes
JP3807061B2 (en) Separation method of halogenated ethylbenzene isomers
JPS6323977B2 (en)
JPH0665114A (en) Separation of 2,6-dimethylnaphthalene
JPH11180911A (en) Separation of dichlorobenzene isomer
JP3092218B2 (en) Method for producing 1,3,5-trichlorobenzene
JPH11158093A (en) Separation of dichlorobenzene isomer
JPH09188638A (en) Separation of dihalogenated benzene isomer
JPS63243042A (en) Adsorption and separation of 2,6-methylisopropylnaphthalene
JPS6013727A (en) Separation of 3,5-dichlorotoluene
JP2516339B2 (en) Dichlorotoluene adsorption separation method