JPS58150205A - Composite wire and method of producing same - Google Patents

Composite wire and method of producing same

Info

Publication number
JPS58150205A
JPS58150205A JP57032796A JP3279682A JPS58150205A JP S58150205 A JPS58150205 A JP S58150205A JP 57032796 A JP57032796 A JP 57032796A JP 3279682 A JP3279682 A JP 3279682A JP S58150205 A JPS58150205 A JP S58150205A
Authority
JP
Japan
Prior art keywords
wire
layer
composite
composite wire
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57032796A
Other languages
Japanese (ja)
Other versions
JPH0133885B2 (en
Inventor
雅大 永井
三宅 保彦
大貫 光明
益子 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57032796A priority Critical patent/JPS58150205A/en
Publication of JPS58150205A publication Critical patent/JPS58150205A/en
Publication of JPH0133885B2 publication Critical patent/JPH0133885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 従来の同心円状複合線は押出し法あるいは圧延法、また
は伸線法、メッキ法等がよく知られているが、メッキ法
を除いた前記三方法による複合線の加工条件下では心線
となる内層に大きな歪みが生じ心線に塑性変形が生じて
し捷うという欠点がある。一方ノツキ法においては外層
の肉厚が薄いところから複合線の形状を限定せざるを得
す、しかも次工程に伸線上程等を必要とする等の欠点が
ある。例えば化合物系超電導線を心線すなわち内層部分
とする同心円状複合線のような心線の引っ張り強さが小
さいものについては心線に掛かる加工中の歪みを極力少
々く抑えなければならず、従って従来の製造技術をもっ
て外層部分に例えば高純度のアルミニウムを被覆しこの
ような線拐に施すことは極めて困難である。
[Detailed Description of the Invention] Conventional concentric composite wires are produced by extrusion method, rolling method, wire drawing method, plating method, etc., but the processing conditions for composite wire by the above three methods excluding plating method are as follows. At the bottom, large distortion occurs in the inner layer that becomes the core wire, causing plastic deformation of the core wire and causing it to break. On the other hand, the Notsuki method has drawbacks such as the fact that the outer layer is thin, so the shape of the composite wire must be limited, and furthermore, a wire drawing step is required in the next step. For example, for wires with low tensile strength, such as concentric composite wires with compound superconducting wires as the core or inner layer, the strain applied to the core during processing must be suppressed as much as possible. It is extremely difficult to coat the outer layer with, for example, high-purity aluminum and perform such wire removal using conventional manufacturing techniques.

本発明の目的は心線に対する歪みの発生を最少とするこ
との出来る複合線制およびその製造方法を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite wire system and a method for manufacturing the same, which can minimize the occurrence of distortion to the core wire.

すなわち本発明の要旨は例えば三層のような多層同心円
状複合線において、中間層に内外層を形成する材料より
変形抵抗が小さく目、つ融点温度の低い材料を用い、こ
れらを上記中間層材料の融点以上の温度で複合加工する
ものである。
That is, the gist of the present invention is, for example, in a multilayer concentric composite wire such as a three-layer wire, a material having a lower deformation resistance and a lower melting point temperature than the materials forming the inner and outer layers is used as the intermediate layer, and these are used as the intermediate layer material. Composite processing is performed at a temperature above the melting point of.

本発明の実施に際しては内層を予め準備し、外層を押出
しによって設けると共に中間層を形成させるようにする
と好適である。このようにするに適した方法はいわゆる
EET法であり、超電導心線にアルミニウムを押出して
直接に被覆することができる。これによれば界面の接着
特性もよく保証されたものとなるが、化合物系超電導心
線を用いた場合には前述のごとく心線の低歪加工の条件
が更に要求される上に界面の接着性も要求されるという
相反した要求がなされるだめ、押出条件の設定範囲が狭
く加工が困難となる。従って本発明においてはアルミニ
ウムからなる外層は超電導線からなる内層に対して間隔
をもったパイプ状押出し加工することによって歪みを与
えないようにし、界面の接着性を保証するだめの材料す
なわち半田全外層と内層の間に流し込む。なおこの場合
には中間層の半田による接着の欠陥を除去するためアル
ミニウムの押出し温度は半田の融点以上とする必要があ
る。
When carrying out the present invention, it is preferable to prepare the inner layer in advance, provide the outer layer by extrusion, and form the intermediate layer. A method suitable for this purpose is the so-called EET method, in which the superconducting core wire is directly coated with aluminum by extrusion. According to this method, the adhesion properties at the interface are well guaranteed, but when a compound-based superconducting core is used, as mentioned above, the conditions for low distortion processing of the core are further required, and the adhesion at the interface is also ensured. Due to the conflicting demands that the extrusion conditions are also required, the setting range of extrusion conditions is narrow and processing becomes difficult. Therefore, in the present invention, the outer layer made of aluminum is extruded into a pipe shape with intervals from the inner layer made of superconducting wire to prevent distortion, and the entire outer layer is made of a material that guarantees the adhesion of the interface, that is, solder. and the inner layer. In this case, the extrusion temperature of the aluminum needs to be higher than the melting point of the solder in order to eliminate adhesion defects caused by the solder in the intermediate layer.

本発明の複合線の加工にあたっては、溶融半田を外層と
内層の間に流し込むために、下方押出しの構造とし、ま
だ加工温度についてはそれぞれの材料間界面に合金ある
いは化合物層を形成しそれにより熱的または電気的な特
性を劣下させることのないように押出し温度そしてまた
は押出し速度、あるいは製品の冷却条件等の諸条件の選
定が重要となる。
In processing the composite wire of the present invention, in order to pour molten solder between the outer layer and the inner layer, a downward extrusion structure is used, and as for processing temperature, an alloy or compound layer is formed at the interface between each material, thereby heating the wire. It is important to select various conditions such as extrusion temperature and/or extrusion speed, and product cooling conditions so as not to deteriorate the physical or electrical properties.

以下図面に示す実施例にもとづき説明すると、第1図は
本発明に従って製造されたアルミニウム安定化複合超電
導線4の断面図であり、心線となる内層1は予め準備さ
れた化合物系超電導線、中間層2には変形抵抗が小さく
融点温度の低い例えば半田、そして外層3には高純度ア
ルミニウムの夫々の材料からなる。
The following description will be given based on the embodiments shown in the drawings. FIG. 1 is a cross-sectional view of an aluminum-stabilized composite superconducting wire 4 manufactured according to the present invention, in which the inner layer 1 serving as the core wire is a compound-based superconducting wire prepared in advance, The intermediate layer 2 is made of a material having low deformation resistance and a low melting point, such as solder, and the outer layer 3 is made of high-purity aluminum.

第2図は第1図に示す本発明の複合線の製造装置の桁分
断面図である。第2図において内層lとなる化合物系超
電導性心線は予め準備されておりニップル5を通じてダ
イス6に一定速度で導入される。一方外層3となる高純
度アルミニウム3はニップル5とダイス6の間に限定さ
れる空間に加圧供給されてダイス6とニップル5の出口
との間の空隙から押出されて内層を被覆するバイブ状の
外層3を成形する。一方上記ニソプル5内には溶融半田
が供給され、これが内層1と外層3との間を埋めるよう
にニップル5から流し込まれ、これによりアルミニウム
安定化超電導線4が得られる。
FIG. 2 is a cross-sectional view of the composite wire manufacturing apparatus of the present invention shown in FIG. 1. In FIG. 2, the compound-based superconducting core wire that will become the inner layer 1 is prepared in advance and introduced into the die 6 through the nipple 5 at a constant speed. On the other hand, high-purity aluminum 3, which becomes the outer layer 3, is supplied under pressure to the space defined between the nipple 5 and the die 6, and is extruded from the gap between the die 6 and the outlet of the nipple 5, forming a vibrator that covers the inner layer. The outer layer 3 is formed. On the other hand, molten solder is supplied into the Nisopuru 5 and poured from the nipple 5 so as to fill the gap between the inner layer 1 and the outer layer 3, thereby obtaining the aluminum stabilized superconducting wire 4.

前述のようにこの複合線製造にあたっては半田の溶融温
度以上の温度でアルミニウム外層3の押シ出しを行なう
ようにすると中間層2の形成が容易となる。
As mentioned above, in manufacturing this composite wire, the intermediate layer 2 can be easily formed by extruding the aluminum outer layer 3 at a temperature higher than the melting temperature of the solder.

なお、第1図の実施例においては内層1を単線とした同
心円状複合線であるが、第3図に示すごとく同心楕円形
あるいは第4図に示すごとく複数の単線または撚り線か
らなる内層1を用いてもよく、さらに各層それぞれの羽
質の選定も変形抵抗または溶融点等に基づいてかなり広
範囲とすることが可能であり、金属のみに限定されるこ
ともない0 本発明によれば従来の技術では不可能とされた特殊複合
線の製造すなわち心線の低歪加工による製造が可能とな
る。特に化合物系超電導線についてはアルミニウムを安
定化材として用いることにより複合線の軽量化が図れ、
従来の銅安定化材に較べて内層の超電導特性を充分に生
かすことができる。
In the embodiment shown in FIG. 1, the inner layer 1 is a single concentric compound wire, but the inner layer 1 is a concentric elliptical wire as shown in FIG. 3, or a plurality of single wires or stranded wires as shown in FIG. Furthermore, the material of each layer can be selected from a wide range based on deformation resistance or melting point, etc., and is not limited to only metal. It becomes possible to manufacture special composite wires, which were thought to be impossible with the above technology, that is, by processing the core wires with low distortion. In particular, for compound-based superconducting wires, the weight of the composite wire can be reduced by using aluminum as a stabilizing material.
Compared to conventional copper stabilizing materials, the superconducting properties of the inner layer can be fully utilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による化合物系超電導線を心線とした複
合線の断面図、第2図は本発明による複合線の製造装置
の主要部の断面図、第3図および第4図は本発明による
複合線の他の実施例を示す断面図である。 1・・・化合物系超電導線、2・・・・・半田層3・・
・・・高純度アルミニウム層 4・・・アルミニウム安定化超電導性複合線5・・・・
ニップル、6・・・・・ダイス、7・・ ・・撚す線8
・・複合線 第 1
FIG. 1 is a cross-sectional view of a composite wire using a compound superconducting wire as a core wire according to the present invention, FIG. 2 is a cross-sectional view of the main part of a composite wire manufacturing apparatus according to the present invention, and FIGS. FIG. 6 is a sectional view showing another embodiment of the composite wire according to the invention. 1... Compound superconducting wire, 2... Solder layer 3...
... High purity aluminum layer 4 ... Aluminum stabilized superconducting composite wire 5 ...
Nipple, 6...Dice, 7...Twisting wire 8
・Combined line 1

Claims (4)

【特許請求の範囲】[Claims] (1)  同心円状の複合線において中間層を形成する
導体を内層および外層を形成する導体材料の変形抵抗よ
り小さい変形抵抗を有する材料で形成することを特徴と
する複合線。
(1) A composite wire characterized in that a conductor forming an intermediate layer in a concentric composite wire is formed of a material having a deformation resistance smaller than the deformation resistance of the conductor material forming the inner layer and the outer layer.
(2)  前記内層を形成する材料は化合物系超電導性
材料であり、中間層を形成する材料は半田であり、外層
を形成する材料は高純度のアルミニウムであることを特
徴とする特許請求の範囲第1項記載の複合線。
(2) A claim characterized in that the material forming the inner layer is a compound-based superconducting material, the material forming the intermediate layer is solder, and the material forming the outer layer is high-purity aluminum. Composite line described in item 1.
(3)  内層を形成する心線に対し、中間層を形成す
る上記内層材料より変形抵抗の小さい材料の融点以上の
温度で複合加工することを特徴とする特許請求の範囲第
1項または第2項記載の複合線の製造方法。
(3) The core wire forming the inner layer is subjected to composite processing at a temperature equal to or higher than the melting point of a material having lower deformation resistance than the inner layer material forming the intermediate layer. 2. Method for manufacturing composite wire as described in section.
(4)  外層にあっては、これを押出し加工すること
を特徴とする特許請求の範囲第3項記載の複合線の製造
方法。
(4) The method for manufacturing a composite wire according to claim 3, wherein the outer layer is extruded.
JP57032796A 1982-03-02 1982-03-02 Composite wire and method of producing same Granted JPS58150205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57032796A JPS58150205A (en) 1982-03-02 1982-03-02 Composite wire and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57032796A JPS58150205A (en) 1982-03-02 1982-03-02 Composite wire and method of producing same

Publications (2)

Publication Number Publication Date
JPS58150205A true JPS58150205A (en) 1983-09-06
JPH0133885B2 JPH0133885B2 (en) 1989-07-17

Family

ID=12368804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57032796A Granted JPS58150205A (en) 1982-03-02 1982-03-02 Composite wire and method of producing same

Country Status (1)

Country Link
JP (1) JPS58150205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100305A (en) * 1983-11-04 1985-06-04 日立電線株式会社 Method of producing aluminum stabilized superconductive wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100305A (en) * 1983-11-04 1985-06-04 日立電線株式会社 Method of producing aluminum stabilized superconductive wire

Also Published As

Publication number Publication date
JPH0133885B2 (en) 1989-07-17

Similar Documents

Publication Publication Date Title
US8319105B2 (en) Wire-in-channel superconductor
US4665611A (en) Method of fabricating superconductive electrical conductor
US4815309A (en) Method of producing an electrical conductor
JPS58150205A (en) Composite wire and method of producing same
KR20050092363A (en) Method for increasing the copper to superconductor ratio in a superconductor wire
CN110993194A (en) Cable and production process thereof
JPS6116138B2 (en)
JP2749600B2 (en) Manufacturing method of heat-resistant insulated conductor
RU2076363C1 (en) Method for manufacturing of multiple-conductor superconducting wire using nb*003sn compound
JPS5952491B2 (en) Method for producing stabilized superconducting stranded wire
JPS58181893A (en) Blanket coated twisted wire and preparation thereof
JPH04149915A (en) Manufacture of superconductive multiple-formed stranded conductor
JP2001219318A (en) Electrode line for wire discharge machining and method of manufacturing the electrode line
JPH0642335B2 (en) NbTi Extra-fine multi-core superconducting wire manufacturing method
JPS5946708A (en) Method of producing aluminum stabilized superconductive wire
JPS62268010A (en) Manufacture of aluminum stabilized superconductor
JPS5942116A (en) Manufacture of composite electrode wire for electric discharge machining
JPS6324508A (en) Manufacture of self-support type cable
JP2000322959A (en) Manufacture of watertight insulated wire
JPS60100305A (en) Method of producing aluminum stabilized superconductive wire
JPS63174717A (en) Manufacture of composite wire
JPS60170108A (en) Copper coated nbti superconductive lead
JPS59112504A (en) Superconductive wire
JPS6386323A (en) Manufacture of aluminum stabilizing superconductor
JPS62206710A (en) Manufacture of flat cable