JPS5815006A - Enhancing method for hydrogen recovering rate in production of hydrogen from converter waste gas - Google Patents

Enhancing method for hydrogen recovering rate in production of hydrogen from converter waste gas

Info

Publication number
JPS5815006A
JPS5815006A JP11009581A JP11009581A JPS5815006A JP S5815006 A JPS5815006 A JP S5815006A JP 11009581 A JP11009581 A JP 11009581A JP 11009581 A JP11009581 A JP 11009581A JP S5815006 A JPS5815006 A JP S5815006A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
converter
exhaust gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11009581A
Other languages
Japanese (ja)
Inventor
Masaharu Anezaki
姉崎 正治
Masami Shino
志野 雅美
Takahiro Toyoda
豊田 隆弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO KK
Nippon Steel Corp
Original Assignee
KYODO SANSO KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO KK, Sumitomo Metal Industries Ltd filed Critical KYODO SANSO KK
Priority to JP11009581A priority Critical patent/JPS5815006A/en
Publication of JPS5815006A publication Critical patent/JPS5815006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the recovering rate of gaseous H2 by removing gaseous O2 from waste gas before or during separating hydrogen. CONSTITUTION:Waste gas from a converter 1 is fed to a CO converting apparatus 5 through a dust collector 3 and a gas holder 4 and reacted with steam from a steam generator 6 to generate a gaseous mixture by CO conversion. The gaseous mixture is introduced into a CO2 separator 7 and an H2 separator 9 to separate CO2 and H2, respectively. At this time, prior to the introduction the gaseous mixture is passed through an O2 removing apparatus 12 provided with a palladium catalyst bed for removing O2. O2 in the gaseous mixture is thoroughly removed, and the recovering rate of gaseous H2 is enhanced.

Description

【発明の詳細な説明】 本発明は、転炉排ガスからの水素製造方法の改良、よ)
詳しくは転炉排ガスに水S気を添加してCO変換(水性
ガス反応)を行なわせ、生成したガスから水嵩を吸着剤
により分離・回収することからなる水素製造方法におけ
る水素回収効率の向上法に関する。
[Detailed Description of the Invention] The present invention is an improvement of a method for producing hydrogen from converter exhaust gas.
In detail, this is a method for improving hydrogen recovery efficiency in a hydrogen production method, which involves adding water and S gas to converter exhaust gas to perform CO conversion (water gas reaction), and separating and recovering water volume from the generated gas using an adsorbent. Regarding.

純**上吹き転炉などの製鋼用転炉から排出される転炉
排ガスは、一般に一酸化炭素(CO)、二酸化炭素(c
o、)、窒素(N、)および水素(H3)をそれぞれ容
量でほぼ70%、10%、17%および8%の割合で含
有している。したがりて、この排ガスに水蒸気を加えて
CO変換を行なわせることKよシ二酸化炭素と水素を生
成させ、この生成ガスから二酸化炭素と水素を別個に分
離・回収し、それぞれ適宜に利用することが行なわれて
きた1通常は、CO変換後の生成ガスをまず二酸化炭素
分離装置1に送って二酸化炭素を回収し、次いで水素分
離装置に送って、適当な手段、たとえばゼオライトなど
の吸着剤によ如水素を回収する。
Converter exhaust gas discharged from steelmaking converters such as pure** top-blown converters generally contains carbon monoxide (CO) and carbon dioxide (c
o, ), nitrogen (N, ) and hydrogen (H3) in proportions of approximately 70%, 10%, 17% and 8% by volume, respectively. Therefore, instead of adding water vapor to this exhaust gas to perform CO conversion, it is better to generate carbon dioxide and hydrogen, separate and recover the carbon dioxide and hydrogen separately from this generated gas, and use each as appropriate. 1 Normally, the product gas after CO conversion is first sent to a carbon dioxide separator 1 to recover carbon dioxide, then sent to a hydrogen separator and treated with an adsorbent such as zeolite by suitable means. Collect hydrogen.

転炉排ガスは、吹錬開始後しばらくは、未反応の酸素な
どが排出されてくるために組成が魚激に変動し、その後
は比較的安定した組成になる。転炉排ガスを上記のよう
に水素製造の原料ガスとして利用する場合、従来は原料
ガスの組成の変動を避けるために、吹錬開始後の転炉排
ガスの組成が不安定な間はその回収を見合わせ、組成が
安定状態に達した後の転炉排ガスのみを利用してきた。
For a while after the start of blowing, the composition of converter exhaust gas fluctuates dramatically due to unreacted oxygen being discharged, but after that the composition becomes relatively stable. When converter exhaust gas is used as raw material gas for hydrogen production as described above, conventionally, in order to avoid fluctuations in the composition of the raw material gas, recovery of the converter exhaust gas was not performed while the composition of the converter exhaust gas was unstable after the start of blowing. Instead, only the converter exhaust gas was used after the composition reached a stable state.

しかし、エネルギー危機という時代の背景に伴ない、転
炉の排ガス回収率も必然的に高くなってきており、吹錬
vkまもなくの組成が不安定な転炉排ガスも利用せざる
を得ない状況になりてきている。そめために転炉排ガス
を一時的[i’麓するガスホルダー内の転炉排ガス中に
平均してα16〜α8vo1%1i!度の酸素が混入す
るようKなってきている。
However, with the background of the era of energy crisis, the recovery rate of converter exhaust gas has inevitably increased, and it has become necessary to use converter exhaust gas whose composition is unstable after blowing. It is becoming. To prevent this, the converter exhaust gas is temporarily [i' on average α16 to α8vo1%1i! The temperature has become so high that more oxygen is mixed in.

ところで、前記CO変換後の生成ガスからの水素の分離
・回収を吸着剤によシ行なう場合、吸着剤による水素の
回収効率(すなわち、吸着塔に供給された水素に対する
分離・回収された水素の割合、換言すると吸着塔の入口
水素量に対する出口水素量の割合)h、吸着塔に供給さ
れるガス中の酸素の存在によシ阻害され、酸素濃度が高
くなる道−1 Kつれて水素回収効率が急激に低下することが判明し丸
、水素回収効率が低下すると、吸着塔での水素の分離に
よシ長時間をかけるか、或いはよシ多量の吸着剤を用い
るか、或いは吸着剤の再生までの使用時間を短縮して相
対的に吸着塔のパージ時間を多くするなどの手段をとる
ことが必要となシ、いずれKしても前記水素製造方法の
生産性の悪化につながる。
By the way, when separating and recovering hydrogen from the produced gas after CO conversion using an adsorbent, the efficiency of hydrogen recovery by the adsorbent (i.e., the ratio of the separated and recovered hydrogen to the hydrogen supplied to the adsorption column) (in other words, the ratio of the amount of hydrogen at the outlet to the amount of hydrogen at the inlet of the adsorption tower) h is inhibited by the presence of oxygen in the gas supplied to the adsorption tower, and the oxygen concentration increases. If the hydrogen recovery efficiency is found to decrease rapidly, it is necessary to take a longer time to separate the hydrogen in the adsorption column, use a larger amount of adsorbent, or increase the amount of adsorbent. It is necessary to take measures such as shortening the usage time until regeneration and relatively increasing the purge time of the adsorption tower, which will lead to deterioration of the productivity of the hydrogen production method in any case.

よって、本発明の目的は、前述し九ような転炉排ガスか
らの水素製造において、吸着塔供給ガス中の酸素の存在
に起因する吸着塔の性能低下を克服することである。
Therefore, an object of the present invention is to overcome the deterioration in performance of an adsorption tower due to the presence of oxygen in the adsorption tower feed gas in hydrogen production from converter exhaust gas as described above.

ここに1本発明は転炉排ガスに水蒸気を添加して水性ガ
ス反応を行なわせることによシその水素濃質を高め、生
成したガス中の水素を吸着剤の使用により分離・回収す
ることからなる転炉排ガスからの水素製造方法において
、水素量−に先立って、または水素分離中に該ガスから
酸素を除去することによシ、水素の分離・回収の際の水
素回収効率を向上させることを特徴とする、転炉排ガス
からの水素製造における水素回収率向上法を要旨とする
ものである。
Herein, 1. The present invention increases the hydrogen concentration by adding steam to the converter exhaust gas to cause a water gas reaction, and the hydrogen in the generated gas is separated and recovered by using an adsorbent. In a method for producing hydrogen from converter exhaust gas, the hydrogen recovery efficiency during hydrogen separation and recovery is improved by removing oxygen from the gas prior to hydrogen separation or during hydrogen separation. The gist of this paper is a method for improving hydrogen recovery rate in hydrogen production from converter exhaust gas, which is characterized by:

従来、転炉排ガスからCO変換によシ二酸化炭素と水素
を製造する場合に1酸素の存在KHまったく前置が払わ
れていなかりた。本発明は、転炉排ガス中のごく少量の
酸素の存在に着目し、この酸素が吸着剤による水素の分
離・回収における回収効率に著しい影響を及ぼすことを
見出して達成されたものである0本発明によ)吸着塔供
給ガスから酸素を実質的K(すなわち、数ppmのオー
ダーまで)除去すると水素回収効率は従来法に比べて6
〜16%程度向上し、生産性の向上に大きく寄与する。
Conventionally, when producing carbon dioxide and hydrogen from converter exhaust gas by CO conversion, no consideration was given to the presence of oxygen at all. The present invention was achieved by focusing on the presence of a very small amount of oxygen in converter exhaust gas and discovering that this oxygen has a significant effect on the recovery efficiency in hydrogen separation and recovery using an adsorbent. By removing substantially K (i.e., to the order of a few ppm) of oxygen from the adsorption tower feed gas (by the invention), the hydrogen recovery efficiency is 6.5% compared to the conventional method.
It improves by about 16%, greatly contributing to improving productivity.

吸着塔供給ガスからの酸素の除去は、たとえば転炉のガ
ス排出口から吸着塔の入口までの間のガス経路の任意の
適当な位置にパフジウ^檜などの触媒槽を設けて、酸素
を水素と反応させることKよシ夾施できる。その#量か
の既知の適当な酸素除去法も採用できる。
Oxygen can be removed from the gas supplied to the adsorption tower by, for example, installing a catalyst tank made of cypress wood or the like at any suitable position in the gas path between the gas outlet of the converter and the inlet of the adsorption tower. It is possible to react with K. Any suitable oxygen removal method known in the art can also be employed.

上記のように吸着塔供給ガスか・ら吸着塔への導入に先
立つて酸素を除去する代シに、吸着塔に充填する吸着剤
の一部として、水素と酸素の分離能のよい吸着剤(たと
えば、H* Os分離のよい合成ゼオライト)を用いる
ことKよ)、酸素をその吸着剤中に閉じこめて除去する
ことも可能である。
As mentioned above, instead of removing oxygen from the gas supplied to the adsorption tower before it is introduced into the adsorption tower, an adsorbent with a good ability to separate hydrogen and oxygen ( For example, by using a synthetic zeolite with good H*Os separation (K), it is also possible to trap oxygen in the adsorbent and remove it.

このようにして吸着くよる水素の分離・回収中に酸素を
除去しても、吸着塔供給ガスから予じめ酸素を除去した
場合とほぼ同様の水素回収効率の向上が得られる。
Even if oxygen is removed during the separation and recovery of hydrogen by adsorption in this manner, the hydrogen recovery efficiency can be improved almost in the same way as when oxygen is removed from the gas supplied to the adsorption tower in advance.

れるものであって、したがって1本発明は、後述する具
体化例で示すよりなCO1底吹きを併用する転炉製鋼法
と組合せることによって1回収されるCOlの循環再利
用が可能となるなど、製鋼プルセス傘体の効率化、コス
ト低下に4大きく寄与するすぐれた効果が発揮される。
Therefore, the present invention makes it possible to circulate and reuse the recovered CO1 by combining it with a converter steelmaking method that also uses CO1 bottom blowing as shown in the specific example described later. 4.Excellent effects that greatly contribute to improving the efficiency and reducing costs of the steelmaking process umbrella are exhibited.

本発明の方法を添付図面に関連させてさらに異体的に説
明する。
The method of the invention will be further explained in detail in conjunction with the accompanying drawings.

第1図は、本発明の方法を炭酸ガス底吹き転炉の排ガス
処理に組み込んに場合のフローシートの1例である0図
示のようK[lIKランスト1から繊素(0,)が上吹
きされ、ノズル1−bから炭酸ガス(二酸化炭′a)が
底吹きされる方式の転炉lから排出される転炉排ガスは
、フード2から集塵装置8を経て、転炉排ガスホルダー
4に一時的に貯蔵され死後、CO変換装置5に送られる
Figure 1 is an example of a flow sheet when the method of the present invention is incorporated into the exhaust gas treatment of a carbon dioxide gas bottom-blown converter. The converter exhaust gas discharged from the converter l in which carbon dioxide gas (carbon dioxide 'a) is bottom-blown from the nozzle 1-b passes through the hood 2, the dust collector 8, and the converter exhaust gas holder 4. It is temporarily stored and sent to the CO conversion device 5 after death.

CO変換装置5には水蒸気発生166から水蒸気が供給
され、転炉排ガス中の一酸化炭素は、適当な触媒の存在
下に反応式: CO+H*0−+COt +迅にしたが
りて、水蒸気と反応し、二酸化炭素と水素を生成する。
Steam is supplied to the CO converter 5 from a steam generator 166, and carbon monoxide in the converter exhaust gas reacts with steam in the presence of an appropriate catalyst according to the reaction formula: CO+H*0-+COt+quickly. and produces carbon dioxide and hydrogen.

得られ九二酸化炭素と水素を含むガスは、次いで図示の
態様では、co変換装置6の出口の近くに設けた例えば
パラジウム触媒を配置した触媒槽からなる0、除去装置
12に送られ、こζで水素との反応によシ酸素が除去さ
れる。酸素を含まなくなりたガス゛は、次K Co、分
離装置7に送られ、ことでたとえばMKA(モノエタノ
ールアξン)法や炭酸カリク^法による吸収などの適当
な手段によ’)Cowが分離され、分離されたCOlは
CO,ガスホルダー8を経て、転炉lへの底吹きガスと
して再利用される。cか分離装置7を出た水素に富むガ
スはH,分離装置(たとえば合成ゼオライトを配置した
吸着塔)9に送られ、たとえば[l[9a999%の高
純度水嵩が分離・回収される。この水素Fi H*ガス
ホルダー10 KjF[され、適宜に自家使用または外
販される。H1分離装置9からのオフガスはその壕\直
ちに、あるいは、一旦、オフガスホルダー11Cl?賦
されてから燃料として利用される。
The resulting gas containing carbon dioxide and hydrogen is then sent to a removal device 12, which in the illustrated embodiment consists of a catalyst tank equipped with, for example, a palladium catalyst, located near the outlet of the CO conversion device 6. Oxygen is removed by reaction with hydrogen. The oxygen-free gas is then sent to a separation unit 7, where the Cow is separated, possibly by suitable means such as absorption by the MKA (monoethanolamine) method or the potassium carbonate method. The separated COl passes through the CO gas holder 8 and is reused as bottom-blown gas to the converter l. The hydrogen-rich gas leaving the separator 7 is sent to the H2 separator (for example, an adsorption tower equipped with synthetic zeolite) 9, where a 999% high purity water volume, for example, is separated and recovered. This hydrogen Fi H* gas holder 10 KjF is used for home use or sold externally as appropriate. The off-gas from the H1 separator 9 is immediately or temporarily transferred to the off-gas holder 11Cl? It is used as fuel after being charged.

図示のプロセスの場合、0雪除去装置18は図示のよう
KCOR換装置すの下流側の出口付近に設けるのが好ま
しい。すなわち、O8除去装置12であるパラジウム櫂
などの触媒槽が機能する九めKは成るsRの温変が必要
であるので、吸収によるCO2分離装置7よ〉下流側で
あるのがよく、一方、また、酸素除去触媒にとりで触媒
毒となるHas等の成分がCO変換装置6で除去される
ので、CO2変換装置6より下R91がよいからである
In the illustrated process, the snow removal device 18 is preferably located near the downstream outlet of the KCOR converter as shown. That is, since the temperature change of sR, which is made up of the catalyst tank such as a palladium paddle that is the O8 removal device 12, is required to function, it is preferable to place it on the downstream side of the CO2 separation device 7 by absorption. Further, since components such as Has, which act as catalyst poison for the oxygen removal catalyst, are removed by the CO converter 6, the lower R91 is better than the CO2 converter 6.

次に実施例を挙げて本発明をさらに説明する。Next, the present invention will be further explained with reference to Examples.

実施例 転炉排ガスを原料ガスとして第1図に示したプロセスに
よシ処理して水素を製造した。CO変換装置6から流出
する温置約280℃のガスを、この装置の出口付近に設
けた0、除袋用パラジウム触媒槽から成るO、除去装置
12G’C通し、とヒで酸素を実質的に完全に除去した
後、CO1分離装置7を経て1合成ゼオライト5All
を充填し九H3分離用吸着塔9に通し九、転炉から排出
される原料ガスの流量は650NWI/hrで、CO,
分離装置を出て吸着塔に供給される供給ガスは約461
11&l//hrO量の水素を含有し、その酸素含有量
は数P P ” eすなわち実質的に0%であった。
Example Converter exhaust gas was treated as a raw material gas by the process shown in FIG. 1 to produce hydrogen. The gas flowing out from the CO conversion device 6 at a temperature of approximately 280°C is passed through the gas removal device 12G'C, which consists of a palladium catalyst tank for bag removal, installed near the outlet of this device, and is heated to substantially remove oxygen. After completely removing CO1, it passes through CO1 separator 7 to 1 synthetic zeolite 5All
The flow rate of the raw material gas discharged from the converter was 650 NWI/hr, and the CO,
The feed gas leaving the separator and being fed to the adsorption tower is approximately 461
It contained hydrogen in an amount of 11&l//hrO, and its oxygen content was several P P ''e, or essentially 0%.

比較の丸めに%吸着塔に供給される上記供給ガス圧α1
6%および08%の酸素を混入して、同じ条件で吸着塔
に通した。これは、酸素除去を行なわない従来法の場合
の操業状態を再現した実験である。
For rounding the comparison, the above feed gas pressure α1 supplied to the adsorption tower in %
It was mixed with 6% and 08% oxygen and passed through the adsorption column under the same conditions. This experiment reproduced the operating conditions of a conventional method without oxygen removal.

実験条件および結果を次表Kまとめて示す6まえ、得ら
れ九実験結釆、すなわち吸着塔供給ガス中のO鵞ml 
f:とH,回収効率との関係をグラフにして第2図に示
す。
The experimental conditions and results are summarized in the following table K. Six experimental results were obtained, i.e., O ml in the adsorption tower feed gas.
The relationship between f:, H, and recovery efficiency is shown in a graph in FIG.

(ガス量O単位tNdAr) 上の結果および第2図から、Ha回収効率に対する本発
明の顕著な効果は明らかであろう、なお、上記のいずれ
の実験でも、吸着塔から出た製品H。
(Gas amount O unit: tNdAr) From the above results and FIG. 2, it will be clear that the present invention has a significant effect on Ha recovery efficiency.In both of the above experiments, the product H discharged from the adsorption tower.

ガスの純度は911999%以上でありた。The purity of the gas was over 911999%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の1態様を示すフローシート、お
よび 第2図は吸着塔供給ガス中のO1濃度と吸着塔でのH2
回収効率との関係を示すグラフである。 1・・・転F%1−1・・・ランス、1−b・・・ノズ
ル、〜・・・7−ド、8・・・集塵装置、4・・・ガス
ホルダー、だ・・・CO変換装置、6・・・水蒸気発生
器、7・・・001分M装置、訃・・COlガスホルダ
ー、9・・・シ分離装置、10・・・H,ガスホルダー
、11・・・オフガスホルダー、12−0.除去装置。 特許出願人  住友金属工業株式会社 l   共同酸素株式会社 代通人 弁理士広瀬章− 第1図 第2 吸、114ノ敗#カス中02 逼Ji(%)
Fig. 1 is a flow sheet showing one embodiment of the method of the present invention, and Fig. 2 shows the O1 concentration in the adsorption tower feed gas and the H2 concentration in the adsorption tower.
It is a graph showing the relationship with collection efficiency. 1...Transfer F%1-1...Lance, 1-b...Nozzle, ~...7-de, 8...Dust collector, 4...Gas holder,... CO conversion device, 6...Steam generator, 7...001 minute M device, 2...COl gas holder, 9...Shi separation device, 10...H, gas holder, 11...Off gas Holder, 12-0. removal device. Patent Applicant: Sumitomo Metal Industries, Ltd. Kyodo Sanso Co., Ltd., Patent Attorney Akira Hirose - Figure 1, 2 No. 114 Loss #Cass 02 Ji Ji (%)

Claims (1)

【特許請求の範囲】[Claims] 転炉排ガスに水蒸気を添加して水性ガス反応を行なわせ
ることくよ)その水素濃度を高め、生成したガス中の水
素を吸着剤の使用によ)分離・回収することからなる転
炉排ガスからの水素製造方法にシいて、水素分@に先立
うて、重大は水素分離中に該ガスから酸素を除去するこ
とkよ)、水素の分離・回収の際の水素回収効率を向上
させることを特徴とする転炉排ガスからの水素製造にお
ける水素回収率向上法。
From the converter exhaust gas, the hydrogen concentration is increased (by adding water vapor to the converter exhaust gas to cause a water gas reaction), and the hydrogen in the generated gas is separated and recovered (by using an adsorbent). In the hydrogen production method, the important thing is to remove oxygen from the gas during hydrogen separation (prior to the hydrogen content), and to improve the hydrogen recovery efficiency during hydrogen separation and recovery. A method for improving hydrogen recovery rate in hydrogen production from converter exhaust gas, characterized by:
JP11009581A 1981-07-16 1981-07-16 Enhancing method for hydrogen recovering rate in production of hydrogen from converter waste gas Pending JPS5815006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11009581A JPS5815006A (en) 1981-07-16 1981-07-16 Enhancing method for hydrogen recovering rate in production of hydrogen from converter waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11009581A JPS5815006A (en) 1981-07-16 1981-07-16 Enhancing method for hydrogen recovering rate in production of hydrogen from converter waste gas

Publications (1)

Publication Number Publication Date
JPS5815006A true JPS5815006A (en) 1983-01-28

Family

ID=14526897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11009581A Pending JPS5815006A (en) 1981-07-16 1981-07-16 Enhancing method for hydrogen recovering rate in production of hydrogen from converter waste gas

Country Status (1)

Country Link
JP (1) JPS5815006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020246A (en) * 2010-12-23 2011-04-20 苏州市创新净化有限公司 Hydrogen purified recovery system and process method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163796A (en) * 1977-12-19 1979-12-26 Billings Energy Corp Method and apparatus for removing oxygen and impurities of water from hydrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163796A (en) * 1977-12-19 1979-12-26 Billings Energy Corp Method and apparatus for removing oxygen and impurities of water from hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020246A (en) * 2010-12-23 2011-04-20 苏州市创新净化有限公司 Hydrogen purified recovery system and process method

Similar Documents

Publication Publication Date Title
US6090356A (en) Removal of acidic gases in a gasification power system with production of hydrogen
JP2757977B2 (en) Ammonia synthesis gas production method
US3563696A (en) Separation of co2 and h2s from gas mixtures
US4572829A (en) Ammonia synthesis gas purification
KR100622167B1 (en) High productivity process to produce maleic anhydride from n-butane
CN108698985B (en) Process for supplying carbon dioxide for the synthesis of urea
CA2575537C (en) Process for urea production from ammonia and carbon dioxide
JPH0466814B2 (en)
US3766027A (en) Method and apparatus for co{11 {11 conversion to methane
EP0344053B1 (en) Process for producing high-purity hydrogen by catalytic reforming of methanol
JPS629301Y2 (en)
CN115210204A (en) Method for producing methanol from carbon dioxide and hydrogen using the amount of carbon dioxide
JPS61181516A (en) Treatment of gaseous mixture
JPS6317488B2 (en)
US6086840A (en) Process for making ammonia from heterogeneous feedstock
JPH06191801A (en) Production of hydrogen
JPS5815006A (en) Enhancing method for hydrogen recovering rate in production of hydrogen from converter waste gas
JPH03242302A (en) Production of hydrogen and carbon monoxide
JPH0261410B2 (en)
JPH06211502A (en) Production of carbon monoxide and hydrogen
US2251000A (en) Process for purifying gases
JPS60258294A (en) Desulfurization refining of natural gas
JP2000233917A (en) Method of producing carbon monoxide from carbon dioxide
SU1733062A1 (en) Method for cleaning hydrogen-containing gas from carbon dioxide
JP4507276B2 (en) Operation method of waste gasification processing equipment