JPS58149435A - Non-vibrating piston mechanism - Google Patents

Non-vibrating piston mechanism

Info

Publication number
JPS58149435A
JPS58149435A JP3063982A JP3063982A JPS58149435A JP S58149435 A JPS58149435 A JP S58149435A JP 3063982 A JP3063982 A JP 3063982A JP 3063982 A JP3063982 A JP 3063982A JP S58149435 A JPS58149435 A JP S58149435A
Authority
JP
Japan
Prior art keywords
gears
gear
piston
vibration
pistons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3063982A
Other languages
Japanese (ja)
Inventor
Jun Toyama
外山 潤
Kyuzaburo Ikoma
生駒 久三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3063982A priority Critical patent/JPS58149435A/en
Priority to PCT/JP1983/000061 priority patent/WO1983003125A1/en
Publication of JPS58149435A publication Critical patent/JPS58149435A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/06Engines with means for equalising torque
    • F02B75/065Engines with means for equalising torque with double connecting rods or crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B73/00Combinations of two or more engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • F02B75/243Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type with only one crankshaft of the "boxer" type, e.g. all connecting rods attached to separate crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • F16F15/24Compensation of inertia forces of crankshaft systems by particular disposition of cranks, pistons, or the like

Abstract

PURPOSE:To offset effectively reactive forces generated when an engine is operated, by a constitution wherein a gear device having four gears engaged with each other and arranged on the same plane so that lines connecting the respective shafts of the gears form a square is interposed between pistons arranged opposite to wach other. CONSTITUTION:Four gears 1, engaging with each other, are arranged on the same plane so that lines connecting the respective shafts of gears form a square, and thereby an aligned gear device is constituted. When the gear device thus constituted is employed for a four-cylinder opposed-pison mechanism, acting powers P1 and P4, and P2 and P3 operate oppositely and reversely to each other on the same lines of action, on condition that four pistons 4 have equal mass. Therefore, the resultant force thereof turns zero, and vibrations caused thereby are not generated. In addition, reactive forces C1-C4 generated by the operations of connecting rods 5 balance both in the directions X and Y, and thus the vibrtions caused thereby are not generated either.

Description

【発明の詳細な説明】 本発明は、ピストン・シリンダー・クランク機構の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a piston-cylinder-crank mechanism.

ピストン・シリンダー・クランク機構は往復運動を回転
堆動に変えたり、ンは、その逆を行うもので、蒸気機関
や内燃機関等の原動機への応用、父、空気王縮機やポン
プ等への応用などで広範な利用分野を持つ機構である。
The piston-cylinder-crank mechanism converts reciprocating motion into rotary motion, and vice versa, and is used in prime movers such as steam engines and internal combustion engines, as well as in air compressors and pumps. It is a mechanism that has a wide range of applications.

従って、これに関する振動の問題を解決することは@要
なことである。
Therefore, it is essential to solve the vibration problem related to this.

従来のピストン・シリンダー・クランク機構において、
[振Mlの1:、要な原因は次の二点である。第一はピ
ストンの往復運動によるもの、第二はコネクティング・
ロッドの隠動にkるものである。ここで、第一のピスト
ンの往復運動によるものに関しては一対のピストンを対
向型に配置することで解決り法がすでに明らかにされて
いる(ただし、従来のものは近似的に対向型になったも
のが多い)。第二のコネクティング・ロッドの運動によ
るものに関しては完全な方法が具体的に実現していない
In the conventional piston-cylinder-crank mechanism,
[Vibration Ml 1: The main causes are the following two points. The first is due to the reciprocating movement of the piston, and the second is due to the connecting
This is due to the hidden movement of the rod. Here, as for the problem caused by the reciprocating motion of the first piston, a solution has already been revealed by arranging a pair of pistons facing each other (however, the conventional method is approximately facing (many things). As for the movement of the second connecting rod, a complete method has not yet been realized.

本発明の目的は、上記の諸間場を[四重極同調歯車Jを
用いて総合的に解決し、ピストン・シリンダー・クラン
ク機構の無振動作動を実現する[無振動ピストン機構」
の技術を提供することにある。
The purpose of the present invention is to provide a vibration-free piston mechanism that comprehensively solves the above-mentioned problems using a quadrupole synchronized gear J and realizes vibration-free operation of the piston-cylinder-crank mechanism.
Our goal is to provide the following technology.

以ド、本発明の無振動ピストン機構を数例の図を参照し
なが゛ら詳述する。
Hereinafter, the vibration-free piston mechanism of the present invention will be described in detail with reference to several examples of figures.

四)の等しい(形、大きさ、装置などが等しい)歯車(
1)を、@1図と第2図とに示す様に組合せて、四つの
軸(2)を結ぶ線が正方形を成す様に同一平面上に配置
し、各軸(2)の位置が変らない様に剛体(3:実際は
#1111等の近似剛体)によって回転可能な状態で支
持する。この様なm市(1)の結合体を「四瑣極同調歯
車Jと呼ぶこととする。
4) Equal (equal in shape, size, device, etc.) gears (
1) are combined as shown in Figure 1 and Figure 2, and arranged on the same plane so that the lines connecting the four axes (2) form a square, and the position of each axis (2) is changed. It is supported in a rotatable state by a rigid body (3: actually an approximate rigid body such as #1111) so that it does not occur. Such a combination of m-city (1) will be referred to as a "four-datum pole tuning gear J."

次に、四重極同調歯車の機械的特性を述べる。Next, the mechanical characteristics of the quadrupole tuning gear will be described.

第一の特性は、[四重極同調歯車は回転可能であり、そ
の回転の方向は隣りあったものは互いに逆方向であり、
その回転数は各歯車において等しい。」である。その叩
出は次の通りである。四つの歯巾(1)はかみ合ってお
り、その回転のガ向は第3図に示す矢印の様に成るので
回転可能である。又、歯数が等しいので回転数は等しい
The first characteristic is that [quadrupole tuning gears are rotatable, and the directions of rotation of adjacent gears are opposite to each other,
The number of rotations is the same for each gear. ”. The explanation is as follows. The four tooth widths (1) are in mesh with each other, and the direction of rotation is as shown by the arrow in FIG. 3, so it is rotatable. Also, since the number of teeth is the same, the number of rotations is the same.

第二の特性は、「四重極間調歯車は回転時に移動や振動
が生じ無い。この特性は等速回転時、及び、加速回転時
において一般的に成立する。」である。その理由は次の
通りである。四つの歯巾(1)の軸の中心を第4図に示
す様にPL +P2 +P3+P4とすると、各歯車(
1)は等質であり軸に対して対称の回転体であるから、
その回転運動に因って軸に加わる力は偶力のみであり、
その偶力の大きさは四つの軸において同時刻においては
同一である。叉、その偶力の向きは隣り合った歯1社に
おいて逆向きであるから、PlとP3とをプラスとする
とP2とP4とはマイナスとなる。従って、相互に結合
された四軸に加わる偶力の総和はゼロとなる。
The second characteristic is that "quadrupole interstage gears do not move or vibrate during rotation. This characteristic generally holds during constant speed rotation and accelerated rotation." The reason is as follows. Assuming that the centers of the axes of the four tooth widths (1) are PL +P2 +P3+P4 as shown in Fig. 4, each gear (
1) is homogeneous and a rotating body symmetric about the axis, so
The force applied to the shaft due to its rotational motion is only a couple,
The magnitude of the force couple is the same in all four axes at the same time. Moreover, since the direction of the couple is opposite in one adjacent tooth, if Pl and P3 are positive, P2 and P4 are negative. Therefore, the sum of the couples acting on the four mutually connected axes is zero.

次に、−組の四重極同調歯車と四組のピストン・シリン
ダーとを四重のコネクテイング・ロッドで結合すると第
5図の様な四気筒のピストン機構が出来る。この場合の
作動時の部品の質量に因る力を検討すると次の様になる
。作動する構成部分の第一は「四@極同調歯車」、第二
は四つの[ピストンj1第三は四つの「コネクテイング
・ロッド」 (両端の軸を含む)である。第一の四重極
同調歯車の回転は、すでに述べた様に振動や反動を生じ
ない。第二の四つのピストンに関しては、第5図に示す
様に同調されており、かつ、四つのピストンは等しい質
量を持つものである。従って、PlとP4 、P2とP
3は各々同一作用線Eに対向して互いに逆向きに作動す
るので、その合力はゼロと成り(四つのシリンダーは(
9)によって一体化している)振動や反動を生じない。
Next, by connecting the - set of quadrupole tuning gears and the four sets of piston cylinders with four connecting rods, a four-cylinder piston mechanism as shown in Fig. 5 is created. If we consider the force due to the mass of the parts during operation in this case, we get the following. The first working component is the "four-pole synchronizing gear", the second is the four pistons, and the third is the four "connecting rods" (including the shafts at both ends). The rotation of the first quadrupole tuning gear does not cause vibration or recoil, as already mentioned. The second four pistons are synchronized as shown in FIG. 5, and have the same mass. Therefore, Pl and P4, P2 and P
3 each face the same line of action E and operate in opposite directions, so their resultant force is zero (the four cylinders are (
9) does not produce vibration or recoil.

第三の四つのコネクテイング・ロッドに関しては、第5
図に示す様に同調されており、かつ、四つのコネクテイ
ング・ロッドは等しい質量を持つものである。従って、
各コネクテイング・ロッドの作動による反動力は次の通
りである。X方向のベクトル成分に関しては、C1とC
4,及び、C2と03の組が、各々互いに大きさが等し
く向きが反対で同一作用線上に作用するので、打消し合
ってその合力はゼロとなる。Y方向のベクトル成分に関
しては、C1とC2,及び、C3と04の組が、X方向
の場合と同様にしてその合力はゼロとなる。従って、第
5図の様に同調されたコネクティング・ロッドの質量に
よる作動時の振動や反動は生じない。即ち、第5図に示
す様な、四喧極同調歯車を持つ四気筒のピストン機構は
、その部品の質量の作動時に振動や反動を生じない[無
振動ピストン機11.Jの「−電位」となる。
Regarding the third four connecting rods, the fifth
The four connecting rods are tuned as shown and have equal masses. Therefore,
The reaction force due to the operation of each connecting rod is as follows. Regarding the vector components in the X direction, C1 and C
Since the pairs C2 and 03 have the same magnitude and opposite directions and act on the same line of action, they cancel each other out and the resultant force becomes zero. Regarding the vector component in the Y direction, the resultant force of the pairs of C1 and C2 and C3 and 04 becomes zero, as in the case of the X direction. Therefore, no vibration or reaction occurs during operation due to the mass of the tuned connecting rod as shown in FIG. That is, a four-cylinder piston mechanism with four-pole synchronized gears as shown in FIG. 5 does not generate vibration or reaction when the mass of its parts is operated [Vibration-free piston machine 11. It becomes the "-potential" of J.

次に、−組の「四@極間調歯市」と二組の「ピストン」
とを四つの質はの等しい(形は一部異なる:第10図参
照)コネクティング・ロッドで結合すると、第7図に示
す様な最も単純な型の「無振動ピストン機構」の「−電
位」が出来る。この例では一対のコネクティング・ロッ
ドが一つのピストンに結合されていることと、ピストン
が二つであること以外は第5図の場合と同様である。ま
ず、一対のコネクティング・ロッドが一つのピストンに
結合する場合について述べる。この嚇今にコネクティン
グ・ロッドの作動時に振動や反動が生じない為には、コ
ネクティング・ロッドの形と質量とが問題になる。第8
図は、上記の一つのピストツーに二つのコネクティング
・ロッドが付く場合のコネクティング・ロッドの原型の
平面図である。第8図に示すC−C@面を示したのが第
9図である。第8図を分解して斜視図で示したものが第
10図である。第8図〜第10図によって明らかな様に
二本−組のコネクティング・ロッドの形態は、ピストン
側の軸受部分を除いて対称形である。ピストン側の軸受
部分は、第9[1211に示す様に、ねIhせた状態で
Z方向に対して対称である必要上図の様になる(2方向
に対称でないと、作動時に軸に偶力が生ずることがある
。)。即ち、第8図〜第10図によって示す一対のコネ
クティング・ロッドは、その質量がX軸に対して対称に
運動するので、第7図に示す「無振動ピストン機構」に
おいて有効である。
Next, - set of "4@polar intertone tooth market" and 2 sets of "piston"
When these four qualities are the same (the shapes are partially different, see Figure 10) and are connected by a connecting rod, the ``-potential'' of the simplest type of ``vibration-free piston mechanism'' as shown in Figure 7 is obtained. I can do it. This example is the same as the case shown in FIG. 5, except that a pair of connecting rods are connected to one piston, and there are two pistons. First, a case where a pair of connecting rods are coupled to one piston will be described. In order to prevent vibration or reaction from occurring when the connecting rod is operated, the shape and mass of the connecting rod become issues. 8th
The figure is a plan view of a prototype of a connecting rod in the case where two connecting rods are attached to one piston. FIG. 9 shows the CC@ plane shown in FIG. 8. FIG. 10 is an exploded perspective view of FIG. 8. As is clear from FIGS. 8 to 10, the configuration of the two sets of connecting rods is symmetrical except for the bearing portion on the piston side. As shown in No. 9 [1211], the bearing part on the piston side must be symmetrical with respect to the Z direction when it is in a reclined state. force may be generated). That is, the pair of connecting rods shown in FIGS. 8 to 10 are effective in the "vibration-free piston mechanism" shown in FIG. 7 because their masses move symmetrically with respect to the X-axis.

以下、上記の二種類の無振動ピストン機構の[@似形J
を連結する場合について述べる。まず、一単位に四つの
ピストンを持つ連結の場合を示すと、−例として第11
図の様になる。四@極同調歯車はそれ自体がクランクを
兼ねる(クランクを別にして四重極同調歯車に連結する
方法も可)、と同時に各ピストンに作用する力を互いに
連結する作用をもつ。そして、第11図に示す様に連続
的に連結された等しい四重極同調歯車は、全て回転し互
いに同調する。この場合、−ピストンやコネクティング
・ロッドの同調はピストン機構の性能に対応して自在に
決めることが出来る。次に、一単位に二つのピストンを
持つ連結の場合を示すと、−例として第12図の様にな
る。そして、第12図に示す様に連続的に連結された等
しい画電極同調歯車は、全て回転し互いに同調する。こ
のS合、ピストンやコネクティング・ロッドの同調はピ
ストン機構の性能に対応して自在に決めることが出来る
。なお、上記の二個において、動力の「入出」に関して
は歯車自体、又は、歯車の軸のどちらからでも自由に[
入出J出来る。又、四@極]4調歯車は、複数のピスト
ンからの応力に対応して作動することがあるので、隣り
合う歯車が交互に原動車と従動車になることがある。そ
の様な場合に、第15図の様に二個の歯車を取り出して
みると、左側の歯車(A)が原動車となり右側の歯車(
10が従動車となって回転する時は、$16図の(a)
の様な状蝮で二つの歯車が接する。逆に、右側の歯車(
B)が原動11(となり左側の歯車(A)が従動車とな
って回転する時は、第16図の(b)の様な状態で二つ
の歯車が接する。従って、交t1:に(a)と(b)の
様な状態がくり返えされるときは振幅の小さな振動を発
生することがある。そこで、四重極同調歯I1.jにお
いては、歯車の歯形と精度と潤滑方式が重要な同額とな
るので以ドそれについて述べる。
Below, the above two types of vibration-free piston mechanisms [@Similar J
Let's discuss the case of concatenating. First, let us show the case of a connection with four pistons in one unit.-For example, the 11th
It will look like the figure. The quadrupole tuning gear itself doubles as a crank (it is also possible to use a separate crank and connect it to the quadrupole tuning gear), and at the same time it has the function of connecting the forces acting on each piston to each other. Then, as shown in FIG. 11, the four consecutively connected equal quadrupole tuning gears all rotate and synchronize with each other. In this case, the synchronization of the piston and connecting rod can be freely determined in accordance with the performance of the piston mechanism. Next, an example of a connection having two pistons in one unit is shown in FIG. 12. Then, as shown in FIG. 12, the continuously connected equal picture electrode tuning gears all rotate and synchronize with each other. In this S-coupling, the synchronization of the piston and connecting rod can be freely determined in accordance with the performance of the piston mechanism. In addition, in the above two units, power can be freely input and output from either the gear itself or the shaft of the gear.
I can enter and exit J. Also, since the four-adjustable gear may operate in response to stress from multiple pistons, adjacent gears may alternately act as a driving wheel and a driven wheel. In such a case, if you take out the two gears as shown in Figure 15, the gear on the left (A) will become the driving wheel and the gear on the right (
When 10 rotates as a driven wheel, (a) in Figure 16
The two gears meet in a similar shape. On the other hand, the gear on the right (
When the drive 11 (B) rotates and the left gear (A) becomes the driven wheel, the two gears come into contact as shown in FIG. 16 (b). Therefore, at the intersection t1: (a ) and (b) are repeated, small-amplitude vibrations may occur.Therefore, for quadrupole tuning teeth I1.j, the gear tooth profile, accuracy, and lubrication method are important. The amount will be the same, so I will talk about it below.

隣り合った歯車が交互に原#]市と従動車になるので、
歯車の形部は相醸に逆方向にも接触した形が良い。−例
としては「連続接触歯車」がある。第17図に示すもの
がそれである。
Adjacent gears alternately become the original and driven wheels, so
It is best for the shape of the gear to be in contact with each other in the opposite direction. - Examples include "continuous contact gears". This is shown in FIG.

ン、歯車は強度と同時に高精度であることを要す。次に
、潤を骨り弐としては、潤滑油を用いる方法と圧縮空気
を用いる方法と磁気を用いる方法等がある。
Gears need to be both strong and precise. Next, methods for increasing moisture include a method using lubricating oil, a method using compressed air, and a method using magnetism.

Lスヒの様な考慮をはらうことに因って、四重極同調歯
車は正常に作動する。従って、「無振動ピストン機構J
も正常に作動する。即ち、本発明の[無振動ピストン機
構」は、ピストン機構を用いる全ての機器において応用
することが出来るので、それ等の機器の振動による公害
等、及び、機器そのものの性能を向上させることが出来
る。−例としては、エンジンに用いた場合に、無振動と
なるので、セラミックスを材料とするエンジンの実用性
をより現実のものとさせる。そして、このセラミックス
・エンジンは、将来のエンジンが水素を燃料とする様に
なる時に高度の必然性を持つものである。何故なら、金
属性エンジンは水素に因って腐しよくし易いが、セラミ
ックス・エンジンでは腐しよくしないことが保障される
からである。
By taking such considerations as L-Shi, the quadrupole tuning gear operates normally. Therefore, "vibration-free piston mechanism J
also works properly. That is, the "vibration-free piston mechanism" of the present invention can be applied to all devices that use a piston mechanism, so it is possible to reduce pollution caused by vibrations of such devices and improve the performance of the devices themselves. . - For example, when used in an engine, there is no vibration, which makes engines made of ceramics more practical. And this ceramic engine is highly necessary when future engines start to use hydrogen as fuel. This is because metal engines are easily corroded by hydrogen, but ceramic engines are guaranteed not to corrode.

無振動ピストン機構は機械の材料革命にとって何句な手
段でもある。
The vibration-free piston mechanism is an ideal means for revolutionizing the materials of machinery.

なお、本発明の四重様「4調歯車を用いた「無振動ピス
トン機構Jの実施態様としては次の様なものがある。
In addition, there are the following embodiments of the vibration-free piston mechanism J using four-way gears according to the present invention.

■ −組の四1dilii同調歯巾と四組のピストン・
シリンダーとを四本のコネクテイング・ロッドで結合し
たもの。(第5図参照) ■ −組の四重様1crJIJIi歯車と二組のピスト
ン・シリンダーとを二本のコネクテイング・ロッドで結
合したもの。(第7図参照) +3)  h記(Dの眼位形態を平面的に連結したもの
。(第12図参IIfI) (/D L記■の眼位形態を平面的に連結したもの。(
第12図参照) (51h記■の眼位形態を14調歯車の軸を連結して立
体的に連結したもの。(@13図参照) (に)  ヒ記■の眼位形態を同m歯車の軸を連結して
立体的に連結したもの。(第14図参照)
■-set of four 1dilii synchronized tooth widths and four sets of pistons.
The cylinder is connected with four connecting rods. (See Figure 5) - A set of quadruple-like 1crJIJIi gears and two sets of pistons and cylinders are connected by two connecting rods. (Refer to Figure 7) +3) h (The eye position forms of D are connected in a plane. (See Figure 12 IIfI) (/D The eye position forms of L are connected in a plane. (
(Refer to Fig. 12) (The eye position form of 51h record ■ is three-dimensionally connected by connecting the shaft of the 14th adjustment gear. (See @13 figure) (See Figure 14)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、−組の「四重極同調歯車」を概念的に示した
平面図。 第2図は、第1図に示すA−A方向の断面図
。 第3図は、−組の四重極間調歯車の回転状態を示す
図(簡単の為、歯形は示していない。)。 第4図は、
四重様同調歯車の軸に符号を付した図(簡単の為、歯形
は示していない。)。 第5図は、−組の四重極同調歯車(この−例では、クラ
ンクを」にねている。)と四組のピストンを用いた無振
動ピストン機構の一電位の断面図。 第6図は、第5図
に示すB−Bh向の断面図。 第7図は、−組の四重様
同調歯車(この−例では、クランクを兼ねている。)と
二組のピストンを用いた無振動ピストン機構の一電位の
断面図。 第8図は、一つのピストンに二つのコネクテ
ィング・ロッドを連結する場合の一対のコネクテイング
・ロッドの平面図。 第9図は、第8図に示すC−C方
向の断面図。 @lO図は、第8図を分解して示した斜
視図。 第11図は、−組の四重様同調歯車と四つのピ
ストンとの組合せを一電位とする無振動ピストン機構を
平面的(四重様同調歯車の面と同じ面を指す)に連結し
た図(この図では三単位連結)。 第12図は、−組の
四或極同調歯車と二つのピストンとの組合せを一単位と
する無振動ピストン機構を平面的に連結した図(この図
では三単位連結)。 第13図は、第11図と同じ型の
は位を立体的(四重極同調歯車を構成する歯車の軸の方
向を指す)に連結した図(この図では三電位連結)。 
第14図は、第12図と同じ型の単位を立体的に連結し
た図(この図では三単位連結)。 第15図は、四噴極
同調歯車の部分である二つの隣り合う歯車についての回
転時の状態を示す図。 第16図は、第15図に示す二
つの歯車のかみ合いの谷状1!11 (a状態、b状部
)を示す図。 第17図は、四重極間調歯車に使用する
歯車における実用性ある歯形の一例である「連続接触歯
車」の図。 1・ ・歯−ri (実用ヒの一例として、連続接触歯
車:第17図俗啜)。 2・・・・歯巾の軸。 3・・
・・剛体(実際上は近似剛体ニー例として銅製)。 4
・・・・ピストン。 5・・・・コネクティング・ロッ
ド。 6・・・・シリンダー。 7・・・・ピストン側
のコネクティング・ロッドの軸。 8・・・・クランク
側のコネクティング・ロッドの軸。 9・・・・クラン
ク・ケース。 10・・・・吸入弁。 11・・・・排気弁。 12・
・・・クランク。 第1図          第2図 第5図 第6図 第7図 第8図 5 第11図 第12図 ・・i+:+図                  
       第16図 193− (j)        (b)
FIG. 1 is a plan view conceptually showing a negative set of "quadrupole tuning gears." FIG. 2 is a sectional view taken along the line A-A shown in FIG. 1. FIG. 3 is a diagram showing the rotational state of the - set of quadrupole interlocking gears (tooth profiles are not shown for simplicity). Figure 4 shows
Diagram with symbols attached to the shafts of the quadruple-like tuning gear (for simplicity, the tooth profile is not shown). FIG. 5 is a cross-sectional view of one potential of a non-vibration piston mechanism using a set of quadrupole tuning gears (in this example, the crank is in the "position" position) and four sets of pistons. FIG. 6 is a sectional view taken along the line B-Bh shown in FIG. 5. FIG. 7 is a cross-sectional view of one potential of a vibration-free piston mechanism using a set of quadruple-like tuning gears (in this example, it also serves as a crank) and two sets of pistons. FIG. 8 is a plan view of a pair of connecting rods when two connecting rods are connected to one piston. FIG. 9 is a sectional view taken along the line CC shown in FIG. 8. Figure @1O is an exploded perspective view of Figure 8. Figure 11 is a diagram in which a non-vibration piston mechanism is connected in a plane (pointing to the same surface as the surface of the quadruple-like tuning gears), in which the combination of the quadruple-like tuning gears and four pistons is at one potential. (In this figure, three units are connected). FIG. 12 is a diagram in which a non-vibration piston mechanism, in which one unit is a combination of a set of four-pole synchronized gears and two pistons, is connected in a plane (three units are connected in this figure). FIG. 13 is a diagram in which the same type of points as in FIG. 11 are three-dimensionally connected (pointing in the direction of the axis of the gears forming the quadrupole tuning gear) (three-potential connection in this figure).
Fig. 14 is a diagram in which units of the same type as Fig. 12 are three-dimensionally connected (three units are connected in this figure). FIG. 15 is a diagram showing the state of rotation of two adjacent gears that are part of a four-pole tuning gear. FIG. 16 is a diagram showing the valley shape 1!11 (a state, b shape part) of the meshing of the two gears shown in FIG. 15. FIG. 17 is a diagram of a "continuous contact gear" which is an example of a practical tooth profile of a gear used in a quadrupole interstage gear. 1. ・Tooth-ri (As an example of a practical example, a continuous contact gear: Figure 17). 2... Axis of tooth width. 3...
...Rigid body (actually made of copper as an example of an approximate rigid body). 4
····piston. 5... Connecting rod. 6...Cylinder. 7...Axle of the connecting rod on the piston side. 8...The shaft of the connecting rod on the crank side. 9...Crank case. 10... Suction valve. 11...Exhaust valve. 12・
···crank. Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 Figure 8 Figure 5 Figure 11 Figure 12...i+:+ figure
Figure 16 193- (j) (b)

Claims (1)

【特許請求の範囲】[Claims] 「四屯極間調歯市」を中心として、ピストンやコネクテ
ィング・ロッドを対称形に配置することに因って実現す
る、その作動時にMmや反動を生じ無い「無振動ピスト
ン機構」。
A "vibration-free piston mechanism" that produces no Mm or recoil during operation is achieved by symmetrically arranging the piston and connecting rod around the "Situn pole intertone tooth market".
JP3063982A 1982-03-01 1982-03-01 Non-vibrating piston mechanism Pending JPS58149435A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3063982A JPS58149435A (en) 1982-03-01 1982-03-01 Non-vibrating piston mechanism
PCT/JP1983/000061 WO1983003125A1 (en) 1982-03-01 1983-03-01 Vibrationless piston mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063982A JPS58149435A (en) 1982-03-01 1982-03-01 Non-vibrating piston mechanism

Publications (1)

Publication Number Publication Date
JPS58149435A true JPS58149435A (en) 1983-09-05

Family

ID=12309403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063982A Pending JPS58149435A (en) 1982-03-01 1982-03-01 Non-vibrating piston mechanism

Country Status (2)

Country Link
JP (1) JPS58149435A (en)
WO (1) WO1983003125A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192830A (en) * 1984-03-15 1985-10-01 Honda Motor Co Ltd Multi-cylinder internal-combustion engine
US4998511A (en) * 1987-10-16 1991-03-12 Avermaete Gilbert L Ch H L Van Compression ignition engine with variable swept volume
JP2008163916A (en) * 2006-12-26 2008-07-17 Shigeru Yamamoto Simultaneous explosion vibrationless engine
WO2014118906A1 (en) * 2013-01-30 2014-08-07 三菱重工業株式会社 Hydraulic system, wind turbine generator, and methods for controlling hydraulic system and wind turbine generator
CN104696091A (en) * 2015-02-13 2015-06-10 吴三社 Cylinder structure of two-wheeled simple double-cylinder engine
JP2015124671A (en) * 2013-12-26 2015-07-06 株式会社 近藤工作所 Automobile engine output takeout device
WO2020166098A1 (en) * 2019-02-14 2020-08-20 株式会社石川エナジーリサーチ Power unit

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1242090B (en) * 1990-12-06 1994-02-16 Rolando Poeta REVERSIBLE TRANSFORMATION APPARATUS FROM ROTARY MOTORCYCLE IN SELF-DRIVEN RECTILINEOUS MOTORCYCLE
WO1997001694A1 (en) * 1995-06-26 1997-01-16 Kimberley Vere Sadleir Multiple crankshaft ic engine
DE19927770A1 (en) * 1998-06-17 2000-01-13 Gerhard Kleiber Multiple cylinder IC engine
GB2349417A (en) * 1999-04-26 2000-11-01 Brian Mawdsley I.c. engine with piston connected by two con-rods to a pair of contra-rotating crankshafts
DE10348345B4 (en) * 2003-10-17 2005-09-01 Neander-Motorfahrzeuge Gmbh Reciprocating internal combustion engine
JP2008045516A (en) * 2006-08-18 2008-02-28 Shiyounai Yasuda Internal combustion engine or compression equipment of low vibration
RU2658209C1 (en) * 2017-07-11 2018-06-19 Василий Иванович Шитов Mechanism of motion convertion for piston machine
FR3070055A1 (en) * 2017-08-10 2019-02-15 Henry Pierre Brondet FOUR-STROKE ENGINE TWO HORIZONTAL CYLINDERS AND FOUR PIPES
MX2017016749A (en) * 2017-12-19 2019-06-20 Active Financial S A De C V Fluid compressor-recirculator.
CN110206847B (en) * 2019-06-20 2020-12-29 上海大学 Space multi-connecting-rod anti-swing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1528118A (en) * 1977-08-26 1978-10-11 United Stirling Ab & Co Double-acting hot gas engine assemblage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192830A (en) * 1984-03-15 1985-10-01 Honda Motor Co Ltd Multi-cylinder internal-combustion engine
JPH0454047B2 (en) * 1984-03-15 1992-08-28 Honda Motor Co Ltd
US4998511A (en) * 1987-10-16 1991-03-12 Avermaete Gilbert L Ch H L Van Compression ignition engine with variable swept volume
JP2008163916A (en) * 2006-12-26 2008-07-17 Shigeru Yamamoto Simultaneous explosion vibrationless engine
WO2014118906A1 (en) * 2013-01-30 2014-08-07 三菱重工業株式会社 Hydraulic system, wind turbine generator, and methods for controlling hydraulic system and wind turbine generator
JP2015124671A (en) * 2013-12-26 2015-07-06 株式会社 近藤工作所 Automobile engine output takeout device
CN104696091A (en) * 2015-02-13 2015-06-10 吴三社 Cylinder structure of two-wheeled simple double-cylinder engine
WO2020166098A1 (en) * 2019-02-14 2020-08-20 株式会社石川エナジーリサーチ Power unit
CN112135965A (en) * 2019-02-14 2020-12-25 株式会社石川能源研究 Power unit
CN112135965B (en) * 2019-02-14 2022-05-31 株式会社石川能源研究 Power unit

Also Published As

Publication number Publication date
WO1983003125A1 (en) 1983-09-15

Similar Documents

Publication Publication Date Title
JPS58149435A (en) Non-vibrating piston mechanism
US3075506A (en) Spherical trajectory rotary power device
US20100031916A1 (en) Hypocycloid Engine
US20070062469A1 (en) Rotary radial internal combustion piston engine
US6006619A (en) Internal combustion engine with improved orbital crankshaft motion converter
US4682569A (en) Oscillatory motion apparatus
US9528585B2 (en) Piston engine
US2257884A (en) Angular displacement engine or compressor
JPH05503346A (en) A device that reversibly converts rotational motion into self-guided linear motion.
EP0167149B1 (en) Oscillatory motion apparatus
CN110195651B (en) Engine
JPS62182442A (en) Hypo cycloid crank internal combustion engine
CA2248719A1 (en) Continuously rotating engine
JP2004239182A (en) Engine piston drive mechanism
JP2010169045A (en) Balance device in multicylinder internal combustion engine
CN103061881A (en) Oscillating transmission internal combustion engine comprising convex inner cam with optional inner tooth differences
RU2405939C2 (en) Hinged-piston mechanism
JP3426113B2 (en) Reciprocating piston mechanism
JPS58166159A (en) Changing mechanism for reciprocating motion and rotational motion
RU2751012C1 (en) Multi-piston lever mechanism
KR970004671B1 (en) Oldham drive engine
US2561261A (en) Counterbalanced and counteraction internal-combustion engine
JPH10141082A (en) Opposed cylinder type engine and reciprocating machine
JP2010196691A (en) In-line multiple cylinder reciprocating engine using hypocycloid planetary gear mechanism without counter weight
RU2305785C2 (en) Multirotor internal combustion engine