JPS5814935B2 - Leaf spring manufacturing method - Google Patents
Leaf spring manufacturing methodInfo
- Publication number
- JPS5814935B2 JPS5814935B2 JP53130104A JP13010478A JPS5814935B2 JP S5814935 B2 JPS5814935 B2 JP S5814935B2 JP 53130104 A JP53130104 A JP 53130104A JP 13010478 A JP13010478 A JP 13010478A JP S5814935 B2 JPS5814935 B2 JP S5814935B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- leaf spring
- cfrp
- gfrp
- glass fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000463 material Substances 0.000 claims description 17
- 239000003365 glass fiber Substances 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 11
- 239000004917 carbon fiber Substances 0.000 claims description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 230000007935 neutral effect Effects 0.000 claims description 8
- 238000009730 filament winding Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 229920001187 thermosetting polymer Polymers 0.000 claims description 6
- 238000003475 lamination Methods 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 19
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 description 18
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 description 18
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000003733 fiber-reinforced composite Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000000805 composite resin Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- -1 felt Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000009787 hand lay-up Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910001234 light alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/56—Winding and joining, e.g. winding spirally
- B29C53/564—Winding and joining, e.g. winding spirally for making non-tubular articles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/366—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
- F16F1/368—Leaf springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/774—Springs
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Springs (AREA)
- Moulding By Coating Moulds (AREA)
Description
【発明の詳細な説明】
本発明はスチールの機械特性に劣らず、しかも耐衝撃性
、耐疲労性、安全性に優れた軽量化に有効な繊維強化複
合材料よりなるリーフスプリングの製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a leaf spring made of a fiber-reinforced composite material that has mechanical properties comparable to those of steel, has excellent impact resistance, fatigue resistance, and safety, and is effective in reducing weight. It is.
更に詳しくはリーフスプリングの形状に対応した少なく
とも一つ以上の弧を有するマンドレルに熱硬化性樹脂を
含浸させたガラス繊維、炭素繊維の糸条又は帯状物を、
中立軸を対称軸として厚さ方向に対称に最外層がガラス
繊維強化樹脂(以下GFRPと記す)、内層が炭素繊維
強化樹脂(以下CFRPと記す)、中立軸を含む中心層
がガラス繊維強化樹脂の構造からなる如く、それぞれフ
ィラメントワインデイング又は巻回積層したのち、硬化
せしめた成形物を各リーフスプリング単位に切断して多
数のリーフスプリングを得るようにしたことを特徴とす
るリーフスプリングの製造方法に関するものである。More specifically, a thread or strip of glass fiber or carbon fiber is impregnated with a thermosetting resin on a mandrel having at least one arc corresponding to the shape of the leaf spring.
Symmetrically in the thickness direction with the neutral axis as the axis of symmetry, the outermost layer is glass fiber reinforced resin (hereinafter referred to as GFRP), the inner layer is carbon fiber reinforced resin (hereinafter referred to as CFRP), and the center layer including the neutral axis is glass fiber reinforced resin. A method for manufacturing a leaf spring, which comprises the steps of: filament winding or winding and lamination, and then cutting the cured molded product into individual leaf spring units to obtain a large number of leaf springs. It is related to.
本発明により得られたリーフスプリングの構造は式
(E1, E2, E3ほ第2図に示す第1層、第2層
、第3層を形成するGFRP,CFRPの弾性率、t1
,t2,t3は第2図に示す0−σ(中立軸)からの厚
さ)を満足する自動車用リーフスプリングが望ましい。The structure of the leaf spring obtained according to the present invention is expressed by the following formula (E1, E2, E3 are the elastic moduli of GFRP and CFRP forming the first, second and third layers shown in FIG. 2, t1
, t2, t3 are thicknesses from 0-σ (neutral axis) shown in FIG. 2).
省資源、省エネルギーは世界的な課題となっている。Resource and energy conservation have become global issues.
と《に自動車の燃料消費効率の改善が今日的問題となり
、その二つの方策として自動車の軽量化が進められてい
る。Improving the fuel consumption efficiency of automobiles has become a current issue, and two measures to achieve this goal include reducing the weight of automobiles.
軽量化のために各種部材をより軽量な材料、例えば軽合
金、プラスチック、繊維強化複合材料等が検討され機械
的強度が要求されない構成部材はこれらが代替使用され
ている。In order to reduce the weight, lighter materials such as light alloys, plastics, and fiber-reinforced composite materials are being considered for various parts, and these are being used instead for structural parts that do not require mechanical strength.
しかしながら自動車の重要なボデイ、ドライブシャフト
、リーフスプリング等の主要な構造材料には強度、弾性
率、耐疲労性、耐衝撃性等の点で充分信頼しうる材料が
ないため、現在も尚金属材料を主体に使用されており、
したがって自動車の効果的な軽量化には多くの問題が残
されている。However, as there are no materials that are sufficiently reliable in terms of strength, modulus of elasticity, fatigue resistance, impact resistance, etc. for the main structural materials of automobiles, such as the important bodies, drive shafts, and leaf springs, metals are still used. It is mainly used for
Therefore, many problems remain in effectively reducing the weight of automobiles.
本発明の目的はスチール製リーフスプリングと比べ耐疲
労性、耐衝撃性、耐摩擦性等の機械特性が優れ、安全性
の高い、より軽量化された繊維強化複合材料よりなるリ
ーフスプリングの製造方法を提供するものである。The purpose of the present invention is to produce a leaf spring made of fiber-reinforced composite material that is lighter and has superior mechanical properties such as fatigue resistance, impact resistance, and friction resistance compared to steel leaf springs, and is highly safe. It provides:
本発明により得られたリーフスプリングを使用すること
により軽量化が実現できるとともに燃費節減に大きく寄
与することができる。By using the leaf spring obtained according to the present invention, weight reduction can be achieved and it can greatly contribute to fuel savings.
スチールと異なって錆、腐蝕による材料寿命の低下、金
属の疲労およびこれにともなう事故の発生等がない点も
繊維強化複合材料からなるリーフスプリングの特徴の一
つである。One of the characteristics of leaf springs made of fiber-reinforced composite materials is that, unlike steel, there is no reduction in material life due to rust or corrosion, metal fatigue, or the occurrence of accidents associated with this.
リーフスプリングの軽量化、機械特性の点に関して炭素
繊維強化樹脂およびガラス繊維強化樹脂複合材料が使用
されることが報告されている。It has been reported that carbon fiber reinforced resin and glass fiber reinforced resin composite materials are used to reduce the weight and improve mechanical properties of leaf springs.
しかしこれらCFRP,GFRPを単独使用することは
根本的な問題がある。However, there is a fundamental problem in using these CFRP and GFRP alone.
すなわちCFRPは耐衝撃性が劣り、GFRPは耐疲労
性が劣る欠点があるため単独ではリーフスプリング構造
材料に要求される諸性能、適性に欠ける。That is, CFRP has poor impact resistance, and GFRP has poor fatigue resistance, so that they alone lack the various performances and suitability required for leaf spring structural materials.
CFRPよりなる層とGFRPよりなる層を一体成形し
たハイブリット構造のリーフスプリング、とくに中心に
GFRP層を、外層にCFRP層を有するリーフスプリ
ングは公知である。A leaf spring having a hybrid structure in which a layer made of CFRP and a layer made of GFRP are integrally molded is known, particularly a leaf spring having a GFRP layer in the center and a CFRP layer in the outer layer.
これは曲げ剛性が高くしかもCFRPの伸度が小さいた
め吸収エネルギーが小さく又CFRPの衝撃強度が小さ
いことなどから走行中に小石、金属片等の異物が当った
場合破壊を起し事故につながる危険がある。This is because the bending rigidity is high and the elongation of CFRP is low, so the absorbed energy is small, and the impact strength of CFRP is low, so if it is hit by foreign objects such as pebbles or metal pieces while driving, it may cause damage and lead to an accident. There is.
更に外層にGFRP層、内層にCFRP層を有するリー
フスプリングも公知である。Furthermore, leaf springs having a GFRP layer as an outer layer and a CFRP layer as an inner layer are also known.
しかし高価なCFRPを応力のほとんどかからない中心
層に用いることは無意味であり、一万GFRPの疲労強
度が強いためにGFRP層とCFRP層の厚さの比によ
っては耐久性に劣る等の問題があった。However, it is meaningless to use expensive CFRP for the center layer, which is hardly subjected to stress, and since the fatigue strength of 10,000 GFRP is high, there are problems such as poor durability depending on the ratio of the thickness of the GFRP layer and the CFRP layer. there were.
従来の繊維強化複合材科によるリーフスプリングの製造
はハンドレイアツプ法等いわゆる積層によるものがほと
んどあり、この方法では数量に制限があるうえに成形時
間が長いためコストアップになる。Most of the conventional manufacturing of leaf springs using fiber-reinforced composite materials is by the so-called lamination method such as the hand lay-up method, and this method not only limits the quantity but also increases the cost due to the long molding time.
更に品質が一定せずしいては事故につながる等の問題が
あった。Furthermore, there were problems such as inconsistent quality, which could lead to accidents.
本発明者はこれら従来のスチールの機械特性に劣らず、
しかも耐衝撃性、耐疲労性、安全性に優れた軽量化に有
効な繊維強化樹脂複合材料よりなるリーフスプリングの
製造に関し疲意研究を重ねた結果本発明に到達したもの
である。The inventor has found that the mechanical properties of these conventional steels are as good as
Moreover, the present invention was achieved as a result of repeated fatigue research into manufacturing leaf springs made of fiber-reinforced resin composite materials that are effective in reducing weight and have excellent impact resistance, fatigue resistance, and safety.
すなわち本発明は熱硬化性樹脂を含浸したガラス繊維、
炭素繊維は糸条又は帯状物を、リーフスプリングの形状
に対応した複数の弧からなるマンドレルに中立軸を対称
軸として厚さ方向に対称に最外層がGFRP層、内層が
CFRP層、中立軸を含む中心層がGFRP層の積層構
造になる如くフィラメントワインデイング又は巻回積層
した後、硬化させ、しかる後該成形物をマンドレルより
抜取り、所定の寸法に切断して多数のリーフスプリング
を同時に製造するものである。That is, the present invention uses glass fiber impregnated with a thermosetting resin,
Carbon fiber is a yarn or a strip-shaped material that is placed on a mandrel consisting of multiple arcs corresponding to the shape of a leaf spring, and symmetrically in the thickness direction with the neutral axis as the axis of symmetry, with the outermost layer being a GFRP layer and the inner layer being a CFRP layer. After filament winding or winding lamination is performed so that the center layer contains a laminated structure of GFRP layers, it is cured, and then the molded product is extracted from a mandrel and cut into predetermined dimensions to simultaneously manufacture a large number of leaf springs. It is something.
本発明により得られたリーフスプリングの断面構造を概
念図で示したものが第2図である。FIG. 2 is a conceptual diagram showing the cross-sectional structure of a leaf spring obtained according to the present invention.
4,6はGFRP層、5はCFRP層を示す。4 and 6 are GFRP layers, and 5 is a CFRP layer.
本発明において6の最外層にCFRPより耐衝撃性の優
れたGFRPを用いることにより耐衝撃性を向上させる
。In the present invention, impact resistance is improved by using GFRP, which has better impact resistance than CFRP, for the outermost layer of No. 6.
5の内層(中間層)は高弾性率、耐疲労特性、振動減衰
性の優れたCFRPを使用することによりリーフスプリ
ングに要求される強度特性をカバーする。The inner layer (intermediate layer) of No. 5 covers the strength characteristics required for leaf springs by using CFRP, which has high elastic modulus, fatigue resistance, and excellent vibration damping properties.
4の中心層は応力分布から強度的にはそれ程強いものは
要求されず安価なガラス繊維からなるGFRPを使用積
層することにより機械特性に優れしかも安全性の高い軽
量化されたリーフスプリングが製造される。The center layer of No. 4 does not need to be very strong due to the stress distribution, so by laminating GFRP made of inexpensive glass fiber, a lightweight leaf spring with excellent mechanical properties and high safety can be manufactured. Ru.
本発明によって得られるリーフスプリングの各層の厚さ
の割合については第2図における第1層、第2層、第3
層の各層の材料の曲げ弾性率(JISK一6911)を
それぞれE1, E2, E3 として厚みをtl
, t2 , t3 とすれば及びt3−t2Th0.
5調
を満足するものが好ましいことを見出した。Regarding the ratio of the thickness of each layer of the leaf spring obtained by the present invention, the thickness of the first layer, second layer, and third layer in FIG.
The bending elastic modulus (JISK-6911) of the material of each layer is E1, E2, E3, and the thickness is tl.
, t2, t3, and t3-t2Th0.
It has been found that one that satisfies the 5th tone is preferable.
例えめ耐用年数が充分でなくなる。For example, the service life will not be sufficient.
又小石、金属片等異物の衝突よりCFRP層を守るため
には最外層のGFRP層の厚みt3−t2は0.5叫以
上であることが好ましい。In order to protect the CFRP layer from collisions with foreign objects such as pebbles and metal pieces, the thickness t3-t2 of the outermost GFRP layer is preferably 0.5 mm or more.
t1 は0.5t2以下であることが好ましい。It is preferable that t1 is 0.5t2 or less.
t1 ≦0.5t2 であれば曲げ剛性、最大荷重に
はほとんど影響を与えることなく高価なCFRP層を少
なくすることができる。If t1≦0.5t2, the number of expensive CFRP layers can be reduced with almost no effect on bending rigidity or maximum load.
t1)0.5 t2 の場合は最大荷重の低下が無視で
きなくなる。In the case of t1)0.5 t2, the decrease in the maximum load cannot be ignored.
以上の如<tl z t2 s t3 を選ぶこと
により軽量で耐衝撃性、耐疲労性に優れ安全性の高い経
済的なリーフスプリングを得ることができる。By selecting <tl z t2 s t3 as described above, it is possible to obtain an economical leaf spring that is lightweight, has excellent impact resistance and fatigue resistance, and is highly safe.
更に本発明によるリーフスプリングにおいては層間剪断
強度S1 とくに繰返し荷重後の疲労層間剪断応力SF
が小さいGFRP層を中心層に使用するので疲労あるい
は予想外の大荷重が加わった場合においてもリーフスプ
リング全体が破断する前に中心のGFRPとCFRPの
間において層間剥離が起るように製作することが可能で
あり、これにより安全性を持たせることができる。Furthermore, in the leaf spring according to the present invention, the interlaminar shear strength S1, especially the fatigue interlaminar shear stress SF after repeated loading
Since a GFRP layer with a small amount is used for the center layer, even if fatigue or an unexpected large load is applied, delamination will occur between the center GFRP and CFRP before the entire leaf spring ruptures. is possible, which provides security.
本発明のGFRP,CFRPを構成する樹脂は熱硬化性
樹脂が使用可能である。A thermosetting resin can be used as the resin constituting the GFRP and CFRP of the present invention.
熱硬化性樹脂としては例えばエポキシ樹脂、不飽和ポリ
エステル樹脂、フェノール樹脂、アルキド樹脂、フラン
樹脂、メラミン樹脂等である。Examples of thermosetting resins include epoxy resins, unsaturated polyester resins, phenol resins, alkyd resins, furan resins, and melamine resins.
強化繊維の使用形態はフィラメントヤーン、スパンヤー
ン、ストランド等の糸条であり、これに熱硬化性樹脂を
含浸せしめ巻角度を変えてフィラメントワインデイング
をする。The reinforcing fibers are used in the form of filament yarns, spun yarns, strands, etc., which are impregnated with a thermosetting resin and then filament wound by changing the winding angle.
この場合糸条のプリプレグを用いてもよい。In this case, yarn prepreg may be used.
また、繊維を一方向に均一配列せしめたテープ又はシー
トあるいはフエルト、不織布、編物、織物等の帯状物に
樹脂を含浸させて巻回積層をする。Alternatively, a tape or sheet in which fibers are uniformly arranged in one direction, or a belt-like material such as felt, nonwoven fabric, knitted fabric, or woven fabric is impregnated with a resin and then rolled and laminated.
この場合これらの帯状物のプリプレグを用いてもよい。In this case, prepregs of these strips may be used.
フィラメントワインディング又は巻回積層したのち、硬
化せしめた成形物を切断してリーフスプリングにするこ
とができる。After filament winding or winding and lamination, the cured molding can be cut into leaf springs.
本発明においてリーフスプリングの形状に対応した弧と
は円、楕円、双曲線、放物線、等の一部その他多次元関
数によって形成される曲線の一部を意味する。In the present invention, the arc corresponding to the shape of the leaf spring means a part of a circle, an ellipse, a hyperbola, a parabola, etc., or a part of a curve formed by a multidimensional function.
以下実施例により本発明を説明するが本発明はこれら実
施例に限定されるものではない。The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.
実施列 1
第1図に示す如き3個の同一円弧を有する長さ1400
mmのマンドレルにビスフェノール型、エポキシ樹脂を
含浸させたガラス繊維、炭素繊維を中立軸を対称軸とし
て厚さ方向に対称になるよう、まずはじめにガラス繊維
をマンドレル軸に対し第1図のθが±45°で3問の厚
さでフィラメントワインデイングし、次に炭素繊維を2
mmになるよう第1図のθが0°となる如くフィラメン
トワインデイングし、更にその上に中心層になるガラス
繊維を3mmにフィラメントワインデイングする。Implementation row 1 Length 1400 with three identical circular arcs as shown in Figure 1
In order to make glass fibers impregnated with bisphenol type, epoxy resin, and carbon fibers on a mm mandrel so that they are symmetrical in the thickness direction with the neutral axis as the axis of symmetry, we first set the glass fibers so that θ in Figure 1 is ± ± with respect to the mandrel axis. Filament winding at 45° with 3 thicknesses, then 2 carbon fibers
The filament was wound so that θ in FIG. 1 was 0° so that the thickness of the glass fiber was 3 mm.
この中立軸を含む中心層が対称になる如《炭素繊維を2
mmの厚さにフィラメントワインデイングし、最後に最
外層にガラス繊維を±45°で3mmにフィラメントワ
インテイングしたものを150℃で30分7kg/cm
2の圧力で硬化せしめた。So that the center layer including this neutral axis becomes symmetrical,
Filament winding to a thickness of mm, and finally filament winding to a thickness of 3 mm with glass fiber as the outermost layer at ±45 degrees at 150℃ for 30 minutes at 7 kg/cm
It was cured at a pressure of 2.
次にこの成形物をマンドレルから抜取り、該成形物を巾
70調に輪切し、これを更に3個に弧端部分を切断し1
個のマンドレルから60個のリー7スプリングを製造し
た。Next, this molded product was pulled out from the mandrel, and the molded product was cut into rounds with a width of 70 mm, and the arc end portion was cut into 3 pieces.
Sixty Lee 7 springs were manufactured from four mandrels.
このリーフスプリングのうちからランダムに3個抜取り
、各種性能を測定した結果を第1表に示す。Three leaf springs were randomly selected from among these leaf springs and various performances were measured, and the results are shown in Table 1.
表から明らかな如くスチール製リーフスプリングと比べ
剛性率は殆んど同じ値を示す。As is clear from the table, the rigidity ratio is almost the same as that of the steel leaf spring.
重さは本発明による繊維強化複合材料からなるリーフス
プリングがスチール製に比べ約173の重量であり著し
く軽量化することができた。The leaf spring made of the fiber-reinforced composite material according to the present invention weighs about 173 times less than the leaf spring made of steel, which is a significant reduction in weight.
実施例 2
実施例1と同じマンドレルを使用し、Q−1112タイ
プエポキシ樹脂(東邦ベスロン社製)を含浸したガラス
クロススプリプレグおよび1方向炭素繊維プリプレグを
第2図の第1層、第3層がガラスクロスプリプレグ、第
2層が1万向炭素繊維プリプレグとなり、各層の厚みt
1, t2 , t3 が第2表となる如く巻回積層し
150℃、7kg/cm2の圧力で1時間加圧すること
により圧縮成形し巾50mm長さ1 2 0 0WIn
,曲率半径1100mでA1,2に示す厚みを有する2
種のリーフスプリングを得た。Example 2 Using the same mandrel as in Example 1, glass cloth prepreg and unidirectional carbon fiber prepreg impregnated with Q-1112 type epoxy resin (manufactured by Toho Bethlon Co., Ltd.) were applied to the first and third layers in Fig. 2. is glass cloth prepreg, the second layer is 10,000 sided carbon fiber prepreg, and the thickness of each layer is t.
1, t2, and t3 as shown in Table 2, and compression molded by pressing at 150°C and 7 kg/cm2 for 1 hour to obtain a width of 50 mm and a length of 1200 WIn.
, 2 with a radius of curvature of 1100 m and a thickness shown in A1,2
Seed leaf spring was obtained.
第2表に示す如《これらのリーフスプリングの両端を支
持し中央に荷重をかけた時の破断荷重Wk誌2の方が優
れていたが、106回繰返し荷重の疲労破断荷重は魔1
の方が優れていた。As shown in Table 2, the breaking load Wk when both ends of these leaf springs were supported and a load was applied to the center was better, but the fatigue breaking load after 106 repeated loads was 1.
was better.
同ガラスクロスプリプレグ、1方向炭素繊維プリプレグ
を別々に上記条件で成形した時の曲げ弾性率はそれぞれ
2.3 ton/mj( : Et =Es )、1
4 ton/ya( : E2 )であった。When the same glass cloth prepreg and unidirectional carbon fiber prepreg were molded separately under the above conditions, the bending elastic modulus was 2.3 ton/mj (: Et = Es) and 1, respectively.
4 ton/ya (: E2).
第1図は本発明で使用するマンドレルの一例を示したも
のである。
第2図は本発明によるリーフスプリングの断面構造を示
す概念図。
1:マンドレル、2弧、3:フィラメント、4:第1層
(中心層)、5:第2層(内層)、6:第3層(最外層
)。FIG. 1 shows an example of a mandrel used in the present invention. FIG. 2 is a conceptual diagram showing the cross-sectional structure of the leaf spring according to the present invention. 1: mandrel, 2 arcs, 3: filament, 4: first layer (center layer), 5: second layer (inner layer), 6: third layer (outermost layer).
Claims (1)
るマンドレルに熱硬化性樹脂を含浸せしめたガラス繊維
、炭素繊維の糸条又は帯状物を中立軸を対称軸として厚
さ方向に対称に最外層がガラス繊維、内層が炭素繊維、
中立軸を含む中心層がガラス繊維の構造からなる如《、
それぞれフィラメントワインデイング又は巻回積層した
のち、硬化せしめた成形物を各リーフスプリング単位に
切断することを特徴とするリーフスプリングの製造方法
。1 A mandrel having multiple arcs corresponding to the shape of the leaf spring is made of glass fiber, carbon fiber yarn or band-like material impregnated with thermosetting resin as the outermost layer symmetrically in the thickness direction with the neutral axis as the axis of symmetry. is glass fiber, inner layer is carbon fiber,
As the central layer containing the neutral axis consists of a glass fiber structure,
A method for manufacturing leaf springs, which comprises cutting the cured molded product into individual leaf spring units after filament winding or winding and lamination.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53130104A JPS5814935B2 (en) | 1978-10-24 | 1978-10-24 | Leaf spring manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53130104A JPS5814935B2 (en) | 1978-10-24 | 1978-10-24 | Leaf spring manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5557737A JPS5557737A (en) | 1980-04-28 |
JPS5814935B2 true JPS5814935B2 (en) | 1983-03-23 |
Family
ID=15026035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53130104A Expired JPS5814935B2 (en) | 1978-10-24 | 1978-10-24 | Leaf spring manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5814935B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55126424A (en) * | 1979-03-23 | 1980-09-30 | Nissan Motor Co Ltd | Preparation of fiber reinforced resin leaf spring |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425986A (en) * | 1977-07-29 | 1979-02-27 | Toray Ind Inc | Leaf spring of fiber reinforced plastic |
-
1978
- 1978-10-24 JP JP53130104A patent/JPS5814935B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425986A (en) * | 1977-07-29 | 1979-02-27 | Toray Ind Inc | Leaf spring of fiber reinforced plastic |
Also Published As
Publication number | Publication date |
---|---|
JPS5557737A (en) | 1980-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3009311B2 (en) | Fiber-reinforced resin coil spring and method of manufacturing the same | |
US6273830B1 (en) | Tapered hollow shaft | |
US11376812B2 (en) | Shock and impact resistant structures | |
JPS58118401A (en) | Production method of rim made of continuous fiber reinforced plastic | |
CN100387445C (en) | Composite comprising organic fibers having low twist multiplier and improved compressive modulus | |
US5201971A (en) | Pneumatic tires containing a composite belt | |
JP2002137307A (en) | Blade structure of windmill made of fiber-reinforced resin | |
JPH09300497A (en) | Large-sized columnar body made of fiber-reinforced plastic | |
JPS6143579B2 (en) | ||
EP0293263A1 (en) | Rubber-reinforcing cords and radial-ply tires using the same | |
JP3771360B2 (en) | Tubular body made of fiber reinforced composite material | |
KR102278976B1 (en) | Bar-shaped component loaded in torsion | |
JPS5814935B2 (en) | Leaf spring manufacturing method | |
JP3319563B2 (en) | Spiral fabric and prepreg and rotating body using the same | |
US4176607A (en) | Rocket shell | |
JPS6041246B2 (en) | Fiber-reinforced plastic propeller shaft | |
KR101944870B1 (en) | Impact beam for car door | |
JP2646351B2 (en) | Pneumatic radial tire | |
JPH0776051A (en) | Frp panel and its manufacture | |
JPS5932503A (en) | Frp wheel rim | |
JPH11311101A (en) | Fiber reinforced plastic blade structure | |
KR100361546B1 (en) | Method for shaft produce of golf club | |
JPH08269809A (en) | Helmet | |
KR102047344B1 (en) | Impact beam for car door | |
JP3356363B2 (en) | High-speed rotating body |