JPS58148572A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS58148572A
JPS58148572A JP57031588A JP3158882A JPS58148572A JP S58148572 A JPS58148572 A JP S58148572A JP 57031588 A JP57031588 A JP 57031588A JP 3158882 A JP3158882 A JP 3158882A JP S58148572 A JPS58148572 A JP S58148572A
Authority
JP
Japan
Prior art keywords
base
solid
cavity
ccd
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57031588A
Other languages
Japanese (ja)
Other versions
JPH0432590B2 (en
Inventor
Nobutoshi Kihara
木原 信敏
Tadahiko Nakamura
忠彦 中村
Kazuo Yamazaki
和夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP57031588A priority Critical patent/JPS58148572A/en
Publication of JPS58148572A publication Critical patent/JPS58148572A/en
Publication of JPH0432590B2 publication Critical patent/JPH0432590B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To reduce the deterioration in the S/N of a picture output signal due to the increase in a dark current at an external temperature, by placing a solid- state image pickup element and a part of a cooling means in a cavity and evacuate the cavity. CONSTITUTION:A thermal conduction shaft 8 is operated to contact a heat sink 11 on a semiconductor fitting base 2, allowing to dissipate heat sufficiently from a semiconductor base 1 provided with a CCD. The heat sink 11 is detached from the base 2. Since the cavity 13 is in this state, the bases 1, 2 are interrupted from the surrounding thermally almost completely. The CCD is exposed and picture information is read out. Since the time required for the readout is one frame period, the power application is performed during this period only, then the self-heating of the CCD is minimized. In operating a CCD camera several times, the temperature of the base 1 is increased due to the self-heating and a dark current level is increased, then the heat sink 11 is contacted on the base 2 for the heat dissipation. Thus, the deterioration in the S/N of a picture output signal is reduced and the picture having high resolution is obtained.

Description

【発明の詳細な説明】 本発明は、COD、シリコンダイオードアレイ、MO&
)ランジスタアレイ、CHD等を用いた固体撮像装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides COD, silicon diode array, MO&
) It relates to a solid-state imaging device using a transistor array, CHD, etc.

上述のような固体撮像素子は、一般にシリコン半導体基
板上に形成されている。しかしシリコンを半導体材料と
する半導体素子は、良く知られているように暗電流が常
温でも10nA程度と比較的多い上に、10Cの温度上
昇によって暗電流は約2倍に増加する。このためシリコ
ンを用いた固体撮像素子では、暗11L流に起因するノ
イズ成分が温度に依存して増減する不都合が生ずる。換
言すれば、撮像索子に入射する光が一定′であれば、一
定レベルの撮像出力信号のS/Nか温度に依存し、従っ
て、感度が温度依存性を持つことになる。
A solid-state image sensor as described above is generally formed on a silicon semiconductor substrate. However, as is well known, a semiconductor element using silicon as a semiconductor material has a relatively large dark current of about 10 nA even at room temperature, and the dark current increases approximately twice as much as the temperature rises by 10C. Therefore, in a solid-state image sensor using silicon, a problem arises in that the noise component caused by the dark 11L flow increases or decreases depending on the temperature. In other words, if the light incident on the imaging probe is constant, the S/N of the imaging output signal at a constant level depends on the temperature, and therefore the sensitivity has temperature dependence.

またOODのような固体撮像装置では、暗電流が時間経
過に伴って蓄積され、解像度が劣化することが知られて
いる。例えば、X線写真装置の螢光面のような微弱な光
学情報をCODを通して電気的に読出す場合、螢光面か
らの入力光量は極度に低照度であるから、十分な画像情
報を取出すためにOODへの露光を長時間行う必要があ
る。ところが素子の暗電流はCODのポテンシャル井戸
に時間の経過に伴って蓄積され、結局、読出された画像
信号のS/Nが劣化する。
Furthermore, in solid-state imaging devices such as OOD, it is known that dark current accumulates over time and resolution deteriorates. For example, when electrically reading out weak optical information from the fluorescent surface of an X-ray device through a COD, the amount of input light from the fluorescent surface is extremely low, so it is difficult to extract sufficient image information. It is necessary to perform long-time exposure to OOD. However, the dark current of the element is accumulated in the potential well of the COD over time, and the S/N of the read image signal eventually deteriorates.

従って、CODのような固体撮像素子の光−電荷変換効
率は、通常の温度範囲では温度にあまり依存しないこと
を考えると、CODが形成された半導体基板の温度を低
下させることにより、撮像感度を大巾に向上させること
が可能である。!#劇昭56−37751号公報には、
この目的に関する1つの技術的手段が開示されている。
Therefore, considering that the light-to-charge conversion efficiency of solid-state imaging devices such as CODs does not depend much on temperature in the normal temperature range, imaging sensitivity can be improved by lowering the temperature of the semiconductor substrate on which CODs are formed. It is possible to significantly improve this. ! #Geki No. 56-37751,
One technical means for this purpose has been disclosed.

ところがCODの温度を低下させるには、大きな電力消
費を必要とする上、露滴の問題が生ずる。
However, lowering the temperature of the COD requires large power consumption and also causes the problem of dew droplets.

本発明は、この問題にかんがみ、冷却効率を向上させて
消費電力の低減を図ると共に、露滴の問題を回避し得る
ようにすることを目的とする。
In view of this problem, it is an object of the present invention to improve cooling efficiency, reduce power consumption, and avoid the dew drop problem.

以下本発明の実施例を図面に基いてin2明する。Embodiments of the present invention will be explained below based on the drawings.

菖1図は本発明を適用した固体撮像装置の光軸に沿った
縦断面図である。この撮像装置は、例えば、X線写真装
置の螢光面のような微弱な光学情報をCODカメラを通
して電気的に読出し、磁気シートレコーダ等に記録する
ようなシステムに用いるために考えられたものであるが
、勿論、一般的用途にも供し得るものである。この場合
、入力光量は極度に低照度であるから、CODの暗電流
を最小に押えて感度を最大にする必要がある。
Figure 1 is a longitudinal sectional view along the optical axis of a solid-state imaging device to which the present invention is applied. This imaging device was designed to be used in a system that electrically reads out weak optical information, such as from the fluorescent surface of an X-ray photographic device, through a COD camera and records it on a magnetic sheet recorder or the like. Of course, it can also be used for general purposes. In this case, since the amount of input light is extremely low, it is necessary to minimize the dark current of the COD and maximize the sensitivity.

第1図において、半導体基板(1)上にはOOD等の固
体撮像素子が形成されている。半導体基板(1)は熱導
体(例えば金属)の半導体取付基板(2)に固着され、
この半導体取付基板(2)は、断熱材で形成された円筒
または角筒形状の保持部材(3)の内壁面に断熱された
状態で保持される。半導体基板(11の撮像面の上部に
は、ガラス等の透明板(47が枠体(5)を介して前記
保持部材(3)の前面の開口部を密閉して蓋うように固
定されている。
In FIG. 1, a solid-state imaging device such as an OOD is formed on a semiconductor substrate (1). The semiconductor substrate (1) is fixed to a thermally conductive (e.g. metal) semiconductor mounting substrate (2),
This semiconductor mounting board (2) is held in a thermally insulated state on the inner wall surface of a cylindrical or square tube-shaped holding member (3) made of a heat insulating material. A transparent plate (47) made of glass or the like is fixed to the upper part of the imaging surface of the semiconductor substrate (11) so as to seal and cover the front opening of the holding member (3) via the frame (5). There is.

保持部材(3)の背面側には、その背面側開口を憂う如
くにダイアフラム保持部材(6)が取付けられ、その中
央部の開口を密閉するようにダイアフラム(7)が取付
けられている。ダイアフラム(7)はその中央部の開口
において熱伝導軸(8)を挿通・保持している。ダイア
フラム(7)と軸(8)とは気密リング(9)によって
密着固定される。なお熱伝導軸(8)は、棒状の金属音
たは熱伝導物質を封入したヒートパイプであってよい。
A diaphragm holding member (6) is attached to the back side of the holding member (3) so as to surround the opening on the back side, and a diaphragm (7) is attached so as to seal the opening in the center. The diaphragm (7) inserts and holds the heat conduction shaft (8) through an opening in the center thereof. The diaphragm (7) and the shaft (8) are tightly fixed by an airtight ring (9). Note that the heat conduction shaft (8) may be a rod-shaped metal pipe or a heat pipe filled with a heat conduction material.

熱伝導軸(8)は、軸受部材01こよって摺動自在に保
持され、その半導体取付基板(2)の側のm−には熱伝
導の良い受熱板aυが固定され、また他端には放熱フィ
ンa2が固定されている。
The heat conduction shaft (8) is slidably held by the bearing member 01, and a heat receiving plate aυ with good heat conduction is fixed to m- on the side of the semiconductor mounting board (2), and a heat receiving plate aυ with good heat conduction is fixed to the other end. A radiation fin a2 is fixed.

なお半導体基板(1)上の撮像素子の出力は信号巌αQ
を介して、端子u7tに導出される。この場合、撮像素
子の出力は直接に散出されてもよいが、半導体基板(1
1上に増巾回路を形成し、この増巾回路で出力信号を増
巾してから端子a7)に導出してもよい。
Note that the output of the image sensor on the semiconductor substrate (1) is the signal αQ.
It is led out to the terminal u7t via. In this case, the output of the image sensor may be directly emitted, but
An amplification circuit may be formed on the amplification circuit 1, and the output signal may be amplified by the amplification circuit and then outputted to the terminal a7).

上述の第1図の構成によれば、筒状の保持部材(3)の
内壁、前面側開口を蓋う透明板(4)、背面側開口を蒼
うダイアプラム(7)及びダイアフラム保持部材(6)
でもって、密閉された空洞OJが形成される。
According to the configuration shown in FIG. 1 described above, the inner wall of the cylindrical holding member (3), the transparent plate (4) that covers the front opening, the diaphragm (7) that covers the back opening, and the diaphragm holding member (6).
Thus, a sealed cavity OJ is formed.

この空洞03の内部は、空気抜き栓α委がはめ適才れた
穴から空気を排出することによって減圧されている。こ
のため半導体取付基板+21には、その前面側と背面四
とを連通させる複数の孔a樽が形成されている。9洞(
13内は完全に真窒である必要はなく1例えば0.1気
圧程度の減圧であってよい。
The inside of this cavity 03 is depressurized by discharging air from a hole into which an air vent plug α is fitted. For this reason, a plurality of holes a are formed in the semiconductor mounting board +21 to communicate the front side and the back side thereof. 9 caves (
The inside of the chamber 13 does not need to be completely filled with nitrogen, and may be reduced to, for example, about 0.1 atmosphere.

減圧された空洞OJ内の受熱板aDと、外部の放熱フィ
ンa3とを結合している熱伝導@ f81は、ダイアフ
ラム(7)を介して取付けられているので、密閉・減圧
状態を保った1才、半導体取付基板Uυの背面と受熱板
Uυの表面とを接離自在jと外部から操作できるように
なっている。
Thermal conduction @ f81 that connects the heat receiving plate aD in the depressurized cavity OJ and the external heat radiation fin a3 is attached via the diaphragm (7), so the airtight and depressurized state is maintained. In addition, the back side of the semiconductor mounting board Uυ and the surface of the heat receiving plate Uυ can be moved into and out of contact with each other and can be operated from the outside.

次に81図の固体撮像装置の動作を貌明する。Next, the operation of the solid-state imaging device shown in FIG. 81 will be explained in detail.

談ず熱伝導軸(8)を操作して牛導体取;付基板(2)
に受熱板aυを接触させて、CODが設けられた半導体
基板(11から熱を十分に放出させる。次に半導体基板
(2)から受熱板a1)を離す。この状態では、半導体
基板(1)及び半導体取付基板(2)は周囲から熱的に
ほぼ完全に速断される。すなわち、構造部材を伝わる熱
伝導は、熱絶縁体である保持部材(3)を通しての無視
できる程度の極めて低いレベルであり、また空洞0.3
)内の空気が排出させているから、対流伝熱も極めて低
いレベルである。従って、CODへの通電による自己発
熱以外の温度上昇要因は殆んど無く、長時間にわたって
半導体基板の温度を低く保つことができる。
Connect the conductor by operating the heat conduction shaft (8) without talking; the attached board (2)
The heat receiving plate aυ is brought into contact with the semiconductor substrate (11) provided with the COD to sufficiently release heat. Next, the heat receiving plate a1 is separated from the semiconductor substrate (2). In this state, the semiconductor substrate (1) and the semiconductor mounting substrate (2) are almost completely thermally isolated from the surroundings. That is, the heat conduction through the structural member is at an extremely low level that can be ignored through the retaining member (3) which is a thermal insulator, and the heat conduction through the structural member is at an extremely low level that can be ignored.
), the convective heat transfer is also at an extremely low level. Therefore, there is almost no temperature increase factor other than self-heating due to energization of the COD, and the temperature of the semiconductor substrate can be kept low for a long time.

次にCODを露光し、元情報が十分に電荷に変換された
状態で、CODに絖出しのための通電を行って、画像情
報モ絖出す。絖出しに要する時間は17ン一ム期間(1
730秒)であるから、この期間のみ通電を行えば、C
ODの自己発熱は最小に押えられる。
Next, the COD is exposed to light, and in a state in which the original information is sufficiently converted into electric charge, the COD is energized for printing, and image information is printed. The time required for threading is 17 nm period (1
730 seconds), so if the current is turned on only during this period, C
Self-heating of the OD is kept to a minimum.

CODカメラを何回か操作してその自己発熱によって基
板(11の温度が上昇し、暗電流レベルが増加した場合
、再び半導体取付基板(2)に受熱板01)を接触させ
て放熱を図る。この場合、暗電流レベルを測定してその
値または成る一定値を越えたことを表示させ、この表示
に基いて受熱板0υ、熱伝導軸(8)及び放熱フィンa
2からなる冷却装置を操作するように構成してもよい。
When the COD camera is operated several times and the temperature of the substrate (11) rises due to self-heating and the dark current level increases, the heat receiving plate 01 is brought into contact with the semiconductor mounting substrate (2) again to dissipate heat. In this case, measure the dark current level and display that it has exceeded that value or a certain value, and based on this display, heat receiving plate 0υ, heat conduction shaft (8) and heat dissipation fin a.
It may be configured to operate a cooling device consisting of two.

第2図は本発明の別の実施例を示す同様な縦断面図であ
る。第2図では、熱伝導軸(8)と放熱フィンa2との
間にベルチェ効果才たはトムソン効果を利用した熱電素
子(11が介在され、この熱電素子σ罎に電流源(至)
から電流を流して半導体基板(1)及び半導体取付基板
(2)を冷却するように構成されている。
FIG. 2 is a similar longitudinal cross-sectional view showing another embodiment of the invention. In Fig. 2, a thermoelectric element (11) utilizing the Beltier effect or Thomson effect is interposed between the heat conduction axis (8) and the radiation fin a2, and a current source (to) is connected to this thermoelectric element σ.
The semiconductor substrate (1) and the semiconductor mounting substrate (2) are cooled by passing a current through the semiconductor substrate (1) and the semiconductor mounting substrate (2).

他の構造はgi図と同じである。Other structures are the same as the gi diagram.

llX2Eノmt、4cヨht!、+導体Ti、lIi
mf−−5 。
llX2Enomt, 4cyoht! , + conductor Ti, lIi
mf--5.

C種度に保つことができ、CODの暗′岨流を十分に小
さくして続出し#jJ像の解像度を十分に高くすること
ができる。半導体取付基板(2)と受熱板aυとを接触
させると共に、熱電索子a1に通電して半導体基板(1
)を一旦冷却し、冷却装置と基板f2+とを分離すれば
、既述のように半導体基板、(11に流入する熱は十分
に遮断され得るから、冷却状態を長時間にわたって保つ
ことができる。tたCCDの読出し時の通電は既述のよ
うに1フレ一ム画面にっき1/30秒であるから、こね
による自己発熱も極めて微小である。
It is possible to maintain the C degree, and to make the COD dark current sufficiently small, it is possible to make the resolution of successive #jJ images sufficiently high. The semiconductor mounting board (2) and the heat receiving plate aυ are brought into contact, and the thermoelectric cable a1 is energized to attach the semiconductor board (1).
Once the semiconductor substrate ) is cooled and the cooling device and the substrate f2+ are separated, the heat flowing into the semiconductor substrate (11) can be sufficiently blocked as described above, so that the cooled state can be maintained for a long time. Since the energization during reading of the CCD is 1/30 seconds per frame as described above, the self-heating caused by kneading is extremely small.

tた熱電素子α9への通電は、冷却時のみで良いから、
その電力消費を十分に小さく押えることが可能である◇ 更に、半導体基板(1)の周囲の空気が排出さf+でい
るから、基板温度が一50c程度であっても、基板表面
に露滴が付着することは無い。またCODの前面側の透
明板(4)は室温と同じであるから、その前面及び背面
に露滴が付着することも防ける◇既述のように半導体基
板(IIの暗電流を検出して、その検肯結果に応・じて
冷却装置を操作または動作させることができるが、これ
を自動匍]#にすることも可能である。すなわち、CO
Dの自己発熱によって暗電流レベルが一定の基準値を越
えたならば、これを検出してmih装置を動作させ、受
熱板aυが半導体取付基板(2)に接触するように冷却
装置を往動させる。これと共に、スイッチ素子を動作さ
せ、熱電素子α優に通電を行う。暗電流レベルが基準値
よりも低下したならば、上述の電磁装置及びスイッチ素
子をオフにする。
Since the thermoelectric element α9 only needs to be energized during cooling,
It is possible to keep the power consumption to a sufficiently low level ◇ Furthermore, since the air around the semiconductor substrate (1) is exhausted and remains at f+, even if the substrate temperature is about 150℃, dew droplets will not form on the substrate surface. It will not stick. Also, since the transparent plate (4) on the front side of the COD is at the same temperature as the room temperature, it is possible to prevent dew droplets from adhering to the front and back surfaces of the transparent plate (4). , the cooling device can be operated or operated according to the inspection result, but it is also possible to make this automatic. In other words, the CO
When the dark current level exceeds a certain reference value due to self-heating of D, this is detected and the MIH device is activated, and the cooling device is moved forward so that the heat receiving plate aυ contacts the semiconductor mounting board (2). let At the same time, the switch element is operated to energize the thermoelectric element α. When the dark current level falls below a reference value, the electromagnetic device and switch element described above are turned off.

第2図の変形例として、CODが設けられた半導体基板
(1)を熱電素子■の冷却面に取付け、これらの半導体
基板(11と熱電素子a9bを第1図または第2図のよ
うに保持部材(31で保持した状態で減圧された空洞0
3内に配置してもよい。この場合、第1図と同様な構造
の冷却装置が熱電素子部の放電面に接離自在に設けられ
るのが望才しい。また第1図のような接離自在の冷却装
置及びダイアフラム(7)8設けずに、空洞03内を完
全密閉とし、熱電素子■の放熱面に固着された放熱部材
を空洞の外部まで導出して放熱を図ってもよい。この場
合、放熱部材を伝わっての外部から内部への熱伝導が多
少あるが、熱11X子を常時動作させて置くか、或いは
暗電R8検出してオン・オフすればこの問題を回避する
ことができる。また上述のように仝洞内部を減圧するこ
とによって、対流伝熱を少なくすることができるさ共に
、露結を防止できる。
As a modification of Fig. 2, a semiconductor substrate (1) provided with a COD is attached to the cooling surface of the thermoelectric element (1), and these semiconductor substrates (11) and the thermoelectric element a9b are held as shown in Fig. 1 or 2. The member (31 is held in a vacuumed cavity 0
It may be placed within 3. In this case, it is preferable that a cooling device having a structure similar to that shown in FIG. 1 be provided so as to be able to come into contact with and separate from the discharge surface of the thermoelectric element section. In addition, without providing the removable cooling device and diaphragm (7) 8 as shown in Fig. 1, the inside of the cavity 03 is completely sealed, and the heat dissipation member fixed to the heat dissipation surface of the thermoelectric element (■) is led out to the outside of the cavity. Heat dissipation may also be achieved by In this case, there is some heat conduction from the outside to the inside through the heat dissipation member, but this problem can be avoided by keeping the thermal 11X element running all the time, or by detecting the dark electricity R8 and turning it on and off. Can be done. Further, by reducing the pressure inside the cave as described above, convective heat transfer can be reduced and dew condensation can be prevented.

更に第2図の変形例として、受熱板Oυを半導体取付基
板(2)に固着して、冷却手段を接離自在とはせずに固
定してしまう構造も考えられる。この場合、熱電素子α
9の電流をオン・オフして半導体基板(1)の温度を一
定値以下に制御するように構成するのが望丈しい。
Furthermore, as a modification of FIG. 2, a structure in which the heat receiving plate Oυ is fixed to the semiconductor mounting board (2) and the cooling means is fixed without being freely detachable is also considered. In this case, the thermoelectric element α
It is desirable that the temperature of the semiconductor substrate (1) is controlled to be below a certain value by turning on and off the current of 9.

次に第6図は、更に別の実施例を示す固体撮像装置の縦
断面図である。この例では、熱電素子a9が外部からの
操作で半導体取付基板(2)に直接に接触され、また離
間されるような構造となっている。
Next, FIG. 6 is a longitudinal sectional view of a solid-state imaging device showing still another embodiment. In this example, the thermoelectric element a9 is configured to be brought into direct contact with the semiconductor mounting board (2) and separated from it by an external operation.

熱電素子■は2重1g造になっていて、縦長の半円筒形
の異種金属(19a)(19b)とが接合されて1つの
熱電素子が形成さ−れ、更にこれらの金jpA(19a
バ19b)の夫々に偏平な半円筒形の異種金1I4(1
9c)(19d)が接合されて、金属(19a)と(1
9c)とで1つの熱電索子、金属(19b)と(19d
)とで更に1つの熱電索子が形成されている。金属(1
9a)(19b)が吸熱側であり、金属(19c)(1
9d)が放熱側である。
The thermoelectric element (1) has a double 1g structure, and vertically long semi-cylindrical dissimilar metals (19a) (19b) are joined to form one thermoelectric element, and these gold jpA (19a)
flat semi-cylindrical dissimilar gold 1I4 (1
9c) (19d) are joined, metal (19a) and (1
9c) and one thermoelectric cord, metal (19b) and (19d
) and one more thermoelectric cord is formed. Metal (1
9a) (19b) are the endothermic side, metal (19c) (1
9d) is the heat radiation side.

本発明は上述の如く、固体撮像素子とその冷却手段の少
なくとも一部とを9洞内に配置し、この空洞内を減圧し
たものである。従って本発明によれば、固体撮像素子の
周囲の空気による対流伝熱を少なくして、固体撮gII
素子を熱的に絶縁することが可能になり、外部温度によ
る暗電流の増大に起因するIli像出力信号のS/Nの
劣化を軽減することができ、解像度の高い1儂を得るこ
とができる。また空洞内を減圧することにより、固体撮
像素子及び空洞内壁への霧滴付着を防止することができ
る。
As described above, the present invention is such that the solid-state image sensing device and at least a portion of its cooling means are placed in nine cavities, and the pressure inside these cavities is reduced. Therefore, according to the present invention, the convection heat transfer due to the air surrounding the solid-state image sensor is reduced, and the solid-state image sensor gII
It is now possible to thermally insulate the element, reduce the deterioration of the S/N of the Ili image output signal due to an increase in dark current due to external temperature, and obtain a single image with high resolution. . Furthermore, by reducing the pressure inside the cavity, it is possible to prevent mist droplets from adhering to the solid-state image sensor and the inner wall of the cavity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体撮像装置の1つの実施例を示す元
軸に沿った縦断面図、H2図及び第3図は夫々別の実施
例を示す第1図と同様な縦断面図である。 なお111njC用いられた符号において1(1j・−
・−・・・・・−半導体基板(8)−・−・−・−・・
・熱伝導軸 aυ−・・−・・・・−・・・受熱板 σ2・・・・・・・・・・・・・・・放熱フィンα3・
・・・・・・−・・・・・・・空洞旺・・・・・・・・
・・・・・・・熱電素子である。 代理人 上屋 膀 I  常包芳男 l  杉浦俊貴 IIII図 第2図 第3図
FIG. 1 is a vertical sectional view along the original axis showing one embodiment of the solid-state imaging device of the present invention, and FIG. H2 and FIG. 3 are longitudinal sectional views similar to FIG. 1 showing different embodiments, respectively. be. Note that in the code used for 111njC, 1(1j・-
・−・・・−Semiconductor substrate (8)−・−・−・−・・
・Heat conduction axis aυ−・・・・・・・−・Heat receiving plate σ2・・・・・・・・・・・・・・・Radiation fin α3・
・・・・・・-・・・・・・・・・
・・・・・・It is a thermoelectric element. Agent Ueya I Yoshio Tsuneko I Toshiki Sugiura III Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 固体撮像素子とこの固体撮像素子を冷却する手段とを有
し、上記固体撮像素子と上記冷却手段の小なくとも一部
とを夫々空洞内に設置するとともに、上記空洞内を減圧
したことを特徴とする固体撮像装置〇
It has a solid-state image sensor and a means for cooling the solid-state image sensor, and is characterized in that the solid-state image sensor and at least a part of the cooling means are respectively installed in a cavity, and the pressure inside the cavity is reduced. Solid-state imaging device
JP57031588A 1982-02-27 1982-02-27 Solid-state image pickup device Granted JPS58148572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57031588A JPS58148572A (en) 1982-02-27 1982-02-27 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57031588A JPS58148572A (en) 1982-02-27 1982-02-27 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS58148572A true JPS58148572A (en) 1983-09-03
JPH0432590B2 JPH0432590B2 (en) 1992-05-29

Family

ID=12335343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57031588A Granted JPS58148572A (en) 1982-02-27 1982-02-27 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS58148572A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149490U (en) * 1985-03-05 1986-09-16
JPS6319978A (en) * 1986-07-11 1988-01-27 Leo Giken:Kk Dark current reducing device for solid-state image sensor
EP0691064A4 (en) * 1992-07-08 1995-11-03 Oncor Inc Low light color imaging system with cooled integrating camera
EP1722269A1 (en) * 2005-05-13 2006-11-15 Matsushita Electric Industrial Co., Ltd. Pickup device driving apparatus and photographing device using the same
JP2010035013A (en) * 2008-07-30 2010-02-12 Olympus Imaging Corp Imaging unit and imaging device
US7916205B2 (en) 2005-06-30 2011-03-29 Panasonic Corporation Pickup device driving apparatus and photographing device using the same
JP2012217179A (en) * 2012-05-29 2012-11-08 Olympus Imaging Corp Imaging unit and imaging device
JP2014216824A (en) * 2013-04-25 2014-11-17 株式会社ニコン Electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331925U (en) * 1976-08-25 1978-03-18
JPS5478026A (en) * 1977-12-05 1979-06-21 Hitachi Ltd Production of solid color image pickup unit
JPS54139423A (en) * 1978-04-21 1979-10-29 Canon Inc Pickup device
JPS5637751A (en) * 1979-09-04 1981-04-11 Nippon Telegr & Teleph Corp <Ntt> Virtual mean transmission velocity communication network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331925B2 (en) * 1972-12-25 1978-09-05

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331925U (en) * 1976-08-25 1978-03-18
JPS5478026A (en) * 1977-12-05 1979-06-21 Hitachi Ltd Production of solid color image pickup unit
JPS54139423A (en) * 1978-04-21 1979-10-29 Canon Inc Pickup device
JPS5637751A (en) * 1979-09-04 1981-04-11 Nippon Telegr & Teleph Corp <Ntt> Virtual mean transmission velocity communication network

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149490U (en) * 1985-03-05 1986-09-16
JPS6319978A (en) * 1986-07-11 1988-01-27 Leo Giken:Kk Dark current reducing device for solid-state image sensor
JPH055435B2 (en) * 1986-07-11 1993-01-22 Reo Giken Kk
EP0691064A4 (en) * 1992-07-08 1995-11-03 Oncor Inc Low light color imaging system with cooled integrating camera
EP0691064A1 (en) * 1992-07-08 1996-01-10 Oncor, Inc. Low light color imaging system with cooled integrating camera
EP1722269A1 (en) * 2005-05-13 2006-11-15 Matsushita Electric Industrial Co., Ltd. Pickup device driving apparatus and photographing device using the same
CN100444616C (en) * 2005-05-13 2008-12-17 松下电器产业株式会社 Pickup device driving apparatus and photographing device using the same
US7916205B2 (en) 2005-06-30 2011-03-29 Panasonic Corporation Pickup device driving apparatus and photographing device using the same
JP2010035013A (en) * 2008-07-30 2010-02-12 Olympus Imaging Corp Imaging unit and imaging device
JP2012217179A (en) * 2012-05-29 2012-11-08 Olympus Imaging Corp Imaging unit and imaging device
JP2014216824A (en) * 2013-04-25 2014-11-17 株式会社ニコン Electronic apparatus

Also Published As

Publication number Publication date
JPH0432590B2 (en) 1992-05-29

Similar Documents

Publication Publication Date Title
JPH0738019A (en) Cooled solid-state image pick-up apparatus
JPS6086971A (en) Television camera
US9733087B2 (en) Electron-bombarded active pixel sensor star camera
US9648252B2 (en) High performance scanning miniature star camera system
JPS58148572A (en) Solid-state image pickup device
JPH01295449A (en) Cooling type solid-state image sensing device
JP3884616B2 (en) Photodetector and imaging device using the same
US7629566B2 (en) Solid state imaging device with improved heat radiation
US20230324229A1 (en) Thermographic sensor with thermo-couples on a suspended grid and processing circuits in frames thereof
JP4128654B2 (en) Electron tube equipment
US6002132A (en) Thermionic thermal detector and detector array
EP0595468B1 (en) Image device
JPH10146332A (en) X-ray ct device
JPH055435B2 (en)
JPH07211823A (en) Image pickup device
JP2006135659A (en) Imaging device module and electronic apparatus
JPH08190889A (en) Cooling type photomultiplier
JP3121424B2 (en) Semiconductor photodetector
JPH03181167A (en) Solid state image sensor
JP4753763B2 (en) Radiation image information imaging device
JPS6086970A (en) Image sensing system
US3951552A (en) Photometer-digitizer system
JPS60220965A (en) Solid-state image pickup device
JPS59852Y2 (en) solid-state imaging device
JPH05207486A (en) Solid-state image pickup device