JPS58148453A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58148453A
JPS58148453A JP57032015A JP3201582A JPS58148453A JP S58148453 A JPS58148453 A JP S58148453A JP 57032015 A JP57032015 A JP 57032015A JP 3201582 A JP3201582 A JP 3201582A JP S58148453 A JPS58148453 A JP S58148453A
Authority
JP
Japan
Prior art keywords
metal layer
memory
node
semiconductor device
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57032015A
Other languages
Japanese (ja)
Inventor
Tsutomu Yoshihara
吉原 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57032015A priority Critical patent/JPS58148453A/en
Publication of JPS58148453A publication Critical patent/JPS58148453A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • H01L23/556Protection against radiation, e.g. light or electromagnetic waves against alpha rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To remarkably reduce the incidence of soft errors for the titled semiconductor device by a method wherein, in the case of flip-flop type memory consisting of an assembled FET, a metal layer whereon a prescribed potential was given is arranged on a memory cell through the intermediary of an insulating film. CONSTITUTION:An insulating film 10 and a metal layer 11, made of aluminum, tungsten, gold and the like, are added to the static memory using the load which has heretofore been in use as resistance, and the metal layer 11 is generally grounded. According to this constitution, the capacitance by insulating films 7 and 10 is generated between a memory node N15 and the metal layer 11. As a result, a capacitor CA is added between nodes N1 and N2, and the memory cpacity of the device is increased. As the memory capacity is increased as above, the amount of critical charge is increased too, and at the same time, the number of alpha particles and energy are attenuated by the insulating film 10 and the metal layer 11, thereby enabling to reduce the generation of soft errors.

Description

【発明の詳細な説明】 この発明はフリップフロップ型回路をメモリセルとする
半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device using a flip-flop type circuit as a memory cell.

第1図は従来およびこの発明を説明するための一般的な
フリップフロップ型回路のメモリセルを示す回路図であ
る。同図において、(TI)および(T1)はそれぞれ
トランスファケー)、(Qs)おヨヒ(Qりはそれぞれ
ドライバトランジスタ%(St)および(S、)はそれ
ぞれ抵抗m(R,)および(R1)の負荷抵抗、(Bl
)および(Bm)はそれぞれビットライン、(Vc)は
電源電圧、(Nu)および(凡襠それぞれノードである
FIG. 1 is a circuit diagram showing a memory cell of a conventional flip-flop type circuit and for explaining the present invention. In the same figure, (TI) and (T1) are transfer cables, respectively, and (Qs) are driver transistors. load resistance, (Bl
) and (Bm) are bit lines, (Vc) is a power supply voltage, and (Nu) and (Bm) are nodes, respectively.

なお、ドライバトランジスタ(Ql)および(Ql)の
ソースは共通に接続してアースに&続し、ドライバトラ
ンジスタ(Ql )のドレインはドライバトランジスタ
(Q、)のゲートに接続し、ドライバトランジスタ(−
)のドレインはドライバトランジスタ(Qt )のゲー
トに接続して、お互にラッチを組んでいる。そして、書
き込みおよび睨み出しすイクルではトランスファケー)
(Ts)および(−)がオンして、ノード(N1)およ
び(N1)はそれぞれビットライン(Bl)および(B
、)に接続する。
Note that the sources of the driver transistors (Ql) and (Ql) are commonly connected and connected to the ground, the drain of the driver transistor (Ql) is connected to the gate of the driver transistor (Q,), and the driver transistor (-
) is connected to the gate of the driver transistor (Qt) and latched together. And in writing and glaring cycle)
(Ts) and (-) are turned on, nodes (N1) and (N1) are turned on, bit lines (Bl) and (B
, ).

次に、従来のフリップフロップ型回路のメモリセルの動
作について、第1因および第2図を参瞭して説明する。
Next, the operation of a memory cell of a conventional flip-flop type circuit will be explained with reference to the first factor and FIG.

まず、ノード(N1)の電位を■とし、ノード(N2)
の電位を■とすると、このフリップフロップ型回路の2
つの安定動作点は第2図に示すように、y、=vC%v
==oの点Pとv1=0、%=Vcの点Qである。した
がって、(vl−% )平面で、電位vt yV!が点
線FよシA側にあるときには安定動作点である点Qに落
ちつき、B#!Iにあるときには安定動作点である点P
に落ちつき、ラッチが固定される。そして、電位Xおよ
び1が共にVT(ドライバトランジスタ(Ql)および
(QりのI、キいk1M圧)よシ低いときにはドライバ
トランジスタ(Q8)および(Ql)は共にオフとな)
、フリップフロップ型回路は非常に不安定な状態である
First, let the potential of the node (N1) be ■, and the potential of the node (N2)
If the potential of is ■, then the 2 of this flip-flop circuit is
As shown in Figure 2, the two stable operating points are y, = vC%v
Point P where ==o and point Q where v1=0 and %=Vc. Therefore, in the (vl-%) plane, the potential vt yV! When is on the A side of dotted line F, it settles at point Q, which is the stable operating point, and B#! Point P, which is the stable operating point when it is at I
The latch is fixed. When the potentials X and 1 are both lower than VT (driver transistor (Ql) and (Q's I, key k1M pressure), driver transistors (Q8) and (Ql) are both turned off).
, flip-flop type circuits are in a very unstable state.

しかしながら、従来のフリップフロップ型回路をメモリ
とする半導体メモリ装置ではパッケージ材などに含まれ
る放射性物質から放もされるα粒子によって、シリコン
基板中に電子−正孔対が生成され、空乏層内の電界によ
って電子がN型拡散層のノードに到達して、そこの電位
を下げることによって、データの内容が変わる、いわゆ
るソフトエラーが発生し易い。すなわち、ノード(N1
)がLレベル(vl=O)、/−)’ (Ns ) b
sHレベル(%wvc)のとき、ドライバトランジスタ
(Ql )のドレインにα粒子が当っても、う、チを強
める方向なのでデータの反転は起らないが、ドライバト
ランジスタ(モ)のドレインにα粒子が当たると、ノー
ド(N2)の電位が下がシ、第2図に示す(V□、〜)
平面で領域りにくると、ラッチが決まらない不安定な状
態にな)、ソフトエラーが生ずる可能性が大きくなる。
However, in semiconductor memory devices that use conventional flip-flop circuits as memories, α particles emitted from radioactive substances contained in packaging materials generate electron-hole pairs in the silicon substrate, causing So-called soft errors, in which electrons reach nodes in the N-type diffusion layer due to the electric field and lower the potential there, change the data content, are likely to occur. That is, node (N1
) is L level (vl=O), /-)' (Ns) b
At the sH level (%wvc), even if an α particle hits the drain of the driver transistor (Ql), data will not be inverted because it will strengthen the Ql, but an α particle will hit the drain of the driver transistor (Ql). When hit, the potential of the node (N2) decreases to (V□, ~) as shown in Figure 2.
If the area is flat, the latch will not be fixed and it will become unstable), increasing the possibility of soft errors occurring.

したがって、’%l、 =Q 。Therefore, '%l, = Q.

1=0 である点Qの安定点から不安定点までの電位差
はVc−VTである。このため、収集された電子による
電位降下がこの値以上あると、ソフトエラーが生ずる確
率が増すことになる。また、睨み出し時には電位隻がV
cよ)低くなるので、ノードに収呆される電子の数が同
じであればエラー率は高くなるなどの欠点があった。
The potential difference from the stable point to the unstable point at point Q where 1=0 is Vc-VT. Therefore, if the potential drop due to the collected electrons exceeds this value, the probability that a soft error will occur increases. Also, when starting to stare, the potential ship is V
(c), so if the number of electrons converged at a node is the same, the error rate will be high.

したがって、この発明の目的はソフトエラーの発生率が
非常に小さくなる半導体メモリを提供するものである。
Therefore, an object of the present invention is to provide a semiconductor memory in which the incidence of soft errors is extremely reduced.

α粒子によって生成される電荷による記憶ノード、Nl
 eNlの電位の変化ΔVがVc −VT  より大き
くなるとソフトエラーが発生するので、ソフトエラーを
発生させる臨界電荷ff1Qcri(は次−の様に表わ
されることになる。
Storage node due to charge generated by α particles, Nl
A soft error occurs when the change ΔV in the potential of eNl becomes larger than Vc - VT, so the critical charge ff1Qcri (which causes a soft error) is expressed as -.

Qcrit = C(Vcc −VT )こ\でCは記
憶ノードの容量 Q(rit  が大きい程、ソフトエラーは起こルにく
くなる。Qcrit  を大きくするには、記憶ノード
の容jICを大きくする方法、VCC−VTを大きくす
る方法があるが、後者は、設計当初から決められる嵐で
あシ大幅には変更できない。
Qcrit = C(Vcc - VT) where C is the larger the capacity Q(rit) of the storage node, the less likely soft errors will occur.To increase Qcrit, increase the capacity jIC of the storage node, -There is a way to increase VT, but the latter is determined from the beginning of the design and cannot be changed significantly.

しTsがって記憶ノードの容激Ck大きくする方法がこ
の場合最も有効である。
Therefore, the most effective method in this case is to increase the capacity Ck of the storage node.

本発明は、メモリトランジスタのノードの容態を増加し
た半導体装置を提供するものである。
The present invention provides a semiconductor device in which the states of nodes of memory transistors are increased.

以下実施例を用いて詳細に説明する。This will be explained in detail below using examples.

第8図は従来の負荷を抵抗としたスタチックメモリの断
面の一部分を示したものである。記憶ノードNlの容量
としてはこのノードの接合容量、トランジスタものゲー
ト容置とそれらの配線に伴う浮遊容量が主なものである
。接合容量はメモリセル面積を小さくするという要求か
ら制限を受は大きくできない。
FIG. 8 shows a part of a cross section of a conventional static memory in which a resistor is used as a load. The capacitance of the storage node Nl is mainly due to the junction capacitance of this node, the stray capacitance associated with the gate capacitors of the transistors and their interconnections. The junction capacitance cannot be increased due to the requirement to reduce the memory cell area.

第4図は本発明の実施例を示゛すものでs l! s 
図の断面図の状態に、さらに絶縁#lへアルミニューム
、タングステン、金等の金属層11を付加したもので、
金属層11は一般にはアースに接地される。
FIG. 4 shows an embodiment of the present invention. s
In addition to the state shown in the cross-sectional view in the figure, a metal layer 11 of aluminum, tungsten, gold, etc. is added to the insulation #l,
Metal layer 11 is generally grounded to earth.

この構造によって記憶ノードN 1 (5)と金属層1
10間には絶縁膜7.lOによる容量が生じることにな
る。この結果rk6図に示す様にノードNl、N2の間
に容tCムが付加され、記憶容量が増大する。
With this structure, storage node N 1 (5) and metal layer 1
There is an insulating film 7 between 10 and 10. A capacitance due to IO will occur. As a result, as shown in diagram rk6, a capacity tCm is added between nodes Nl and N2, increasing the storage capacity.

この様に容量が増大することによシ、臨界電荷量Qcr
it が人為くなるとともに、絶縁膜lへ金属層11に
よってα粒子数およびエネルギーが減衰することにもな
シ、ソフトエラーが、改醤される。
Due to this increase in capacitance, the critical charge Qcr
It becomes artificial, and the number and energy of α particles are attenuated by the metal layer 11 in the insulating film 1, and soft errors are corrected.

本発明はGaAs  などの仕合物半導体上に形成され
るスタチック〜Wにも容易に適用しうる。
The present invention can be easily applied to static W formed on compound semiconductors such as GaAs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスタテックRAMメモリセル回路図、第
2図はスタチック膿の動作点説明図、第8図は従来のス
タチック論の断面図、第4図は本発明の一実施例のスタ
テックRAMの断面図、第5図は本発明の一実施例のス
タチック臘のメモリセル回路図である。 l・・・半導体基板、2・・・アイソレーション酸化膜
、8・・・ゲート電極、4・・・拡散ノード(GN・D
) 、 5・・・記憶ノード、6・・・負荷抵抗、7・
・・酸化膜、8・・・金属配線(GND)、9・・・金
属配線(Vcc )、10−・・絶縁膜、11・・・金
属層である。 代理人 葛野信− 第1図 c 第2図 第3図 □[ 第4図 第5図 手続補正書(自発) 特許庁長官殿 1、事件の表示    特願昭57−112016号2
、発明の名称   半導体装置 3、補正をする者 事件との関係   特許出願人 住 所     東京都千代田区丸の内二丁目2番3号
名 称(601)   三菱電機株式会社代表者片山仁
八部 4、代理人 住 所     東京都千代田区丸の内二丁目2番3号
6、補正の対象 明細書の特許請求の範囲の欄 6、補正の内容 (1)明細書の特許請求の範囲の欄を別紙のとおり訂正
する。 7、添付書類の目録 (1)補正後の特許請求の範囲を記載した書面1通 以上 特許請求の範囲 (1)第1および第2の絶縁ゲート電界効果型トランジ
スタ(以下FETと略す)を組合せてなるフリップフロ
ップ型メモリにおいて、第1のFETの第1のノードは
第2のFETのゲートに接続され、第20FETの第1
のノードは第1のFETのゲートに接続され、第1およ
び第2のFETの第20ノードは共通に接続されたフリ
ップフロップをメモリセルとし、このメモリセル上に、
所定の電位を与えられた金属層を絶縁膜を介して配置す
ることを特徴とする半導体装置。 (2)絶縁ゲート電界効果型トランジスタは、化合物半
導体によって形成することを特徴とする特許請求の範囲
第1項記載の半導体装置。 (3)前記所定の電位を、使用電源電位のうち高電位或
は低電位(グランド)とすることを特徴とする特許請求
の範囲第1項及び第2項記載の半導体装置。
Fig. 1 is a conventional static RAM memory cell circuit diagram, Fig. 2 is an explanatory diagram of the operating point of static theory, Fig. 8 is a sectional view of conventional static theory, and Fig. 4 is a static RAM of an embodiment of the present invention. FIG. 5 is a memory cell circuit diagram of a static support according to an embodiment of the present invention. l...Semiconductor substrate, 2...Isolation oxide film, 8...Gate electrode, 4...Diffusion node (GN/D
), 5...Storage node, 6...Load resistance, 7.
... Oxide film, 8... Metal wiring (GND), 9... Metal wiring (Vcc), 10-... Insulating film, 11... Metal layer. Agent Makoto Kuzuno - Figure 1 c Figure 2 Figure 3 □ [ Figure 4 Figure 5 Procedural amendment (voluntary) Mr. Commissioner of the Japan Patent Office 1, Indication of the case Patent Application No. 112016/1989 2
, Title of the invention Semiconductor device 3, Relationship to the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Hitachi Katayama 4, Agent Address: 2-2-3-6, Marunouchi 2-chome, Chiyoda-ku, Tokyo, Claims column 6 of the specification to be amended, Contents of the amendment (1) Correction of the Claims column of the specification as shown in the attached sheet. do. 7. List of attached documents (1) One or more documents stating the amended scope of claims Claims (1) A combination of first and second insulated gate field effect transistors (hereinafter abbreviated as FET) In the flip-flop memory, the first node of the first FET is connected to the gate of the second FET, and the first node of the twentieth FET is connected to the gate of the second FET.
The node of is connected to the gate of the first FET, the 20th node of the first and second FET is a commonly connected flip-flop as a memory cell, and on this memory cell,
A semiconductor device characterized in that a metal layer applied with a predetermined potential is arranged with an insulating film interposed therebetween. (2) The semiconductor device according to claim 1, wherein the insulated gate field effect transistor is formed of a compound semiconductor. (3) The semiconductor device according to claims 1 and 2, wherein the predetermined potential is set to a high potential or a low potential (ground) among the power supply potentials used.

Claims (3)

【特許請求の範囲】[Claims] (1)第1および第2の絶縁ゲート電界効果型トランジ
スタ(以下FETと略す)を組合せてなるフリップフロ
ップ型メモリにおいて、!11110FETの第1のノ
ードは第2OFETのゲートに接続され、第2のFET
の第1のノードは第1のFETのゲートに接続され、第
1および第20FETの第20ノードは共通に接続され
たフリップフロップをメモリセルとし、このメモリセル
上に、所定の電位を与えられた金属層を絶縁膜を介して
配置することを特徴とする半導体装置。
(1) In a flip-flop memory formed by combining first and second insulated gate field effect transistors (hereinafter abbreviated as FETs),! The first node of the 11110 FET is connected to the gate of the second OFET, and the first node of the second OFET is connected to the gate of the second OFET.
The first node of is connected to the gate of the first FET, the 20th nodes of the 1st and 20th FETs are commonly connected flip-flops as memory cells, and a predetermined potential is applied to this memory cell. 1. A semiconductor device characterized in that a metal layer is arranged with an insulating film interposed therebetween.
(2)絶縁ゲート眠界効果型トランジスタと、化合物半
導体によって形成することを特徴とする特許請求の、l
j第1項記載の半導体装置。
(2) A patent claim characterized in that it is formed of an insulated gate sleep field effect transistor and a compound semiconductor.
j. The semiconductor device according to item 1.
(3)前記所定の電位と、使用電源電位のうち高電位或
は低電位(グランド)とすることを特徴とする特許請求
の範囲第1項及び第2項記載の半導体装置。
(3) The semiconductor device according to claims 1 and 2, wherein the predetermined potential is a higher potential or a lower potential (ground) of the used power supply potential.
JP57032015A 1982-02-26 1982-02-26 Semiconductor device Pending JPS58148453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57032015A JPS58148453A (en) 1982-02-26 1982-02-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57032015A JPS58148453A (en) 1982-02-26 1982-02-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58148453A true JPS58148453A (en) 1983-09-03

Family

ID=12347030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57032015A Pending JPS58148453A (en) 1982-02-26 1982-02-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58148453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094460A (en) * 1983-10-29 1985-05-27 Unitika Ltd Antimicrobial latex composition
US6271569B1 (en) 1997-07-03 2001-08-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having memory cells and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094460A (en) * 1983-10-29 1985-05-27 Unitika Ltd Antimicrobial latex composition
US6271569B1 (en) 1997-07-03 2001-08-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having memory cells and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Inokawa et al. A multiple-valued logic and memory with combined single-electron and metal-oxide-semiconductor transistors
US6815839B2 (en) Soft error resistant semiconductor memory device
US4849801A (en) Semiconductor memory device having increased capacitance for the storing nodes of the memory cells
DE112018002796T5 (en) Comparison circuit, semiconductor device, electronic component and electronic device
JP3273632B2 (en) Transistor device with resistive coupling
JP2518133B2 (en) Static type semiconductor memory device
WO1999034368A1 (en) Voltage controlled resistance modulation for single event upset immunity
JPH07230693A (en) Semiconductor memory
US5428577A (en) Semiconductor storage device having word-line voltage booster circuit with decoder and charger
US20070103961A1 (en) RAM cell with soft error protection using ferroelectric material
JPS58148453A (en) Semiconductor device
Ghoshal et al. Josephson-CMOS memories
CN109841244A (en) Primary particle inversion resistant SRAM cell
JP4470049B2 (en) Soft error resistant latch circuit and semiconductor device
JP3339564B2 (en) Semiconductor device
JPS60781B2 (en) semiconductor storage device
JPS58148465A (en) Semiconductor device
Kinugawa et al. Cell technology directions for advanced MPUs and other memory-embedded logic devices
JPS634671A (en) Semiconductor memory device
JPS5948549B2 (en) dynamic storage device
JPH0590540A (en) Semiconductor storage device
JPS58155752A (en) Semiconductor memory storage
JPS6286852A (en) Laminated structure type semiconductor device
JPS5958860A (en) Semiconductor memory device
JP3431023B2 (en) Semiconductor device