JPS5814834B2 - Wastewater activated sludge treatment method - Google Patents

Wastewater activated sludge treatment method

Info

Publication number
JPS5814834B2
JPS5814834B2 JP52002797A JP279777A JPS5814834B2 JP S5814834 B2 JPS5814834 B2 JP S5814834B2 JP 52002797 A JP52002797 A JP 52002797A JP 279777 A JP279777 A JP 279777A JP S5814834 B2 JPS5814834 B2 JP S5814834B2
Authority
JP
Japan
Prior art keywords
sludge
treatment
treatment zone
gas
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52002797A
Other languages
Japanese (ja)
Other versions
JPS5387573A (en
Inventor
市川宗春
木本和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP52002797A priority Critical patent/JPS5814834B2/en
Publication of JPS5387573A publication Critical patent/JPS5387573A/en
Publication of JPS5814834B2 publication Critical patent/JPS5814834B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 本発明は、汚泥生成量の少ない排水の処理方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater that produces a small amount of sludge.

活性汚泥法は、排水(本願に於では都市下水、各種の工
場排水、畜産廃水等の広範囲の排出水を一括して排水と
称する)の処理方法として広く実施されている。
The activated sludge method is widely practiced as a method for treating wastewater (in this application, a wide range of wastewater, such as urban sewage, various industrial wastewater, and livestock wastewater, is collectively referred to as wastewater).

しかしながら、従来の活性汚泥法に於では、汚泥の生成
量がかなり大きい為、汚泥の完全処理を如何に行うかが
大きな問題となっている。
However, in the conventional activated sludge method, since the amount of sludge produced is quite large, how to completely treat the sludge is a major problem.

生成汚泥を例えば肥料として使用する試みもなされてい
るが、コスト的にも技術的にも種々の問題があり、満足
すべきものとは言い難い。
Although attempts have been made to use the produced sludge as fertilizer, for example, there are various problems in terms of cost and technology, and it is difficult to say that the results are satisfactory.

従って最近になって汚泥の生成量そのものを押えること
により、汚泥処理の問題点を出来るだけ回避しようとす
る試みも行なわれるにいたっている。
Therefore, recently attempts have been made to avoid the problems of sludge treatment as much as possible by suppressing the amount of sludge produced.

例えば、排水処理槽を3個程度の密閉された処理域に分
割し、これ等処理域を通過する排水に順次高酸素濃度の
気体を機械的に攪拌混合させる方法が開発されている。
For example, a method has been developed in which a wastewater treatment tank is divided into about three sealed treatment zones and a high oxygen concentration gas is mechanically stirred and mixed into the wastewater passing through these treatment zones.

しかしながら、この方法に於では、密閉処理槽を使用す
る為、処理槽内に蓄積するCO2に起因するpH低下に
よる排水処理効率の低下や揮発性有機物の爆発の危険性
等の重大な問題点が存在する。
However, since this method uses a closed treatment tank, there are serious problems such as a decrease in wastewater treatment efficiency due to a drop in pH caused by CO2 that accumulates in the treatment tank and the risk of explosion of volatile organic substances. exist.

更に又、密閉槽内で高酸素濃度気体中又は液体中に可動
部を有する機械的攪拌機構を使用するので、その保守点
検及び維持管理が甚だ困難である。
Furthermore, since a mechanical stirring mechanism having a movable part is used in a high oxygen concentration gas or liquid in a closed tank, inspection and maintenance thereof is extremely difficult.

そこで本発明者は、処理効率の低下や爆発の危険性を伴
うことなく、汚泥生成量を抑制し得る排水の処理方法を
確立すべく種々研究を重ねた結果、遂に前記特許請求の
範囲に記載の如き本発明を完成し、その目的を達成する
にいたったものである。
Therefore, the inventor of the present invention has conducted various studies in order to establish a wastewater treatment method that can suppress the amount of sludge produced without reducing treatment efficiency or risk of explosion, and as a result, has finally found the method described in the above claims. The present invention has been completed and its objectives have been achieved.

以下本発明の一態様のフローチャートを示す添附図面を
参照しつつ、本発明をより詳細に説明する。
The present invention will now be described in more detail with reference to the accompanying drawings, which are flowcharts of one embodiment of the present invention.

本発明方法に於ては排水の曝気処理は、3つの曝気処理
域A,B及びCで行なわれる。
In the method of the present invention, the aeration treatment of wastewater is carried out in three aeration treatment zones A, B and C.

第1の処理域Aでは、ライン2からの排水原水及びライ
ン36を通っての沈降槽32からの返送汚泥からなる混
合水(以下単に混合水と記す)が処理される。
In the first treatment area A, mixed water (hereinafter simply referred to as mixed water) consisting of raw waste water from line 2 and sludge returned from settling tank 32 through line 36 is treated.

第1の処理域Aは、開放型であり、ここではライン4及
びボンプ6からの空気が散気管8から混合水中に激しい
勢いで吹込まれ、曝気を行なう。
The first treatment area A is of an open type, and here air from the line 4 and the pump 6 is blown into the mixed water with great force from the aeration pipe 8 to effect aeration.

空気と混合水との混合攪拌はエジエクター、プレミック
スノズル等により行なってもよい。
Mixing and stirring of air and mixed water may be performed using an ejector, a premix nozzle, or the like.

処理域Aに於ける気体吹込みは、排水原水BODの60
係以上好ましくは70%以上の除去を行うべく、混合水
中の溶存酸素濃度を0.5mg/l以上に保持するとと
もに汚泥フロックの微細化により表面積を増大させ、そ
のフロック表面へのBOD成分の吸着及びBOD成分の
酸化の速度を増大させることを目的とする。
The gas injection in treatment area A is 60% of the wastewater raw water BOD.
In order to remove preferably 70% or more, the dissolved oxygen concentration in the mixed water is maintained at 0.5 mg/l or more, the surface area is increased by making the sludge flocs finer, and the BOD components are adsorbed onto the surface of the flocs. and to increase the rate of oxidation of BOD components.

汚泥のフロックが十分に微細化されておれば、フロック
内への酸素移動速度よりも汚泥中の好気性微生物の呼吸
速度の方が混合水処理の律速となる。
If the sludge flocs are sufficiently finely divided, the rate of respiration of aerobic microorganisms in the sludge will be more rate-limiting for mixed water treatment than the rate of oxygen transfer into the flocs.

従って溶存酸素濃度が0.5m9/l以上となれば十分
良好な排水処理効果が得られる。
Therefore, if the dissolved oxygen concentration is 0.5 m9/l or more, a sufficiently good wastewater treatment effect can be obtained.

更に第1の処理域Aを開放型とすることにより、C02
、揮発性有機物等の蓄積が防止されるので、前記の如き
混合水のpHの低下、爆発の危険性等の問題も完全に避
けられる。
Furthermore, by making the first treatment area A an open type, C02
Since the accumulation of volatile organic substances and the like is prevented, problems such as a decrease in the pH of the mixed water and the danger of explosion as described above can be completely avoided.

尚、第1の処理域Aに於ける吹込み気体は、コスト上昇
という難点はあるものの、空気よりも高濃度の酸素を含
有する気体であっても良い。
Note that the gas blown into the first treatment area A may be a gas containing oxygen at a higher concentration than air, although this has the disadvantage of increased cost.

従って、例えば高濃度に酸素を含有するプラント廃ガス
等が大量且つ定常的に入手出来る場合には、該廃ガスを
単独で又は空気とともに使用することにより、コスト上
昇を伴うことなく処理効率を改善することが出来る。
Therefore, for example, if a large amount of plant waste gas containing high concentrations of oxygen is available on a regular basis, processing efficiency can be improved without increasing costs by using the waste gas alone or together with air. You can.

第1の処理域Aに於ける混合水の滞留時間は、排水原水
の量、排水原水の水質、汚泥濃度、吹込み気体量等に依
存して大きく変り得るが、通常10〜60分の範囲内に
ある。
The residence time of the mixed water in the first treatment area A can vary greatly depending on the amount of raw wastewater, the quality of the raw wastewater, sludge concentration, the amount of gas blown, etc., but is usually in the range of 10 to 60 minutes. It's within.

開放型の第2の処理域Bに於では、第1の処理域Aから
連通部10を経て流入する混合水に空気又は酸素含有気
体がライン12及びポンプ14を経て散気管16から吹
込まれ、再度曝気が行なわれる。
In the open second treatment zone B, air or oxygen-containing gas is blown into the mixed water flowing from the first treatment zone A through the communication part 10 from the diffuser pipe 16 through the line 12 and the pump 14, Aeration is performed again.

処理域Bに於ける気体吹込みは、排水原水BODの70
%以上好ましくは80%以上の除去を行なうべく汚泥の
混合状態を均一に保持し且つ汚泥のフロック化を行なう
ことを目的とする。
The gas injection in treatment area B is 70% of the wastewater raw water BOD.
The purpose is to maintain a uniform mixed state of sludge and to flocculate the sludge in order to remove at least 80%, preferably at least 80%.

従つて気体吹込みは、混合水中の汚泥の混合状態が均一
に保持出来る程度に緩やかに行なうことが望ましく、且
つ汚泥のフロック化進行とそれに伴うBOD成分酸化の
為の十分な酸素を供給すべく混合水中の溶存酸素濃度が
2m9/l以上となる様に行なう必要がある。
Therefore, it is desirable to blow gas slowly enough to maintain a uniform mixing state of the sludge in the mixed water, and to supply enough oxygen for the flocculation of the sludge and the accompanying oxidation of the BOD components. It is necessary to perform this so that the dissolved oxygen concentration in the mixed water is 2 m9/l or more.

処理域Bで使用する吹込み気体は、空気であっても良く
、その他の酸素含有ガスであっても良く、又両者の混合
気体であっても良い。
The blown gas used in treatment zone B may be air, another oxygen-containing gas, or a mixture of both.

酸素含有ガスとしては、第1処理域Aに於けると同様に
プラント廃ガス等を例示することが出来、更には第3の
処理域Cからの排出ガスを使用しても良い。
Examples of the oxygen-containing gas include plant waste gas and the like as in the first treatment zone A, and furthermore, exhaust gas from the third treatment zone C may be used.

尚第2の処理域Bに於ては、生成したCO2が開放下の
曝気により系外に放散除去される為、混合水のpH低下
は生じない。
In the second treatment area B, the generated CO2 is dissipated and removed outside the system by aeration under open conditions, so that the pH of the mixed water does not decrease.

更に又、揮発性有機物質等の蓄積による爆発の危険も完
全に防止される。
Furthermore, the risk of explosion due to the accumulation of volatile organic substances etc. is completely prevented.

又、混合水を常に中性若しくは弱アルカリ性(pH7〜
8.5程度)に保持することを必須とし、しかも活性汚
泥による処理速度が小なる物質を含む廃水(例えばチオ
シアン酸イオンSCNを含むコークス炉廃水等)を処理
する場合、比較的滞留時間の短い第1の処理域Aだけで
は十分に処理し切れない場合もあるが、本発明では開放
型の第2の処理域Bを使用することによりC02が放散
されるので、第2の処理域に於ける混合水を容易に中性
又は弱アルカリ性に保持することが出来、従って廃水中
に存在する或いは汚泥に吸着された状態で存在する上記
物質を十分良好に処理することが出来る。
Also, always keep the mixed water neutral or slightly alkaline (pH 7~
8.5), and when treating wastewater containing substances for which the treatment rate with activated sludge is low (for example, coke oven wastewater containing thiocyanate ion SCN), the residence time is relatively short. In some cases, the first treatment area A alone may not be able to fully process the process, but in the present invention, C02 is dissipated by using the open second treatment area B, so the second treatment area Mixed water can be easily kept neutral or slightly alkaline, and therefore the above-mentioned substances existing in wastewater or adsorbed in sludge can be treated satisfactorily.

第2の処理域に於ける混合水の滞留時間も他の因子に依
存して大きく変り得るが、通常20〜80分の範囲内に
ある。
The residence time of the mixed water in the second treatment zone can also vary widely depending on other factors, but is typically in the range of 20 to 80 minutes.

密閉型の第3の処理域Cに於では、第2の処理域Bから
連通部18を経て流入する混合水に酸素含有気体が散気
管26から吹込まれ、更に曝気が行なわれる。
In the closed type third treatment area C, oxygen-containing gas is blown into the mixed water flowing from the second treatment area B through the communication portion 18 through the aeration pipe 26, and further aeration is performed.

処理域Cに於ける気体吹込みは、汚泥のフロック化を更
に促進するとともに、汚泥の自己酸化による汚泥の大巾
な体積減少を目的とする。
The purpose of gas injection in treatment zone C is to further promote flocculation of the sludge and to significantly reduce the volume of the sludge through self-oxidation of the sludge.

従って、混合水中の汚泥の混合状態を均一に保持シつつ
、フロックの大型化の為汚泥内部までをも好気性に保持
するには、処理域Bの場合に比してより高い溶存酸素濃
度を必要とする。
Therefore, in order to maintain a uniform mixed state of sludge in the mixed water and to maintain even the inside of the sludge aerobic due to the enlargement of flocs, a higher dissolved oxygen concentration than in the case of treatment area B is required. I need.

この為には混合水中の溶存酸素濃度を5mg/l以上と
する必要があるが、一方では溶存酸素濃度があまり大と
なると、過度な自己酸化により汚泥が微細化する為、沈
降分離に長時間を要するとともに微細汚泥が処理済中に
流出する欠点があるので、15■/lを上限とする。
For this purpose, the dissolved oxygen concentration in the mixed water needs to be 5 mg/l or more, but on the other hand, if the dissolved oxygen concentration is too high, the sludge will become fine due to excessive self-oxidation, so it will take a long time for sedimentation and separation. The upper limit is set at 15 .mu./l because it requires a large amount of water and has the disadvantage that fine sludge flows out during treatment.

溶存酸素5〜15m9/lの範囲内では、汚泥内部が嫌
気性となった場合に生ずるガス発生、糸状菌発生等によ
る汚泥の沈降性悪化も完全に防止される。
Within the range of 5 to 15 m9/l of dissolved oxygen, deterioration in the sedimentation property of the sludge due to gas generation, filamentous fungus generation, etc. that would occur when the inside of the sludge becomes anaerobic is completely prevented.

第3の処理域Cに於て汚泥のフロック化を促進する為に
は、溶存酸素濃度を5〜15m9/1に維持しつつ混合
水が均一になる程度に緩やかに攪拌を行なう必要があり
、この為には循環吹込み気体中の酸素濃度を35〜55
vol%とする必要がある。
In order to promote flocculation of sludge in the third treatment zone C, it is necessary to maintain the dissolved oxygen concentration at 5 to 15 m9/1 and to stir gently to the extent that the mixed water is uniform. For this purpose, the oxygen concentration in the circulating gas should be adjusted to 35 to 55.
It is necessary to set it as vol%.

即ち、可動部が液中又は高酸素濃度気体中にある機械的
攪拌機構を使用することなく、気体の曝気のみにより液
の攪拌を行なう場合、酸素濃度が55vol%を上回る
気体により汚泥の十分な混合状態を保持しようとすれば
、酸素供給が過剰となって溶存酸素濃度は15mI?,
#を越えてしまう。
In other words, when stirring the liquid only by aeration of gas without using a mechanical stirring mechanism in which the movable part is in the liquid or in the gas with high oxygen concentration, the gas with an oxygen concentration of more than 55 vol. If you try to maintain the mixed state, the oxygen supply will be excessive and the dissolved oxygen concentration will be 15 mI? ,
It exceeds #.

一方、酸素濃度35vol%未満の循環気体により溶存
酸素濃度を5m9/l以上に維持しようとすれば、循環
を激しく行なう必要があり、汚泥フロックが微細化して
その沈降性が悪化するのである。
On the other hand, if an attempt is made to maintain the dissolved oxygen concentration above 5 m9/l using circulating gas with an oxygen concentration of less than 35 vol%, it is necessary to perform vigorous circulation, which makes the sludge flocs finer and deteriorates their settling properties.

処理域Cに於ける循環吹込み気体の酸素濃度を35〜5
5vol%に保持し且つライン28から排出される気体
量を補うためライン20から高濃度酸素含有気体を適宜
補給する。
The oxygen concentration of the circulating gas in treatment zone C is set to 35 to 5.
In order to maintain the concentration at 5 vol % and to supplement the amount of gas discharged from line 28, high-concentration oxygen-containing gas is appropriately supplied from line 20.

補給ガスの酸素濃度及び量は、処理域B及びCに於ける
酸素溶存量、処理域Cに於ける酸素消費量、処理域B及
びCに於ける混合水の組成及び濃度、ライン28からの
排出量等により定められるが、酸素濃度は40vol%
以上とすることが好ましい。
The oxygen concentration and amount of the make-up gas are based on the amount of dissolved oxygen in treatment zones B and C, the oxygen consumption in treatment zone C, the composition and concentration of mixed water in treatment zones B and C, and the amount of oxygen from line 28. It is determined by the amount of emissions, etc., but the oxygen concentration is 40 vol%
It is preferable to set it as above.

処理域Cに於では、吹込み気体は、ポンプ22、ライン
24及び散気管26を経て循環吹込みされる。
In the treatment zone C, the blowing gas is circulated through the pump 22, the line 24, and the aeration pipe 26.

第3の処理域に於ける混合水の滞留時間も大巾に変り得
るが、通常20〜120分の範囲内にある。
The residence time of the mixed water in the third treatment zone can also vary widely, but is typically in the range of 20 to 120 minutes.

フロック化及び自己酸化を終えた汚泥を含む混合水は、
次いで第3の処理域Cからライン30を経て沈降槽32
に送られ、沈降処理を受ける。
Mixed water containing sludge that has undergone flocculation and self-oxidation is
Next, from the third treatment area C, the line 30 is passed to the sedimentation tank 32.
and sent to undergo sedimentation treatment.

上澄水はライン34から系外に排出され、必要ならば更
に処理を行なう。
The supernatant water is discharged from the system through line 34 and is further treated if necessary.

沈降した汚泥は沈降槽32からライン36及びポンプ3
8を経て取出され、その大部分は第1の処理域Aに返送
され、少量の余剰汚泥(0.2〜0.5kgMLss/
kgBOD程度)がライン40から系外に排出される。
The settled sludge is transferred from the settling tank 32 to the line 36 and the pump 3.
Most of it is returned to the first treatment area A, and a small amount of surplus sludge (0.2 to 0.5 kgMLss/
kg BOD) is discharged from the system through line 40.

本発明に於ける各種のコントロール因子(滞留時間、吹
込み気体の量及び酸素濃度等)は次の様にして定められ
る。
Various control factors (residence time, amount of blown gas, oxygen concentration, etc.) in the present invention are determined as follows.

先ず処理すべき排水原水の水質(BOD値、BOD成分
の組成等)から、第1の処理域で除去すべきBOD及び
溶存酸素濃度0.5〜/l以上という条件を考慮しつつ
、第1の処理域での滞留時間及び空気吹込量を決定する
First, from the water quality of the wastewater raw water to be treated (BOD value, composition of BOD components, etc.), the first Determine the residence time in the treatment area and the amount of air blowing.

次いで第2及び第3の処理域でのBOD除去量、必要溶
存酸素濃度(夫々2 m9/ l以上及び5〜157%
l/l)、フロック形成及び自己酸化に要する時間、及
び両処理域での曝気状況を総合的に考慮して、両処理域
での滞留時間、両処理域での吹込み気体の酸素濃度並び
に第3の処理域への補給気体の酸素濃度及び供給量を定
める。
Next, the amount of BOD removed in the second and third treatment areas, the required dissolved oxygen concentration (2 m9/l or more and 5 to 157%, respectively)
l/l), the time required for floc formation and self-oxidation, and the aeration conditions in both treatment zones, the residence time in both treatment zones, the oxygen concentration of the blown gas in both treatment zones, and the Determine the oxygen concentration and supply amount of the make-up gas to the third treatment zone.

一般に反応性の大なる食品工場廃水等の場合には、第1
の処理域での攪拌を非常に激しく行ないつつ滞留時間を
短縮する一方で、第2及び第3の処理域での滞留時間を
長くして汚泥フロックの成長及び自己酸化を十分に行な
うことが望ましいのに対し、反応性の小なる化学工場排
水(例えは製鉄工場排水等)の場合には、第1の処理域
での滞留時間を長くする一方で、第2及び第3の処理域
での滞留時間を比較的短くすることが望ましい。
Generally, in the case of highly reactive food factory wastewater, etc., the first
It is desirable to use very vigorous agitation in the first treatment zone to shorten the residence time, while increasing the residence time in the second and third treatment zones to ensure sufficient sludge floc growth and self-oxidation. On the other hand, in the case of chemical factory wastewater with low reactivity (e.g. steel factory wastewater), the residence time in the first treatment zone is lengthened, while the residence time in the second and third treatment zones is increased. It is desirable to have relatively short residence times.

いずれにせよ、処理に要する全時間は従来法に比して大
巾に減少する。
In any case, the total processing time is significantly reduced compared to conventional methods.

本発明方法によれば、以下の如き効果が達成される。According to the method of the present invention, the following effects are achieved.

(1)余剰汚泥の生成量が極めて少ない。(1) The amount of surplus sludge produced is extremely small.

(2)高濃度酸素を使用する全密閉処理方法とは異なっ
て、CO2及び揮発性有機物の蓄積は生じないので、爆
発の危険性なく常に高い処理効率を保持し得る。
(2) Unlike completely sealed treatment methods that use highly concentrated oxygen, no accumulation of CO2 and volatile organic substances occurs, so high treatment efficiency can be maintained at all times without the risk of explosion.

(3)活性汚泥処理中に混合水を常に中性又は弱アルカ
リに保持することを必須とし、しかも活性汚泥による処
理速度が小なる物質を含む廃水も十分に処理することが
出来る。
(3) It is essential to keep the mixed water neutral or weakly alkaline during activated sludge treatment, and wastewater containing substances that are treated at a low rate by activated sludge can also be sufficiently treated.

(4)高濃度酸素のみを使用する全密閉処理方法に比し
て、より低濃度の酸素含有気体を使用することが出来且
つ空気をも併用し得るので、コストの大巾低下が達成さ
れる。
(4) Compared to a completely sealed treatment method that uses only high-concentration oxygen, a lower concentration of oxygen-containing gas can be used, and air can also be used, resulting in a significant reduction in cost. .

(5)吹込み気体循環機構を備えた密閉型の第2の処理
域に於て比較的低酸素濃度の気体(例えば酸素35vo
l%以下)を循環使用する場合には、設備費が著るしく
大となり且つC02蓄積によるpH以下の防止及び設備
の維持管理が困難となる。
(5) Gas with a relatively low oxygen concentration (for example, 35 vol of oxygen
1% or less), the equipment cost becomes significantly large, and it becomes difficult to prevent the pH from dropping below the pH level due to CO2 accumulation and to maintain and manage the equipment.

これに対し、開放型の第2の処理域を使用する本発明は
、設備費も安価で、pH低下も生ぜず、維持管理も極め
て容易であり、気体の使い捨てによるデメリットを十分
に補って余りあるものとなる。
In contrast, the present invention, which uses an open second treatment zone, has low equipment costs, does not cause pH drop, and is extremely easy to maintain and manage, which more than compensates for the disadvantages of disposable gas. Become something.

(6)第3の処理域Cの如き密閉槽内で、高酸素濃度気
体中又は液中に可動部を有する機械的攪拌機構を使用す
る場合には、その保守点検及び維持管理が甚だ困難であ
るが、本発明では気体吹込みにより酸素の溶解と攪拌と
を同時に行なうので、その様な難点は存在しない。
(6) When using a mechanical stirring mechanism that has a moving part in a high oxygen concentration gas or liquid in a closed tank such as the third treatment area C, maintenance inspection and maintenance of the mechanism is extremely difficult. However, in the present invention, such a difficulty does not exist because the dissolution of oxygen and stirring are performed simultaneously by blowing gas.

(7)開放型の第1及び第2の処理域と密閉型の第3の
処理域との併用、並びに各処理域に於ける最適溶存酸素
量の採用により処理時間が大巾に短縮される。
(7) Processing time can be greatly shortened by using the open type first and second treatment zones and the closed type third treatment zone, and by adopting the optimum amount of dissolved oxygen in each treatment zone. .

以下に本発明の実施例を示し、本発明の特徴とするとこ
ろをより明確ならしめるものとする。
Examples of the present invention will be shown below to make the features of the present invention clearer.

実施例 1 1m×1.5m×2.5mの開放型第1曝気槽、同寸法
の開放型第2曝気槽及び1m×3m×2.5mの密閉型
第3曝気槽を使用してコークス炉廃水を工活性汚泥処理
した。
Example 1 A coke oven was constructed using an open type first aeration tank of 1 m x 1.5 m x 2.5 m, an open type second aeration tank of the same size, and a closed type third aeration tank of 1 m x 3 m x 2.5 m. Wastewater was treated with activated sludge.

予備沈澱池で一次処理された廃水(BODI 9 8p
pm, scN−濃度2 0ppm、pH 7. 3
)約4 m3/Hに返送汚泥(汚泥濃度18000mg
/l)約2 m3/ Hを加え、第1曝気槽に於で水温
25°Cで150Nm3/Hの空気を吹込み、溶存酸素
濃度(D.0.)を約0.8mg/lに保持しつつ汚泥
を微細化した。
Wastewater that has undergone primary treatment in the pre-sedimentation tank (BODI 9 8p
pm, scN-concentration 20 ppm, pH 7. 3
) Return sludge to approximately 4 m3/H (sludge concentration 18000 mg
/l) about 2 m3/H and blow 150Nm3/H of air into the first aeration tank at a water temperature of 25°C to maintain the dissolved oxygen concentration (D.0.) at about 0.8mg/l. At the same time, the sludge was made finer.

第1曝気槽での滞留時間は約30分であり、第1曝気槽
から第2曝気槽に排出される混合水の水質は、BOD約
50ppm、SCN lppm, pH7. 2であっ
た。
The residence time in the first aeration tank is approximately 30 minutes, and the quality of the mixed water discharged from the first aeration tank to the second aeration tank is approximately 50 ppm BOD, lppm SCN, and pH 7. It was 2.

第2曝気槽には40Nm3/Hの空気が散気管から吹込
まれ、曝気攪拌が行なわれた。
Air of 40 Nm 3 /H was blown into the second aeration tank from an aeration tube to perform aeration and stirring.

第2槽中では緩やかな攪拌により混合水中のD.0.を
約2.1■/lに保持しつつフロックの形成を行なった
In the second tank, the D. 0. The flocs were formed while maintaining the concentration at about 2.1 .mu./l.

滞留時間は30分であった。Residence time was 30 minutes.

第2曝気槽から第3ご曝気槽に排出される混合水の水質
は、BOD約34ppm、SCNは検出されず、pHは
7,2であった。
The quality of the mixed water discharged from the second aeration tank to the third aeration tank was approximately 34 ppm BOD, no SCN was detected, and the pH was 7.2.

第3曝気槽には酸素濃度50vol%の気体が供給され
、循環曝気が行なわれた。
Gas with an oxygen concentration of 50 vol% was supplied to the third aeration tank, and circulating aeration was performed.

循環ガスの酸素濃度は約41vol%、循環ガス量約1
5Nm3/Hで、緩やかな攪拌により混合水中のD.0
.を約6. 2 mI?/ 7に保持しつつ、滞留時間
60分でフロック形成及び汚泥の自己酸化を行なった。
The oxygen concentration of the circulating gas is approximately 41 vol%, the circulating gas amount is approximately 1
D. in the mixed water by gentle stirring at 5Nm3/H. 0
.. Approximately 6. 2 mI? Floc formation and self-oxidation of the sludge were carried out with a residence time of 60 minutes while maintaining the temperature at a temperature of 1/7.

第3曝気槽出口での混合水の水質は、BoD24ppm
、SCNは検出されず、pHは7.1であった。
The quality of the mixed water at the outlet of the third aeration tank is BoD 24ppm.
, SCN was not detected, and the pH was 7.1.

第3曝気槽を出た混合水は、沈降層に導かれ、汚泥と処
理済水とが分離された。
The mixed water that came out of the third aeration tank was led to a sedimentation layer, where sludge and treated water were separated.

汚泥の沈降性を示す指環であるSVIは、第3曝気槽流
出混合水に於て46であり、余剰汚泥発生量は0. 2
8 kgMLss/kPBODであった。
The SVI, which is a ring that indicates the sedimentation property of sludge, was 46 in the mixed water discharged from the third aeration tank, and the amount of surplus sludge generated was 0. 2
It was 8 kgMLss/kPBOD.

実施例 2 1m×1.5m×3mの開放型第1曝気槽、1m×1.
5m×2mの開放型第2曝気槽及び1m×1.5m×2
mの密閉型第3曝気槽を使用して都市下水を活性汚泥処
理した。
Example 2 1m x 1.5m x 3m open type first aeration tank, 1m x 1.
5m x 2m open type second aeration tank and 1m x 1.5m x 2
Urban sewage was treated with activated sludge using a closed type third aeration tank.

予備沈澱池で一次処理され、BOD約136ppmとな
った原水( pH 7. 2、水温26℃)10m3/
Hに返送汚泥(汚泥濃度14000mg/lを返送汚泥
率40%で加え、第1曝気槽に於て散気管により70N
m3/Hの空気を吹込み、D.0.を約0.9mg/l
に保持しつつ汚泥を微細化した。
10 m3 of raw water (pH 7.2, water temperature 26°C) that has undergone primary treatment in a pre-sedimentation tank and has a BOD of approximately 136 ppm
Returned sludge (sludge concentration 14,000 mg/l was added to H at a return sludge rate of 40%, and 70N
Blow in air at m3/h, D. 0. about 0.9mg/l
The sludge was made finer while maintaining the sludge.

第1曝気槽内での滞留時間は40分であり、第1曝気槽
から第2曝気槽に排出される混合水のBODは約32p
pm、pHは7.1であった。
The residence time in the first aeration tank is 40 minutes, and the BOD of the mixed water discharged from the first aeration tank to the second aeration tank is approximately 32p.
pm and pH were 7.1.

第2曝気槽には第3曝気槽からの排出ガスと空気との混
合ガス約15Nm3/Hが散気管により吹込まれ、混合
水中のD.0.を2. 1m9/lに保持しつつフロッ
クの形成を行なった。
A mixed gas of about 15 Nm3/H of exhaust gas from the third aeration tank and air is blown into the second aeration tank through an aeration pipe, and D. 0. 2. Flock formation was performed while maintaining the concentration at 1 m9/l.

第2曝気槽から第3曝気槽に排出される混合水のBOD
は約25ppm、pHは7.1であり、第2曝気槽に於
ける滞留時間は約40分であった。
BOD of mixed water discharged from the second aeration tank to the third aeration tank
was about 25 ppm, pH was 7.1, and residence time in the second aeration tank was about 40 minutes.

第3曝気槽には酸素濃度5vol%の気体1Nm/Hが
供給され、循環曝気が行なわれた。
A gas of 1 Nm/H with an oxygen concentration of 5 vol% was supplied to the third aeration tank, and circulating aeration was performed.

循環ガスの酸素濃度は約36vol%で、循環ガス量約
12Nm/Hの緩やかな攪拌により混合水中のD.0.
を約5.3mg/lに保持しつつ、フロック形成及び汚
泥の自己酸化を行なった。
The oxygen concentration of the circulating gas is approximately 36 vol%, and the D. 0.
Floc formation and autooxidation of the sludge were carried out while maintaining the concentration at approximately 5.3 mg/l.

第3曝気槽での滞留時間は40分間で、第3曝気槽を出
た混合水( B 01) 2 0ppm, pH6.9
)は、沈降槽に導かれ、汚泥と処理水とが分離された
The residence time in the third aeration tank was 40 minutes, and the mixed water (B01) that came out of the third aeration tank was 20 ppm, pH 6.9.
) was led to a settling tank, where sludge and treated water were separated.

SVIは、第3曝気槽流出混合水に於で43であった。SVI was 43 in the mixed water effluent from the third aeration tank.

又、余剰汚泥発生量は0. 3 2 kyMLss/k
gBODであった。
In addition, the amount of surplus sludge generated is 0. 3 2 kyMLss/k
It was gBOD.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の大要を示すフローチャートである。 A・・・・・・開放型の第1の処理域、B・・・・・・
開放型の第2の処理域、C・・・・・・密閉型の第3の
処理域、2・・・・・・排水原水供給ライン、4,12
・・・・・・空気供給ライン、6,14,22・・・・
・・ポンプ、8,16,26・・・・・・散気管、20
・・・・・・酸素供給ライン、24・・・・・・酸素含
有気体吹込みライン、30・・・・・・曝気処理水送り
出しライン、32・・・・・・沈降槽、34・・・・・
・上澄水排出ライン、36・・・・・・汚泥取出しライ
ン、38・・・・・・ポンプ、40・・・・・・余剰汚
泥排出ライン。
The drawing is a flowchart outlining the method of the invention. A: Open type first processing area, B:
Open type second treatment area, C... Closed type third treatment area, 2... Wastewater raw water supply line, 4, 12
...Air supply line, 6, 14, 22...
... Pump, 8, 16, 26 ... Diffuser pipe, 20
... Oxygen supply line, 24 ... Oxygen-containing gas blowing line, 30 ... Aerated water delivery line, 32 ... Sedimentation tank, 34 ... ...
-Supernatant water discharge line, 36...Sludge removal line, 38...Pump, 40...Excess sludge discharge line.

Claims (1)

【特許請求の範囲】[Claims] 1 3つの曝気処理域を使用し、廃水及び沈降槽からの
返送汚泥からなる混合水を収容する開放型の第1の処理
域に於では空気吹込みによる攪拌下に該混合水中の溶存
酸素量を0.5mg/1以上に保持しつつ汚泥を微細化
させ、該第1の処理域に続く開放型の第2の処理域では
空気又は酸素含有ガスの吹込みによる攪拌下に前記第1
の処理域からの流入水中の溶存酸素量を2mg/l以上
に保持しつつ汚泥のフロック形成を行なわせ、該第2の
処理域に続く密閉型の第3の処理域では酸素濃度35〜
55vol%の気体の吹込みによる攪拌下に前記第2の
処理域からの流入水中の溶存酸素量を5〜15■/lに
保持しつつ汚泥のフロック化の増進及びフロックの自己
酸化を行なわせ、該第3の処理域からの流出水を沈降槽
に導いて汚泥を沈降させつつ上澄水を系外に放流すると
ともに該沈降汚泥の一部を前記第1の処理域に返送する
ことを特徴とする廃水の活性汚泥処理方法。
1. Three aeration treatment zones are used, and in the first treatment zone, which is an open type and accommodates mixed water consisting of wastewater and sludge returned from the settling tank, the amount of dissolved oxygen in the mixed water is reduced under agitation by air blowing. The sludge is made fine while maintaining the sludge at 0.5 mg/1 or more, and in an open second treatment zone following the first treatment zone, the first treatment zone is agitated by blowing air or oxygen-containing gas.
Sludge flocs are formed while maintaining the amount of dissolved oxygen in the inflow water from the second treatment zone at 2 mg/l or more, and in the closed third treatment zone following the second treatment zone, the oxygen concentration is 35 to 35.
Under agitation by blowing 55 vol% gas, while maintaining the amount of dissolved oxygen in the inflow water from the second treatment zone at 5 to 15 μ/l, the formation of flocs in the sludge is promoted and the flocs undergo self-oxidation. , characterized in that the outflow water from the third treatment area is led to a settling tank to settle the sludge, while the supernatant water is discharged outside the system, and a part of the settled sludge is returned to the first treatment area. Activated sludge treatment method for wastewater.
JP52002797A 1977-01-12 1977-01-12 Wastewater activated sludge treatment method Expired JPS5814834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52002797A JPS5814834B2 (en) 1977-01-12 1977-01-12 Wastewater activated sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52002797A JPS5814834B2 (en) 1977-01-12 1977-01-12 Wastewater activated sludge treatment method

Publications (2)

Publication Number Publication Date
JPS5387573A JPS5387573A (en) 1978-08-02
JPS5814834B2 true JPS5814834B2 (en) 1983-03-22

Family

ID=11539353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52002797A Expired JPS5814834B2 (en) 1977-01-12 1977-01-12 Wastewater activated sludge treatment method

Country Status (1)

Country Link
JP (1) JPS5814834B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157382A (en) * 1979-05-29 1980-12-08 Hitachi Ltd Reducing method for active sludge generation quantity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850558A (en) * 1971-10-30 1973-07-17
JPS4891859A (en) * 1972-01-13 1973-11-29
JPS4919584A (en) * 1972-06-15 1974-02-21
JPS4919586A (en) * 1972-04-14 1974-02-21

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850558A (en) * 1971-10-30 1973-07-17
JPS4891859A (en) * 1972-01-13 1973-11-29
JPS4919586A (en) * 1972-04-14 1974-02-21
JPS4919584A (en) * 1972-06-15 1974-02-21

Also Published As

Publication number Publication date
JPS5387573A (en) 1978-08-02

Similar Documents

Publication Publication Date Title
US3356609A (en) Aerobic treatment of sewage
CA1096975A (en) Activated sludge treatment method of waste water
CN108821473A (en) A kind of dyeing and printing sewage treatment process
JPH06226292A (en) Biological sewage treating device
JPH04349997A (en) Treatment of organic waste water
JPS5881491A (en) Purification of filthy water with activated sludge
JP3099839B2 (en) Wastewater treatment method by activated sludge method
US5075015A (en) Method for color removal from thermally conditioned sludge liquors
JPH0751684A (en) Treatment of waste water containing dissolved iron
JPH0686988A (en) Method for treating drainage containing fluoride ion and hydrogen peroxide
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
KR100435107B1 (en) Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
JPH05337492A (en) Biological treatment of sewage
JPS5814834B2 (en) Wastewater activated sludge treatment method
JPH08318292A (en) Waste water treatment method and apparatus
JPH1052697A (en) Method for reduction of organic sludge
KR0177912B1 (en) Biological and chemical circulation advanced treatment system of wastewater using integrated reaction tank and water quality control tank
JPH0679715B2 (en) Biological treatment method of organic wastewater
KR100457698B1 (en) Livestock wastewater treatment method and equipment using STP waste excess sludge
JPH0576897A (en) Water purifying treatment method and apparatus
JPS6274496A (en) Method for treating waste water
KR20020009956A (en) Apparatus and method for waste water processing contain heavy metal and a pollutant non decomposition
KR19980043481A (en) Hardly degradable organic material treatment method
JPH10328693A (en) Biological treatment for waste liquid containing organic solid matter
KR0131267B1 (en) Microorganism reactor and method of a loss in quantity of wastewater treatment of polyester