JPS58147887A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPS58147887A
JPS58147887A JP57032008A JP3200882A JPS58147887A JP S58147887 A JPS58147887 A JP S58147887A JP 57032008 A JP57032008 A JP 57032008A JP 3200882 A JP3200882 A JP 3200882A JP S58147887 A JPS58147887 A JP S58147887A
Authority
JP
Japan
Prior art keywords
transistor
drain
emitter
memory device
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57032008A
Other languages
Japanese (ja)
Other versions
JPH0315351B2 (en
Inventor
Takao Nakano
隆生 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57032008A priority Critical patent/JPS58147887A/en
Publication of JPS58147887A publication Critical patent/JPS58147887A/en
Publication of JPH0315351B2 publication Critical patent/JPH0315351B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce cell area and to obtain ideal symmetry to unreversible characteristics of a static type semiconductor storage circuit which uses a GaAs substrate, by adding at least two diffused layers and constituting an address selective transistor (TR). CONSTITUTION:A bipolar TR is an NPN TR having a collector 3-2, base 2, and emitter 3-3; the base 2 is connected to an address line and the emitter 303 is connected to a data line. The current gain of the bipolar TR which is a performance index is determined by the 3-2 and 3-3, but this consists of Self and Align as evident from its structure, so an extremely large value is obtained. The 3-2 is the drain of an MESFET and also the collector of the bipolar TR. The address selective TR is constituted only by adding the 2 and 2-3, so the constitution area is much less than usual.

Description

【発明の詳細な説明】 この発明はスタティック形の半導体記憶装置の構成(こ
関するもので、主としてGaAs基板を用いたものの特
性向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a static type semiconductor memory device, and mainly relates to improving the characteristics of a device using a GaAs substrate.

スタティックRAMは双安定のフリップ・フロップ回路
をメモリセルとして用い、どちらかの安定状態を1”、
その反対を“0”として情報を記憶する。従って電源が
供給されている間は情報を記憶していることになる。
Static RAM uses bistable flip-flop circuits as memory cells, and either stable state is 1",
Information is stored with the opposite value set as "0". Therefore, information is stored as long as power is supplied.

スタティック朧のセル構成を第1図に示す。Figure 1 shows the cell configuration of static hazy.

メモリセルはフリップ・フロップを構成するトランジス
タT、−T4と番地選択用トランジスタTs、’rsの
素子から成っている。図ではドライバーがエンハンスメ
ント形でロードがエンハンスメント形のEA形のインバ
ータでフリップ・フロップを構成した例を示す。ロード
の構成によりデプレッシ冒ン形で作られたE/D形、6
MO8で作られたCMOSスタティック形及び負荷を抵
抗で形成したE/R形もある。いずれも基本的には6素
子でセルが構成されている。
The memory cell consists of transistors T and -T4 forming a flip-flop and address selection transistors Ts and 'rs. The figure shows an example in which a flip-flop is configured with an EA type inverter in which the driver is an enhancement type and the load is an enhancement type. E/D type, 6 made in Depressi type due to the load configuration.
There is also a CMOS static type made of MO8 and an E/R type in which the load is formed by a resistor. Each cell basically consists of six elements.

第1図のメモリセルの基本動作を説明する。アドレス信
号により、本セルが選択されているものとする。この時
’r、 、 ’re は導通し、T1 + ”2 * 
T3 H’r。
The basic operation of the memory cell shown in FIG. 1 will be explained. It is assumed that this cell is selected by the address signal. At this time, 'r, , 're are conductive, and T1 + "2 *
T3 H'r.

からなるフリップフロップ(F/F)の状態を続み出す
。今T2がON 、 ’r、がOFF状態にあるとする
とノードA +i 0 電位、ノードBはVDDレベル
に有る。
The state of the flip-flop (F/F) consisting of Assuming that T2 is now ON and 'r is OFF, node A + i 0 potential and node B are at VDD level.

このためデータ線、データ線りには各々Hレベル、Lレ
ベルが読み出される。
Therefore, H level and L level are read to the data line and the data line, respectively.

一方F/Fを反転するには上記同様アドレス信号により
、本セルを選択し、DにHレベル、DにLレベルをiF
き込むとT1が導通しT2が非導通となり、F/Fが反
転しアドレス線を非導通にすることでノー)’B4!L
レベル、ノードA i、t Hレベルを維持スる。
On the other hand, to invert the F/F, use the address signal as above to select this cell and set D to H level and D to L level to iF.
When input, T1 becomes conductive and T2 becomes non-conductive, F/F is inverted and the address line is made non-conductive (No)'B4! L
level, node A i,t H level is maintained.

Ts、Ts  )ランジスタはメモリセルの読み出し、
iIき込みのスイッチとして働くため、高速に動作し且
高集積化を可能にするにはできる丈占有面積の小さいこ
とが望ましい。
Ts, Ts) The transistor reads the memory cell,
Since it works as an iI-loaded switch, it is desirable that it operate at high speed and occupy a small area in order to enable high integration.

またデータラインD、Dには多数のメモリセルが接続さ
れているため、結合容量が大きくなり、T8.T6トラ
ンジスタは駆動能力が大きい必要がある。
Furthermore, since a large number of memory cells are connected to the data lines D and D, the coupling capacitance becomes large, and T8. The T6 transistor needs to have high driving capability.

本、発明は上記のような点に鑑み、GaAs等の基板を
用いて構成される。スタティック形半導体記憶装置にお
いて、番地選択用トランジスタを最小の領、域で形成す
ると共#ζパブポーラトランジスタ化し、データライン
D、Dに多数のメモリセルが接続されても電流駆動能力
が落ちないようにするこ°とを目的とするものである。
In view of the above points, the present invention is constructed using a substrate such as GaAs. In a static type semiconductor memory device, the address selection transistor is formed in the minimum area and becomes a #ζ pub-polar transistor, so that the current driving ability does not decrease even if a large number of memory cells are connected to the data lines D and D. The purpose is to

    1 、本発明の一実施例を第2図に示す。第2図においてメ
モリセルはQ+ 、 Ql 、 Qs 、 Q4のME
SFETで構成され、番地選択用トランジスタQa、Q
sはバイポーラ形トランジスタとする。アドレス信号に
より本セルが選択されているものとする。今Q2がON
1. An embodiment of the present invention is shown in FIG. In FIG. 2, the memory cells are ME of Q+, Ql, Qs, Q4.
Composed of SFETs, address selection transistors Qa, Q
s is a bipolar transistor. It is assumed that this cell is selected by the address signal. Q2 is on now
.

QlがOFF状態にあるとするとノードCは0櫂位、ノ
ードDはVDDレベルに有る。この為データ線、データ
緑石には各々Hレベル、Lレベルが読み出される。一方
このF/Fを反転するには上記同様アドレス信号により
本セルを選択し、DにHレベル、DにLレベルを書き込
むとノードDがLレベル、ノー ドCがHレベルになり
、QlがON、QlがOFFし、F/Fが反転しアドレ
ス線を非導通にすることでノードDがLレベル、ノード
CがHレベルを維持する。  、 第8図は本発明の一実施例を示すIC化断面図をQl 
、 Qa及びQs 、 Qsに着目し示したものである
When Ql is in the OFF state, node C is at the 0 level and node D is at the VDD level. For this reason, H level and L level are read on the data line and data greenstone, respectively. On the other hand, to invert this F/F, select this cell using the address signal as described above, write H level to D and L level to D, node D becomes L level, node C becomes H level, and Ql becomes ON, Ql is turned OFF, F/F is inverted, and the address line is made non-conductive, thereby maintaining node D at L level and node C at H level. , FIG. 8 is an IC cross-sectional view showing one embodiment of the present invention.
, Qa, Qs, and Qs.

MESFET QIQ2は8−1.8−2を各々ソース
・ドレインとし5をゲート、4をチャネル領域とする。
MESFET QIQ2 has 8-1, 8-2 as a source and drain, 5 as a gate, and 4 as a channel region.

Qa 、 Qsのバイポーラトランジスタは8−2をエ
ミッタ、8−8をコレクタとし、2をベースとする。
In the bipolar transistors Qa and Qs, 8-2 is the emitter, 8-8 is the collector, and 2 is the base.

2のベース領域はアドレス線につながれトランジスタの
工E7タ8−8はデータ線り、Dにつながる。
The base region of the transistor E7 is connected to the address line, and the transistor E7 is connected to the data line D.

第4図は第8図に示したIC化構成の形成法を示す。第
4図において1は半導体基板であり、通常半絶縁性の比
抵抗を有する「基板が用いられる。
FIG. 4 shows a method of forming the IC structure shown in FIG. In FIG. 4, reference numeral 1 denotes a semiconductor substrate, and a substrate having a semi-insulating resistivity is usually used.

基板全面に絶縁膜10を形成後、マスクを用い、レジス
ト膜20を塗付する。2の領域をパターニング後P形の
イオン注入■により、2の領域を形成する。同様の手順
にて再度絶縁膜10、レジスト21で4の領域形成のた
めのパターンニングを行い、チャネル領域となるn−の
イオン注入@を行い4の領域を形成する。引き続き第4
図(C)で示す通り n+のイオン注入Oを行い、8−
1 、8−2 、8−8の領域を形成する。全領域を絶
縁物で被覆、熱処理しMESFET及びバイポーラトラ
ンジスタが形成される。
After forming the insulating film 10 on the entire surface of the substrate, a resist film 20 is applied using a mask. After patterning the region 2, the region 2 is formed by P-type ion implantation (3). Using the same procedure, patterning is again performed using the insulating film 10 and the resist 21 to form a region 4, and n- ion implantation @, which will become a channel region, is performed to form a region 4. Continuing to the 4th
As shown in figure (C), n+ ion implantation O was performed, and 8-
Regions 1, 8-2, and 8-8 are formed. The entire area is covered with an insulator and heat treated to form a MESFET and a bipolar transistor.

第4図(a)でオーミックコンタクトをとり、絶縁膜8
0をエツチングし、シッットキーゲート50及び内部配
線を完了する。
In Fig. 4(a), make ohmic contact and insulating film 8.
0 and complete the Schittky gate 50 and internal wiring.

本発明になるバイポーラ1ランジスタは8−2.2゜8
−8を各々エレクタ、ベース、エミッタとするNPN 
トランジスタであり、ベース2はアドレス線うトランジ
スタの性能指数である電流利得は3−2゜8−8間で決
まるが構造上明らかな通り、5elfAt tgnで形
成されるため、極めて大きな値かえられる。又8−2は
MESFETのドレインで有りノ(イポーラトランジス
タのコレクタとなる。2及び・8−8を付加するのみで
番地選択トランジスタが構成できるので従来構成に比べ
、構成面積を著しく減少させることが可能になる。
The bipolar 1 transistor according to the present invention is 8-2.2°8
NPN with −8 as erector, base, and emitter, respectively
The current gain, which is the figure of merit of the transistor, is determined between 3-2° and 8-8, but as is clear from the structure, since it is formed of 5elfAttgn, the current gain can be changed to an extremely large value. Also, 8-2 is the drain of the MESFET (it becomes the collector of the polar transistor). Since the address selection transistor can be configured by simply adding 2 and 8-8, the configuration area can be significantly reduced compared to the conventional configuration. becomes possible.

又8−2.8.8−8からなるトランジスタは謂ゆるラ
テラルNPN )ランジスタであり、8−2をエミッタ
、8−8をコレクタとしてもその基本動作は変らス番地
選択トランジスタに要求される双方向性の良さも本構成
の他の利点となっていることはいうまでもない。
In addition, the transistor consisting of 8-2, 8, and 8-8 is a so-called lateral NPN transistor, and even if 8-2 is the emitter and 8-8 is the collector, its basic operation is different. Needless to say, good tropism is another advantage of this configuration.

以上述べた所よりも明らかな通り、本発明は81以外の
主としてGaAs基板を用いるスタティック形半導体記
憶回路において、少くとも2つの拡散層を付加するのみ
で番地選択トランジスタの構成が可能になり、セル面積
を縮小できる。又従来問題であった大容鰍化に伴うデー
タ線容量の増大をバイポーラトランジスタの駆動能力で
償い又ラテラルNPNトランジスタ化を図ることで非可
逆特性の対称性を理想的なものになし得る利点がある。
As is clear from the above description, the present invention makes it possible to configure an address selection transistor in a static semiconductor memory circuit other than 81, which mainly uses a GaAs substrate, by adding at least two diffusion layers. The area can be reduced. In addition, the conventional problem of increased data line capacitance due to the large-capacity structure can be compensated for by the driving ability of bipolar transistors, and the symmetry of irreversible characteristics can be idealized by using lateral NPN transistors. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSi以外の主としてGaAsを基板とする半導
体スタティックRAMに用いられる構成図である。 第2図は本発明の一実施例を示す半導体スタティックR
AMの構成図で、Ql 、 (h 、 Qs 、 Q4
はMESFET。 Qh 、 Qsはバイポーラトランジスタ。VDDは電
源、Vssは接地、D、Dはデータ線、データ線を示す
。 第8図は本発明の一実施例を示すIC化断面図で、lは
第−導電形の基板、2は第−導電影領域。 8−1.8−2 、8−8は第二導電影領域。4は第二
導電形のチャネル領域、6はゲート領域である。 第4図は本発明の具体的構成方法を示す説明図で、1.
2.8−1.8−2.8−8.4.5はtmと同じであ
り、lOは絶縁膜、 20.80はパターンエラグのた
めのレジスト膜、40はシ曽ットキーゲート及び内部配
線のための金属領域、50は拡散領域へのオーミックコ
ンタクト、■はP形@はn−形0はn形のイオン注入を
示す。 代理人 葛野信− 第1図 第2図 第3図 アトL7線   D 万 特許請求の範囲 +11第1.第2.第8.第4のトランジスタを有し、
第1トランジスタのゲートは第2トランジスタのドレイ
ン、第2トランジスタのゲートは第1トランジスタのド
レインにつながり、第1.第2トランジスタのソースは
共通に接地され、第8゜@4のトランジスタのソースは
各々第1.第2トランジスタのドレインにつながり、ゲ
ート・ドレインは電源に共通接続されてなるフリップフ
ロップと、該フリップフロップの記憶状態を番地選択信
号によりデータ線、データ線に転送する第6゜第6のト
ランジスタを備え、上記第5.第6のトランジスタのベ
ースはアドレス線につながり、第6トランジスタのコレ
クタは第1トランジスタのドレインと第8トランジスタ
のソース、第6トランジスタのコレクタは第2トランジ
スタのドレインと第4トランジスタのソースにつながり
、第5゜第6トランジスタのエミッタの出力はデータ線
、データ線につながっていることを特徴とする半導体記
憶装置。 12+J51−ランジスタのエミッタを第1トランジス
タのドレインと第8トランジ、スタのソース、第6トラ
ンジスタのエミッタを第2トランジスタのドレインと第
8トランジスタのソース、第6.第6トランジスタのコ
レクタ出力はデータ線、データ線につながる特許請求の
範囲第1項記載の半導体記憶装置。 (3)第8.第4トランジスタを抵抗体で構成した特許
請求の範囲第1項記載の半導体記憶装置。 (4)第1.第2.第8.第4トランジスタをMESF
ET、  第51第6のトランジスタをバイポーラNP
N)ランジスタとする特許請求の範囲第1項記載の半導
体記憶装置。 (5)第1.第2トランジスタのドレインとバイポーラ
トランジスタのエミッタあるいはコレクタを共用してな
る特許請求の範囲第1項ないし第4項のいずれかに記載
の半導体記憶装置。 (6)第1.第2.第8.第4トランジスタをMESF
ET、第5.第6トランジスタをバイポーラ・ラチラル
トランジスタとする特許請求の範囲第1項記載の半導体
記憶装置。 (7)半導体基板にGaAsを用い、第5.第6トラン
ジスタのエミッタあるいはコレクタ形成を該−第1、第
2トランジスタのドレイン・ソース形成時、同時に形成
してなる特許請求の範囲第1項記載の半導体記憶装置。
FIG. 1 is a configuration diagram used in a semiconductor static RAM whose substrate is mainly GaAs other than Si. FIG. 2 shows a semiconductor static R showing an embodiment of the present invention.
In the AM configuration diagram, Ql, (h, Qs, Q4
is MESFET. Qh and Qs are bipolar transistors. VDD is a power supply, Vss is a ground, and D and D are data lines. FIG. 8 is a sectional view showing an embodiment of the present invention as an IC, in which 1 is a substrate of the first conductivity type, and 2 is a second conductive shadow region. 8-1.8-2 and 8-8 are second conductive shadow areas. 4 is a channel region of the second conductivity type, and 6 is a gate region. FIG. 4 is an explanatory diagram showing a specific configuration method of the present invention.
2.8-1.8-2.8-8.4.5 is the same as tm, IO is the insulating film, 20.80 is the resist film for pattern error, and 40 is the shot key gate and internal wiring. 50 is an ohmic contact to the diffusion region, ■ indicates P type @ n- type 0 indicates n type ion implantation. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 3 At L7 line D Claims + 11 No. 1. Second. 8th. a fourth transistor;
The gate of the first transistor is connected to the drain of the second transistor, the gate of the second transistor is connected to the drain of the first transistor, and the first... The sources of the second transistors are commonly grounded, and the sources of the 8th and 4th transistors are respectively grounded. A flip-flop connected to the drain of the second transistor and whose gate and drain are commonly connected to the power supply, and a sixth transistor that transfers the memory state of the flip-flop to the data line by an address selection signal. Preparation, Section 5 above. The base of the sixth transistor is connected to the address line, the collector of the sixth transistor is connected to the drain of the first transistor and the source of the eighth transistor, the collector of the sixth transistor is connected to the drain of the second transistor and the source of the fourth transistor, 5. A semiconductor memory device characterized in that the output of the emitter of the sixth transistor is connected to a data line. 12+J51- The emitter of the transistor is connected to the drain of the first transistor and the source of the eighth transistor, the emitter of the sixth transistor is connected to the drain of the second transistor and the source of the eighth transistor, and the emitter of the sixth transistor is connected to the drain of the second transistor and the source of the eighth transistor. 2. The semiconductor memory device according to claim 1, wherein the collector output of the sixth transistor is connected to a data line. (3) No. 8. The semiconductor memory device according to claim 1, wherein the fourth transistor is constituted by a resistor. (4) First. Second. 8th. The fourth transistor is MESF
ET, 51st 6th transistor bipolar NP
N) The semiconductor memory device according to claim 1, which is a transistor. (5) First. 5. The semiconductor memory device according to claim 1, wherein the drain of the second transistor and the emitter or collector of the bipolar transistor are shared. (6) 1st. Second. 8th. The fourth transistor is MESF
ET, 5th. 2. The semiconductor memory device according to claim 1, wherein the sixth transistor is a bipolar lateral transistor. (7) Using GaAs for the semiconductor substrate, the fifth. 2. The semiconductor memory device according to claim 1, wherein the emitter or collector of the sixth transistor is formed at the same time as the drain and source of the first and second transistors are formed.

Claims (1)

【特許請求の範囲】 (1)第1.第2.第8.第4のトランジスタを有し、
第1トランジスタのゲートは第2トランジスタのドレイ
ン、第2トランジスタのゲートは第1トランジスタのド
レインにつながり、第1.第2トランジスタのソースは
共通に接地され、第8゜第4のトランジスタのソースは
各々第1.li2トランジスタのドレインにつながり、
ゲート・ドレインは電源に共通接続されてなるフリップ
フロップと、核フリップフロップの記憶状態を番地選択
信号によりデータ線、データ線に転送する第6゜第6の
トランジスタを備え、上記第6.第6のトランジスタの
ペースはアドレス線につながり、第6トランジスタのコ
レクタは第1トランジ=、夕のドレインと第8トランジ
スタのソース、第6トランジスタのコレクタは第2トラ
ンジスタのドレインと第4トランジスタのソースにつな
がり、第5゜第6トランジスタのエミッタの出力はデー
タ線、データ線につながっていることを特徴とする半導
体記憶装置。 (2+第5)ランジスタのエミッタを第1トランジスタ
のドレインと第8トランジスタのソース、第6トランジ
スタのエミッタを第2トランジスタのドレインと第8ト
ランジスタのソース、第6.第6トランジスタのコレク
タ出力はデータ線、データ線につながる特許請求の範囲
第1項記載の半導体記憶装置。 (3)第8.第4トランジスタを抵抗体で構成した特許
請求の範囲第1項記載の半導体記憶装置。 (4)第1.第2.第8.第4トランジスタをMESF
ET、第6.第6のトランジスタをバイポーラNPN 
)ランジスタとする特許請求の範囲第1項記載の半導体
記憶装置。 (5)第1.第2トランジスタのドレインとバイポーラ
トランジスタのエミッタあるいはコレクタを共用してな
る特許請求の範囲第1項ないし第4項のい・ずれかに記
載の半導体記憶装置。 (6)第1.第2.第8.第4トランジスタをMESF
ET、第5.第6)ランジスタをバイポーラ・ラチラル
トランジスタとする特許請求の範囲第1項記載の半導体
記憶装置。 (7)半導体基板にGaAsを用い、第5.第6トラン
ジスタのエミッタあるいはコレクタ形成を該第1゜第2
トランジスタのドレイン・ソース形成時、同時に形成し
てなる!特許請求の範囲第1項記載の半導体記憶装置。
[Claims] (1) First. Second. 8th. a fourth transistor;
The gate of the first transistor is connected to the drain of the second transistor, the gate of the second transistor is connected to the drain of the first transistor, and the first... The sources of the second transistors are commonly grounded, and the sources of the 8th and 4th transistors are respectively grounded. Connected to the drain of the li2 transistor,
The sixth transistor includes a flip-flop whose gate and drain are commonly connected to a power supply, and a sixth transistor that transfers the storage state of the core flip-flop to a data line by an address selection signal. The base of the sixth transistor is connected to the address line, the collector of the sixth transistor is the drain of the first transistor and the source of the eighth transistor, the collector of the sixth transistor is the drain of the second transistor and the source of the fourth transistor. A semiconductor memory device characterized in that the outputs of the emitters of the fifth and sixth transistors are connected to a data line and a data line. The emitter of the (2+5th) transistor is connected to the drain of the first transistor and the source of the eighth transistor, the emitter of the sixth transistor is connected to the drain of the second transistor and the source of the eighth transistor, and the emitter of the sixth transistor is connected to the drain of the second transistor and the source of the eighth transistor. 2. The semiconductor memory device according to claim 1, wherein the collector output of the sixth transistor is connected to a data line. (3) No. 8. The semiconductor memory device according to claim 1, wherein the fourth transistor is constituted by a resistor. (4) First. Second. 8th. The fourth transistor is MESF
ET, No. 6. 6th transistor bipolar NPN
) The semiconductor memory device according to claim 1, which is a transistor. (5) First. 5. The semiconductor memory device according to claim 1, wherein the drain of the second transistor and the emitter or collector of the bipolar transistor are shared. (6) 1st. Second. 8th. The fourth transistor is MESF
ET, 5th. 6) The semiconductor memory device according to claim 1, wherein the transistor is a bipolar lateral transistor. (7) Using GaAs for the semiconductor substrate, the fifth. The emitter or collector of the sixth transistor is formed in the first and second transistors.
When forming the drain and source of a transistor, they are formed at the same time! A semiconductor memory device according to claim 1.
JP57032008A 1982-02-26 1982-02-26 Semiconductor storage device Granted JPS58147887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57032008A JPS58147887A (en) 1982-02-26 1982-02-26 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57032008A JPS58147887A (en) 1982-02-26 1982-02-26 Semiconductor storage device

Publications (2)

Publication Number Publication Date
JPS58147887A true JPS58147887A (en) 1983-09-02
JPH0315351B2 JPH0315351B2 (en) 1991-02-28

Family

ID=12346840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57032008A Granted JPS58147887A (en) 1982-02-26 1982-02-26 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS58147887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136095A (en) * 1983-12-23 1985-07-19 Hitachi Ltd Semiconductor memory
JPH05151779A (en) * 1990-06-29 1993-06-18 Digital Equip Corp <Dec> Bipolar transistor memory cell and method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402381B1 (en) * 2013-04-11 2014-06-03 한국가스공사 Remote place natural gas supply station using lng tank container and natural gas supply method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136095A (en) * 1983-12-23 1985-07-19 Hitachi Ltd Semiconductor memory
JPH0636315B2 (en) * 1983-12-23 1994-05-11 株式会社日立製作所 Semiconductor memory
JPH05151779A (en) * 1990-06-29 1993-06-18 Digital Equip Corp <Dec> Bipolar transistor memory cell and method therefor

Also Published As

Publication number Publication date
JPH0315351B2 (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US3643235A (en) Monolithic semiconductor memory
US7018889B2 (en) Latch-up prevention for memory cells
US4965651A (en) CMOS logic array layout
US3955210A (en) Elimination of SCR structure
US3648130A (en) Common emitter transistor integrated circuit structure
US3909807A (en) Integrated circuit memory cell
US3631309A (en) Integrated circuit bipolar memory cell
JPH04361568A (en) Semiconductor memory device and manufacture thereof
US4754430A (en) Memory cell with dual collector, active load transistors
GB1580471A (en) Semi-conductor integrated circuits
JPH0419711B2 (en)
US4144586A (en) Substrate-fed injection-coupled memory
US4069428A (en) Transistor-transistor-logic circuit
EP0193842B1 (en) Integrated semiconductor circuit with two epitaxial layers of different conductivity types
JPS58147887A (en) Semiconductor storage device
US4257059A (en) Inverse transistor coupled memory cell
JPS6220739B2 (en)
US5016075A (en) Semiconductor memory device
JP3089647B2 (en) Semiconductor memory
JP3132437B2 (en) Semiconductor storage device
JP2585708Y2 (en) Semiconductor memory
CA1259135A (en) Selectively accessible memory having an active load
US4570086A (en) High speed complementary NOR (NAND) circuit
JP2834186B2 (en) Semiconductor device
KR200157364Y1 (en) Structure of a sram semiconductor device