JPS58147545A - Manufacture of martensitic stainless steel with superior resistance to stress corrosion cracking due to hydrogen sulfide - Google Patents

Manufacture of martensitic stainless steel with superior resistance to stress corrosion cracking due to hydrogen sulfide

Info

Publication number
JPS58147545A
JPS58147545A JP2984582A JP2984582A JPS58147545A JP S58147545 A JPS58147545 A JP S58147545A JP 2984582 A JP2984582 A JP 2984582A JP 2984582 A JP2984582 A JP 2984582A JP S58147545 A JPS58147545 A JP S58147545A
Authority
JP
Japan
Prior art keywords
stainless steel
stress corrosion
corrosion cracking
steel
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2984582A
Other languages
Japanese (ja)
Other versions
JPS613391B2 (en
Inventor
Masayuki Tanimura
谷村 昌幸
Yoshikazu Ishizawa
石沢 嘉一
Toru Shimada
島田 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2984582A priority Critical patent/JPS58147545A/en
Publication of JPS58147545A publication Critical patent/JPS58147545A/en
Publication of JPS613391B2 publication Critical patent/JPS613391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled stainless steel without deteriorating characteristics peculiar to a martensitic stainless steel by restricting the Ni and C+Ni contents of the martensitic stainless steel having a specified composition and by providing a specified structure. CONSTITUTION:This martensitic stainless steel consists of <=0.25% C, <=1.00% Si, <=1.00% Mn, <=0.040% P, <=0.030% S, 11.50-14.00% Cr, 0.05-0.5% Ni and the balance Fe with inevitable impurities while satisfying C(%)+Ni(%)/30>=0.15% and has a mixed structure composed of tempered martensite, unsolubilized carbide and carbide precipitated during tempering. A steel having said composition is heated to a region where austenite coexists with undissolved carbide, and the heated steel is hardened at a cooling rate above the air cooling rate and tempered to obtain the desired martensitic stainless steel.

Description

【発明の詳細な説明】 本発明は硫化水嵩による応力腐食割れに対する抵に性に
優れたマルテンサイト系ステンレス鋼の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing martensitic stainless steel that has excellent resistance to stress corrosion cracking caused by sulfide water volume.

従来、天然ガス開発用O鋼智として一11ijK嶽素鋼
、低音金銅Oものが用いられているが、近年そO開発が
盛んに行われていゐ縦置ガスを多量に含む天然ガスに対
しては、上記fI14ii十分な耐食性を有するものと
は叢い難い、この丸め、この種の天然ガス用O鋼管とし
て耐食性が嵐好なステンレス鋼01!用が検討され、%
に1強度が得られ且つ経済的なステンレス鋼として、ム
1B1 41G及び 42Gに代表される!8〜!易憾
Cr  f倉むマルテンサイト系ステンレス鋼が注目を
集めている。このスケンレス鋼祉ガス中に含まれる縦酸
ガスに対する耐食性と海水による塩化−によって生ずる
応力腐食割れに対し抵抗性が良く、シか4熱処INKよ
って降伏点SO〜7011d/−Iの4度が得られると
いう優れ九特性を有している。
Conventionally, 111K steel and low-pitched gilt copper have been used as O steel for natural gas development, but in recent years, O steel has been actively developed for natural gas containing a large amount of vertical gas. This rounded stainless steel 01 has excellent corrosion resistance as this type of O-steel pipe for natural gas, which is hard to compare with the fI14ii mentioned above which has sufficient corrosion resistance. The use of %
M1B1 41G and 42G are representative stainless steels that provide 1 strength and are economical. 8~! Martensitic stainless steel is attracting attention. It has good corrosion resistance against vertical acid gas contained in this stainless steel work gas and stress corrosion cracking caused by chlorination caused by seawater, and has a yield point of SO~7011d/-I of 4 degrees due to Sika 4 heat treatment INK. It has nine excellent properties:

しかし、このマルテンサイト系ステンレス鋼は、天然ガ
ス中に多くの場合富まれる硫化水嵩による応力腐食割れ
に敏感で、上記しf#−優れた特性にも拘らず硫化水素
を富むWス中ではほとんど使用に耐え得ないという欠点
をも有しておシ、この点が天然ガス用0鋼管材料として
の軸周を訪げi大きな堰−となっている。
However, this martensitic stainless steel is sensitive to stress corrosion cracking due to the bulk of water sulfide, which is often enriched in natural gas, and despite its excellent f# characteristics mentioned above, it cannot be used in W gas rich in hydrogen sulfide. It also has the disadvantage that it is almost unusable, and this point becomes a big problem when it comes to the axial circumference as a material for natural gas steel pipes.

本尭#4Fi以上Oよう表実情に鋤み検討を重ね九結果
創案された−ので、上記マルテンサイト系ステンレス銅
の職分を基本成分とし、これに所定の範囲と条件でNi
 を含有せしめ、しか4hこれに限定畜れ九熱処履を加
えゐことによ#)、上記マルテンサイト系ステンレス銅
が有する縦酸ガスに対する耐食性及び塩化物による応力
騙食割れに対する抵抗性さらには降伏点50〜70−f
乃♂ という特性を損うことなく、硫化水素による応力
腐食割れに対する抵抗性の改善に成功したものである。
As a result of careful consideration and consideration, the above-mentioned martensitic stainless copper was used as the basic component, and Ni
However, by adding a limited heat treatment for 4 hours to this, the martensitic stainless copper has corrosion resistance against vertical acid gas and resistance to stress corrosion cracking caused by chloride. Yield point 50-70-f
This product successfully improved the resistance to stress corrosion cracking caused by hydrogen sulfide without sacrificing the characteristics of ♂.

上記したl鵞〜■10rのマルテンサイト系ステンレス
−は完全なオーステナイト単相の9域で皺体化処還され
、空冷によってマルテンサイト繊紙にし、降伏点SO〜
70 *f/wm”に焼Sされて使用されている仁とが
多いが、実際には溶体化時の金属組織は温度によって責
化し、オーステナイト−未溶解炭化物戚はオーステナイ
ト−未sea化物−フエライトのIIi織となる0本発
明者勢はζOような溶体化温度による金属m織と硫化水
素による応力腐食割れ性との関係を検討しえもOであ如
、との結J17エツイトが存在した楊合、金属組織の不
均質性が大吉く、応力腐食割れ感受性が^くなること、
を九均−に分散し九溶体化時の未溶解炭化物は、硫化水
素によゐ腐食割れに対すJl抵抗性4DJI&い金属組
繊O形成に大きく寄与するということが4IlII14
シ九。ルち、齢体化処珈温度をオーステナイト−未−解
責化物共存域とするならは、硫化水素による応力腐食割
れに対する[lt性の高い金属組織が得られ□ることが
判−したものである。しかし前記したようなム1B1 
41m)、41Oに代表される成分系では、このような
組繊を絢−に得ることFi崗−である、卸ち、上紀戚分
糸における状態園的なオーステナイト−未溶解炭化物共
存域の金属組織は!II!際には極めて不安定であり、
未溶解炭化物の分布状態が不均一で、しかも成分不均等
部でのフェライト形成が不町避釣である。このようなこ
とから、さらに検討を加えたm来、マルテンサイト系ス
テンレス−の金属組織を制御する因子として、オーステ
ナイトを安定化する元本として知られるN1 か特に有
効であ如、特に上記成分系におゆる適量のN1の添加が
オーステナイト−未#IM炭化物共存域の金属組織を安
宛化させ、硫化水素による応力腐食割れに対して抵抗性
を持つ最適な金属組織を得る丸めに有効であるとの知見
を得たものである。このようなことから、本発明は、基
本的にムIII 41G及び420に代叡されるマルテ
ンサイト系ステンレス銅の成分系に附し、時に適量のN
1ta加し、しかも溶体化処理11度を上記オーステナ
イト−未11%真化物域に設定し九熱処珈を打うように
したものである。
The above-described martensitic stainless steel of 1~10R is crimped in 9 areas of complete austenite single phase, made into martensitic fiber paper by air cooling, and has a yield point of SO~
70*f/wm", but in reality, the metal structure during solution treatment is affected by temperature, and the austenite-undissolved carbide family is austenite-unseaside-ferrite. The present inventors investigated the relationship between the metal weave due to the solution temperature such as ζO and the stress corrosion cracking resistance due to hydrogen sulfide, but the conclusion was that it was O. In this case, the heterogeneity of the metallographic structure is favorable, and the susceptibility to stress corrosion cracking increases.
4IlII14 It is known that the undissolved carbides that are uniformly dispersed and converted into a solution greatly contribute to the formation of metal composite fibers 4DJI and 4JI resistant to corrosion cracking caused by hydrogen sulfide.
Shi9. It has been found that if the aging treatment temperature is set to the coexistence region of austenite and undecomposed material, a metal structure with high resistance to stress corrosion cracking caused by hydrogen sulfide can be obtained. be. However, as mentioned above, M1B1
In the component system represented by 41m) and 41O, it is possible to obtain such composite fibers in a beautiful manner, due to the state-of-the-art austenite-undissolved carbide coexistence region in the bulk yarns. What is the metal structure? II! In some cases, it is extremely unstable;
The distribution of undissolved carbides is uneven, and ferrite formation occurs in areas with uneven composition. Based on these facts, we have further investigated whether N1, which is known as an element that stabilizes austenite, is particularly effective as a factor controlling the metal structure of martensitic stainless steel. The addition of an appropriate amount of N1 to the alloy is effective in softening the metal structure in the austenite-non-IM carbide coexistence region and obtaining an optimal metal structure that is resistant to stress corrosion cracking caused by hydrogen sulfide. This is what we have learned. For these reasons, the present invention basically involves adding a component system of martensitic stainless steel represented by Mu III 41G and 420, and sometimes adding an appropriate amount of N.
1ta was added, and the solution treatment was set at 11 degrees in the above-mentioned austenite-non-11% eufined region to perform nine-heat treatment.

本発WjiAti上記し喪ようにム1111410及び
4重Oに代表されるマルテンサイト系ステンレス銅の成
分系を前提とし、その成分系卸ちc:o、zs*以下、
81:1.OQ鳴以下、Mn : 1.00鳴以下、P
:0.0404以下、8:0J30憾以下、Cr : 
11J O−14、oonを含有する鋼にさらKC(I
G)+ Ni m/ 30≧0.IS4 を満足させる
ようO,OS〜0]鴫のN1  を含有せしめゐ。
The present invention is based on the compositional system of martensitic stainless copper represented by MU 1111410 and 4-layer O as mentioned above, and the compositional system wholesale c: o, zs * below,
81:1. OQ sound or less, Mn: 1.00 sound or less, P
: 0.0404 or less, 8:0J30 or less, Cr:
KC (I
G)+Ni m/30≧0. In order to satisfy IS4, N1 of O, OS ~ 0] is contained.

ここで上記基本成分については詳述しないが、特にP及
び8Fi、これらが多過ぎると本発明の目的とする応力
腐食割れ性が劣化し、この意味で好ましい上限はP:0
.018憾、B二G、01嘔 そある。Ni模前述しえ
ようにオーステナイト−未溶解炭化物共存域を安定化さ
せる喪め添加するもので、o、oi噛 未満でLその安
定化効果が期待で亀ない、しかし0.!I暢を超えると
逆に耐食性が劣化し、硫化物のみならず塩化物による応
力腐食割れ性に対する抵抗性も愚くなる。このようにN
i′の含有範囲が規定されるが、これによる安定化効果
を確実に得る丸めには、このような単なる會有職lll
0設定だけでは十分でない。即ちNiの含有量はCとの
関係で、C@)+kN−)/84J≧0.1暴暢 を−
足させる必要があシ、これKよってはじめてフェライト
が混入せず、しかも未溶解炭化物が均一に分散し九オー
ステナイトー禾溶解巌化物共存域を得ることができる。
The above basic components will not be described in detail here, but in particular P and 8Fi, if these are too large, the stress corrosion cracking properties that are the object of the present invention will deteriorate, and in this sense the preferable upper limit is P: 0
.. 018 Sorry, B2G, 01 Sorry. As mentioned above, Ni is added to stabilize the austenite-undissolved carbide coexistence region, and the stabilizing effect is expected at less than 0 and 0, but 0. ! If the corrosion resistance is exceeded, the corrosion resistance deteriorates, and the resistance to stress corrosion cracking caused not only by sulfides but also by chlorides becomes poor. Like this N
The content range of i' is defined, but in order to ensure the stabilizing effect of this, it is necessary to
Setting it to 0 is not enough. In other words, the Ni content is related to C, C@)+kN-)/84J≧0.1
It is necessary to add K, but only by adding K can ferrite not be mixed in, and undissolved carbide be uniformly dispersed to obtain a nine austenite-dissolved oxycarbide coexistence region.

總1図り以上のようなN1の範囲を示す亀ので、図中斜
線の部分が本発明で採用し得るNiの含有範囲である0
組が上記0.05〜O,S嘔O*l!lであって本、上
記関係式を満足させないと、社債のイクロ偏析によ如フ
ェライトが形成され、安定し九3相組織は得られない。
Since the figure shows the range of N1 as shown above, the shaded area in the figure is the Ni content range that can be adopted in the present invention.
The group is above 0.05~O, S 小O*l! If the above relational expression is not satisfied, ferrite will be formed due to microsegregation of the bond, and a stable 93-phase structure will not be obtained.

そして本発明では、以上のような成分系の鋼を飢2図の
斜線で示すようなオーステナイト−未溶解炭化物共存域
で溶体化処理し、この温度から空冷以上の冷却速度によ
る冷却、一般には空冷又は油冷(20−5O’O/分)
がなされるものであl、Niの適量の添加によって上記
共存領域が極めて安定化されるため、かかる熱I&環を
安定して行うことが可能となる。次いで所定の強度管で
焼戻し処理がなされるが、この処理自体は特別な4ので
Fi表い。
In the present invention, steel with the above-mentioned composition system is solution-treated in the austenite-undissolved carbide coexistence region as shown by the diagonal lines in Figure 2, and from this temperature it is cooled at a cooling rate higher than air cooling, generally air cooling. Or oil cooling (20-5O'O/min)
Since the above-mentioned coexistence region is extremely stabilized by addition of an appropriate amount of Ni and Ni, it becomes possible to perform such thermal I & ring stably. Next, a tempering treatment is performed on the tube to a predetermined strength, but this treatment itself is a special 4, so it is expressed as Fi.

即ち、例えば6OO℃以上で1(ロ)以上の焼戻しが行
われる。
That is, for example, tempering of 1 (b) or more is performed at 600° C. or higher.

以上Oようにして得られ九iルチンサイト系ステンレス
鋼の組織はフェライトを含まず、しかも未溶解炭化物が
均一に分散した焼戻しマルテンサイト、未溶解炭化物及
び焼戻し炭化物から愈る混合組織であり、しかも溶体化
処理時に組織中に均一に分散し喪未溶解員化物の作用に
よシ、旧オーステナイト粒度で、ムIiTM 7以上と
いう緻密な組織となり、硫化水素による応力腐食割れに
対する抵抗性が着しく改善される。第3−一)ないしく
el)の4真は上記溶体化処理条件の違いによって得ら
れる組織の違いを示したもので、このうち(−はオース
テナイト単相域、(b)は本発明が対象とするオーステ
ナイト−未溶解炭化物共存域、(C)はオーステナイト
−未溶解員化−−フエライト共存域からそれぞれ空冷し
、その優、鋳戻し友場合O金属組織を示している。これ
からも判るように、(1)の4のFi粒度が祖で、オた
(a)のものはフェライトが形成されているのに対し、
(b)のものは極めて緻密な組織が得られていることが
判る。
The structure of the rutinsite stainless steel obtained in the above manner does not contain ferrite, and is a mixed structure consisting of tempered martensite in which undissolved carbides are uniformly dispersed, undissolved carbides, and tempered carbides. Due to the action of undissolved oxides that are uniformly dispersed in the structure during solution treatment, it becomes a dense structure with prior austenite grain size of MU IiTM 7 or higher, which significantly improves resistance to stress corrosion cracking caused by hydrogen sulfide. be done. The four true marks in 3-1) or el) indicate the differences in the structure obtained due to the above solution treatment conditions. (C) is the austenite-undissolved carbide coexistence region, and (C) is the austenite-undissolved carbide coexistence region, which is air-cooled from the austenite-undissolved carbide coexistence region. , the Fi grain size of 4 in (1) is the origin, and while in (a) ferrite is formed,
It can be seen that the specimen in (b) has an extremely dense structure.

下表は、本発IjII法によゐ鋼の硫化水素による応力
腐食割れ性を比幀材のそれとともに示したもので、表に
示す(1)〜(7)の鋼を、(a)、(b)、(a)の
各一体化処堆温喰がら空冷し、降伏点が65すf/=”
になるように焼戻しだ。上記(a)〜(・)の溶体化処
理温度は、 Cニオ−ステナイト単相域 bニオ−ステナイト−未溶解炭化物共存域 Cニオ−ステナイト−未溶解炭化−一7エライト共存域 であり、いずれも各組成から状態図的に得られ友ものを
適用したものである。を友硫化水素による応力腐食割れ
抵抗性の試験は、sIs食塩水に30嚢健化水嵩を含む
*mガスを市立九せ九試験液に、降伏点に和尚する応力
を付与したcg試験片をlケ月間浸漬して割れ発生の有
無について調べたものである。なお第1図中に下記(1
)〜(7)の銅を図示した。
The table below shows the stress corrosion cracking resistance due to hydrogen sulfide of steels using the IjII method of the present invention, together with that of Hibori materials. (b) and (a) each integrated treatment is air-cooled and the yield point is 65f/=”
It is tempered to look like this. The solution treatment temperatures in (a) to (・) above are C niostenite single phase region b niostenite coexistence region b niostenite undissolved carbide coexistence region C niostenite coexistence region undissolved carbide-17 elite; is also an application of the phase diagram obtained from each composition. The stress corrosion cracking resistance test using hydrogen sulfide was conducted by applying a CG test piece to which stress was applied to the yield point by adding *m gas containing 30 bags of water to the sIs saline solution. The samples were immersed for 1 month and examined for cracking. In addition, the following (1) is shown in Figure 1.
) to (7) are illustrated.

上表によれば、本発明の成分組成を有する鋼(11〜(
3)において、(a)及び(a)の溶体化地理条件のも
の、即ちオーステナイト単相域及びオーステナイト−未
II堺炭化物−フエライト共存域から空冷を行つ九もの
線、いずれも割れが先生している。これに対し本発明の
条件たる(b)C)溶体化処理条件のもの、即ち、オー
ステナイト−未溶解炭化物共存域から空冷を打つ九もの
は、いずれも割れの斃生が駐止されており、また、この
ようなことから、本発明では上記オーステナイトー未#
l屏員化物共存域が極めて安定化されていることが判る
。一方、比較材九ゐ鍋(4)〜(7)のうち、鋼(4)
は用量が少な過ぎ、また鋼(5)gNi量が多過ぎ、い
ずれも割れが生じている。を九、鋼(6)及び(7)は
Nl量がo、os 〜o、s憾のfkllにあるものの
% 04%)+81m)/so≧0.11参 を満足し
ておらず、このため状1m1lllから得られ九オース
テナイトー未溶解員化物共存域は実−KFi極めて不安
定で厳atksm組織となっておらず、  −従って(
b)の処理条件で製造された鋼でも割れに対する抵抗性
の改善は見られない。なお、本発明法によって得られ丸
鋼は上記硫化水素による応力腐食割れに対する抵抗性の
みならず、従来のマルテンサイト系ステンレス銅が有す
る縦酸ガス腐食に対する耐食性及び塩化物による応力腐
食割れに対する抵抗性を具有していることが11認され
ている。
According to the above table, steels (11 to (
In 3), the nine lines in which air cooling is performed from the solution geological conditions of (a) and (a), i.e., the austenite single-phase region and the austenite-un-II Sakai carbide-ferrite coexistence region, all show cracking. ing. On the other hand, under the conditions of the present invention (b) and C) solution treatment conditions, that is, when air cooling is applied from the austenite-undissolved carbide coexistence region, the formation of cracks is stopped in all nine cases. In addition, for this reason, in the present invention, the above-mentioned austenite-non-#
It can be seen that the region where l-membered compounds coexist is extremely stabilized. On the other hand, among the comparative materials nine-pots (4) to (7), steel (4)
The amount of steel (5) was too small, and the amount of gNi in steel (5) was too large, causing cracks in both cases. 9. Steels (6) and (7) do not satisfy the following formula: 04%)+81m)/so≧0.11 of the amount of Nl in fkll of o, os ~ o, s. The nine-austenite-undissolved member coexistence region obtained from 1 ml of real KFi is extremely unstable and does not have a strict atksm structure, -therefore, (
Steel produced under the treatment conditions b) also shows no improvement in cracking resistance. The round steel obtained by the method of the present invention not only has the above-mentioned resistance to stress corrosion cracking caused by hydrogen sulfide, but also has the corrosion resistance to vertical acid gas corrosion and resistance to stress corrosion cracking caused by chloride, which conventional martensitic stainless steel copper has. 11 have been recognized as having the following.

以上述べたように本発明によれば、従来のマルテンサイ
ト系ステンレス銅が有する炭量ガスに対する耐食性及び
塩化物によゐ応力腐食割れに対すゐ抵抗性と降伏点SO
〜? Ol#f/+−程度の高強度を何ら損うことなく
、硫化水素による応力腐食割れに対する良好な抵抗性を
有する鋼を製造し得るものであるから、縦鹸ガス用鋼智
に対して砲めて有用であシ、そO工業的利用価値が高い
発明である。
As described above, according to the present invention, conventional martensitic stainless copper has corrosion resistance against coal gas, resistance to stress corrosion cracking due to chlorides, and yield point SO.
~? Since it is possible to manufacture steel that has good resistance to stress corrosion cracking caused by hydrogen sulfide without any loss of strength as high as Ol This invention is extremely useful and has high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

籐1図は本発−におけゐNiの含有条件を示すものであ
る。第1図はr・−Cr系の平衡状1lWAである。篤
8m11(a)ないしくa)は、それぞれ濤体化処ms
%mmm通じて得られ丸鋼0銀織を400倍に拡大し九
−徹鏡写真である。 特許出願人 日本鋼管株式金社 員 ―  者   臀   村   墨   申−石 
  沢   嘉   − 同         島   1)       透1
5−;t7 代履人弁鳳士   會   鳳   省   三  屯
:肩責\:111・・。 (%) !N (つ。)1/V を事件の表示 昭和s1都轡許験第!9845号 ユ尭@O名称 傭化水素による応力腐食割れ抵抗性に優れたiルチンサ
イト系ステンレス鋼及びその飄造方法1補正をする者 事件との駒係   轡許出願人 東京都千代田区丸の内1丁目lI!号 (411)日本鋼管株式会社 代表者  金  尾     實 仏代履人 ま纏正命◆O日付   1尭補正 補   正   内   容 <軍imor発調の名称」を1硫化水素によゐ応力腐食
割れ抵抗性に優れfwシルチンサイトステンレス鋼及び
そOII造方法」と訂正する。 1本願明細書を別紙のとお夛全文訂正する。 3本願の特許発倒O数を1項増し1発明の数8 とする
。 W14JII書 1発明の名称   硫化水素による応力腐食割れ抵抗性
に優れたマルテンナイト系ステンレス鋼 及び七の調造方法 よ峙許蛸求O範囲 (1)  C,O,!5s以下、gi:i、oo*以下
@MHsあるtIA戻しマルテンフィト、未溶解員化(
2) C:(1,25−以下、Sl:x、001以下、
Mn:1.0091以下、P:0.04(l以下、8:
0.Q30−以下、 c、 ; ls、s o 〜14
.Oofk を會Nし且つこれK CC幻+Ni (%
)/3 G≧0.li−を満足させるようo、os−o
、s−のN1を含有せしめ丸鋼を、オーステナイト−禾
潜解J発明の詳細な説明 *尭明社硫化水IKよる応力腐食割れに対す為抵抗性に
優れ良iルチンナイト系ステンレス鋼及びそOmlml
法K11lする・従来、天然ガスwU発用の鋼管として
一般に炭素鋼、低合金鋼のものが用いられているが、辺
部その開発−盛んに行われている炭酸ガスを多量に會む
天然ガスに対しては、上記鋼は十分な耐食性を有するも
Oとは言い―い、こO良め、この110天然ガス用の鋼
管として耐食性が嵐好なステンレス鋼の使用が検討され
、41に高強度が得られ且つ経済的なステンレス鋼とし
て、 Al81410及び410 K代表されるl冨〜
1s悌Crを會むマルテン1イト系ステンレス鋼が注目
を集めている・このステンレス鋼はガス中に含まれる炭
酸ガスに対する耐食性と海水による塩化物によって生ず
る応力腐食割れに対し抵抗性が良く、しかも熱処11に
よって降伏点50〜70 K4t/wPの高度が得られ
るという優れた特性を有している。しかし、このマルテ
ンナイト系ステンレス鋼社、天然ガス中に多くの場金含
まれる硫化水素による応力腐食割れに敏感で・上記しえ
優れた特性にも拘らず硫化水素を含むガス中ではほとん
ど使用に耐見得な鱒という欠点をも有してお)、この点
が天然ガス用の鋼管材料としての利用を妨げる太き愈理
由となっている。 本発明は以上のような実情に鑑み検討を重ねぇ結果創案
され良ものて、上記1ルチンナイト系ステンレス鋼の成
分を基本成分とし・これKJ9r定の範囲と条件でN1
を含有せしめるととKより、上記マルテンフイト系ステ
ンレス鋼が有する炭酸ガスに対する耐食性及び塩化物に
よる応力腐食割れに対する抵抗性さらには降伏点50〜
70 N9 f/Jという物性を損うことなく−(1m
化水素による応力腐食割れに対する抵抗性の改善に成功
したものである。 上記した12〜*s@cl(6マルテンブイト系ステン
レス鋼は完全なオーステナイト単相の領域で溶体住処m
され、空冷によってマルテンナイト組織にし、降伏点5
0〜to61/JKfi戻されて使用されていることが
多いが、実際には溶体化時の金−組織は温度によって変
化し、オーステナイト−未溶解炭化物或はオーステナイ
ト−未溶解炭化物−フェライトの組織となる・本発明者
尋はこのような溶体化温度による金槁組織と硫化水素に
よる応力腐食割れ性との関係を検討し度ものであ夛。 この結果7エライトが存在した場合、金属組織の不均質
性が大きく、応力腐食割れ感受性が高くなること、tた
均一に分散した溶体化時の未溶解炭化物は、硫化水素に
よる腐食割れに対する抵抗性の高い金属!liI職の形
成に大自〈寄与するということ、即ち溶体化処理温度を
オーステナイト−未溶解炭化物共存域とするならば、硫
化水嵩によみ応力腐食割れに対する抵抗性の高1n#t
jl1組織が得られることが41tIaした・そして、
このよう々硫化水素による応力腐食割れに対する高い抵
抗性は、フェライトを含まず、しかも未溶解炭化物が均
一に分散した焼戻しマルテンナイト、未溶解炭化物及び
焼戻時に析出し要員化物からなる緻密な組織が形成され
ることによるものであることが判つ次・しかじ前記した
ようなAl8I410 、420に代表される成分糸で
は1このような組織を均一に得ることは困難である。即
ち、上記成分系における状態図的なオーステナイト−未
溶解炭化物共存域の金属組織は実際には極めて不安定で
あシ、未溶解炭化物の分布状111が不均一で、しかも
成分不均等部てのフェライト形成が不可避的である。こ
のようなことから、さらに検討を加えた結果、マルテン
プイト系ステンレス鋼の金属組織な制御する因子として
、オーステナイトを安定化する元素として知られるN1
がIIIIiK有効であシ、4!に上記成分系における
適量のNiの添加がオーステナイト−未溶解炭化物共存
域の金属組織を安定化させ、硫化水素による応力腐食割
れに対して抵抗性を持つ最適な金属組織を得る九めに有
効であるとの知見を得良ものである・このようなことか
ら1本発明は。 基本的KAISI 410及び420に代表されるマル
テンナイト系ステンレス鋼の成分系に対し、41に適量
のNi を添加し、鋼の組成を焼戻しマルテンサイト、
未溶解炭化物及び焼戻し時に析出し良炭化物からなる混
合組織としたことを特徴とする。 本発明祉上記したようKAISI 410及び420 
 K代表されるマルテンtイト系ステンレス鍋OH,分
糸を前提とし・その成分系即ちC;0.2111以−F
、81 : 1.00s以下、Mn : 1.0G−以
下、P:0.040%以下、s:o、oaos以下、C
r : 11.10−14.00−を含有する鋼にさら
にC(1十Ni(嗟)/3G > 0.15 %を満足
させ石よう0.05〜0.5−のN1を含有せしめる。 ここで上記基本成分については詳述しないが、@tcp
及び8は、これらが多過ぎると本発明の目的とする応力
腐食割れ性が劣化し。 この意味で好ましい上限はP : 0.015% S 
:0.01%である。Ni#i前述したようにオーステ
ナイト−未溶解炭化物共存域を安定化させるため添加す
るもので、O,OS−未満ではその安定化効果が期待で
きない・しかし0.!!IGを超えると逆に耐食性が劣
化し、硫化物のみならず塩化物による応力腐食割れ性に
対する抵抗性も悪くなる・このようK Niの含有範囲
が規定されるが、これKよる安定化効果を確実に得るた
めには、このような単なる含有範囲の設定だけでは十分
でない・即ちN1 の含有量はCとO関係で、c (s
) 十Ni (*)/ s o≧0.15−を満足させ
る必畳があシ、これによってはじめて溶化体時に7エラ
イトが混入せず、しかも未溶解炭化物が均一に分散した
オーステナイト−未溶解炭化物共存域を安定して得るこ
とができる・纂1WAは以上のような組の範囲を示すも
ので、図中斜線の部分が本発明で採用し得るNi O含
有範囲であるeNiが上記0.01〜o、iso範園範
囲っても、上記関係式を満足させないと、材質のにクロ
偏析によ〕フェライトが形成され、安定した8相組織は
得られない。 このような成分からなる本発明のマルテンナイト系ステ
ンレス鋼の組織は前述しえ如く7エライトを會壜ず・し
かも未溶解炭化物が均一に分散し良焼戻しマルテンナイ
ト、未溶解炭化物及び焼戻し時に析出した炭化物からな
る混合組織である・こO混合組織は溶体化処理時に!l
l空中均一に分散し良未溶解員化物の作用によ)、旧オ
ーステナイト粒度て、ムBTM7以上と−う緻w*ma
とthJ)%硫化水素による応力腐食割れに対する抵抗
性が著しく改豐され良ものとなる− 以上のようなiルチンナイト系ステンレス鋼は、上記し
たような成分系の鋼を菖N!Oの斜線で示すようなオー
ステナイト−未溶解炭化物共存域て溶体化処理し、この
温度から空冷以上の冷却速度によみ冷却、一般には空冷
又は油冷(20〜b あ〉、N1の適量の添加によって上記共存領竣が極めて
安定化されるため、かかる熱処理を安定して行うことが
可能となる一次iで所定の強度まで焼戻し処ffiがな
されるが、このJ6111自体は特別なものではない・
即ち、例えば5ooc以上で11g1以上の焼戻しが行
われる一票1図偽)ないしくe)の写真は上記溶体化旭
ms件の違らによって得られる組織の違いを示し&もの
で、このうち偽)はオーステナイト単相域%争)は軍発
@が対象とするオーステナイト−未溶解炭化物共存域、
(C)はオーステナイト−未濤解員化物−ノエライト共
存域からそれぞれ空冷し、その徒、焼戻しに場金の金属
組織を示している・これからも判るように%−)のもの
は未溶解炭化物が含まれていない九め粒度が粗で、i良
(+りのものはフェライトが形成されて−るのに対し、
伽)のものは未溶解炭化物の作用により、未溶解炭化物
、鉤戻しオルテンナイト及び焼戻し炭化物によゐ極めて
緻密な組織が得られていることが判る。 下表は1本発明による鋼の硫化水素による応力腐食割れ
性を比較材のそれとともに示し九もOで、表に示す(1
)〜(7)の鋼を、−)、伽)。 (c) O各溶体化処塩温度から空冷し・降伏点が61
*に#//−になるように焼戻した。上記−)〜(s)
 Oi1体化処鳳一度は・ a;オーステナイト単相域 bニオ−ステナイト−未溶解炭化物共存域Cニオ−ステ
ナイト−未溶解炭化物−7エライト共存域 であ)、いずれも各組成から状11図的に得られたもの
を適用したものである・1+硫化水素による応力腐食割
れ抵抗性の試験は、6−食塩水に30−硫化水嵩を含む
窒素ガスを泡立たせた試験[K、降伏点に@轟する応力
を付与したC型試験片を1ヶ3間浸漬して割れ発生の有
無について調べ次ものである。なお第1図中に下記(1
)〜(7)の鋼を図示した。 上表によれば、本発明の成分組成を有する鋼(l)〜(
3)Kkいて、−)及び(clの溶体化II&履条件の
もの、即ちオーステナイト単相域及びオーステナイト−
未溶幣炭化物−7エライト共存域から空冷を行ったもの
は、いずれも割れが発生している。これに対し本発明の
条件たる缶)の溶体化処理条件のもの、即ち、オーステ
ナイト−未溶解炭化物共存域から空冷を行ったものは・
いずれも割れの発生が防止されており1着た。このよう
なことから、不発明で社上記オーステナイトー未溶解炭
化物共存域が極めて安定化されていることが判る。一方
、比較材たる鋼(4)〜(7)のうち、鋼(4)はN1
量が少な過ぎ・また鋼(5)ttNi量が多過ぎ、いず
れも割れが生じている・また、鋼(6)及び(7)Fi
Nl量がo、oi〜o。510範囲に6!4C)の、 
C(%) 十Nl (1)/a O> o、ls 優を
満足しておらず、このため状態図から得られたオーステ
ナイト−未溶解炭化物共存域は実際には極めて不安定で
原書な2相組織となっておらすも従って伽)のIIJI
111条件で製造された鋼でも割れに対する抵抗性の改
善は見られない、なお。 不発Ijio鋼は上記硫化水嵩による応力腐食割れに対
する抵抗性のみならず、従来のマルテン丁イト系ステン
レス鋼が有する炭酸ガス腐食に対する耐食性及び塩化智
による応力腐食割れに対する抵抗性なA11rしている
ことが蓚Mされている。 以上述べたように本発明によれば、従来のマルテンナイ
ト系ステンレス鋼が有する炭酸ガスに対する耐食性及び
塩化物による応力腐食割れに対する抵抗性と降伏点SO
〜70−1/−程度の高強度を何ら損うことなく、硫化
水素による応力腐食割れに対する良好な抵抗性を有し%
またこのような鋼を安定して製造し得るものであるから
・炭鐵ガス用鋼管勢の分野においてその工業的利用4a
値が高い発明であるということができる・ 弱図向の簡単な親御 第1図は本発明におけるNI O含有条件を示すtので
ある。第2図はre −cr系の平衡状111図である
。第8m(a)ないしくclは、それぞれ溶体化処珈後
、焼戻処理して得られ丸鋼の組織を400倍に拡大した
顕微鏡写真である。 畳許出願人  日軍鋼管株式金社
Figure 1 shows the Ni content conditions in the present invention. FIG. 1 shows an equilibrium state 11WA of r.-Cr system. Atsushi 8m11(a) or a) are each ms
This is a 400x magnified nine-point mirror photograph of the round steel 0 silver weave obtained through %mmmm. Patent Applicant: Nippon Kokan Co., Ltd. Employee: Sumi Shimomura
Sawa Yoshi - same island 1) Toru 1
5-; t7 Daikyorinbenhoshi Kaiho Ministry Santon: Shoulder Responsibility \: 111.... (%)! N (tsu.) 1/V Display of the incident Showa s1 Token license test number! No. 9845 Yuya @O Name Rutinsite stainless steel with excellent resistance to stress corrosion cracking due to hydrogen mercenide and method of manufacturing the same 1 Part of the case involving the person making the amendment License applicant 1 Marunouchi, Chiyoda-ku, Tokyo Chome lI! No. (411) Representative of Nippon Steel Tube Co., Ltd. Mr. Kaneo, Representative of Butshu Daisho ◆ O Date 1. Correction Contents <Military imor development name" 1. Stress corrosion cracking resistance due to hydrogen sulfide It has been corrected to say, ``fw siltinsite stainless steel with excellent properties and the OII manufacturing method''. 1. The entire text of the attached document is corrected in the specification of the application. The number of patent failures for the three applications is increased by one term, and the number of inventions is eight. W14JII Book 1 Name of the invention Martenitic stainless steel with excellent resistance to stress corrosion cracking due to hydrogen sulfide and its preparation method (7) O range (1) C, O,! 5s or less, gi:i, oo* or less@MHs tIA returned martenphyte, undissolved members (
2) C: (1,25- or less, Sl: x, 001 or less,
Mn: 1.0091 or less, P: 0.04 (l or less, 8:
0. Q30-below, c, ; ls, so ~14
.. Oofk and this K CC illusion + Ni (%
)/3 G≧0. o, os-o to satisfy li-
Detailed description of the invention * Rutinite stainless steel with excellent resistance to stress corrosion cracking caused by sulfurized water IK and its Omlml
Conventionally, carbon steel and low-alloy steel are generally used as steel pipes for producing natural gas wU, but the development of these pipes is being actively carried out for natural gas that contains a large amount of carbon dioxide gas. Although the above steels have sufficient corrosion resistance, the use of stainless steel, which has excellent corrosion resistance, has been considered as a steel pipe for 110 natural gas. As a strong and economical stainless steel, Al81410 and 410K are representative stainless steels.
Martenite stainless steel with 1s Cr is attracting attention. This stainless steel has good corrosion resistance against carbon dioxide contained in gases and stress corrosion cracking caused by chlorides in seawater. It has an excellent property that a yield point of 50 to 70 K4t/wP can be obtained by heat treatment 11. However, this martenitic stainless steel is sensitive to stress corrosion cracking due to hydrogen sulfide, which is often contained in natural gas, and despite its excellent properties, it can hardly be used in gases containing hydrogen sulfide. Trout also has the disadvantage of being hard to look at), and this point is a major reason for preventing its use as a material for steel pipes for natural gas. The present invention has been developed as a result of repeated studies in view of the above-mentioned circumstances, and has been developed using the above-mentioned 1 rutinite stainless steel composition as a basic component.
By containing K, the martenphyte stainless steel has corrosion resistance against carbon dioxide gas and resistance against stress corrosion cracking due to chloride, and further improves the yield point of 50~
70 N9 f/J -(1m
This product successfully improved resistance to stress corrosion cracking caused by hydrogen chloride. The above-mentioned 12~*s@cl (6 martenbutite stainless steel is a complete austenite single phase region with no solution habitat)
It is then air-cooled to form a martenitic structure with a yield point of 5.
0~to61/JKfi is often returned and used, but in reality, the gold structure during solution treatment changes depending on the temperature, and it may become an austenite-undissolved carbide or austenite-undissolved carbide-ferrite structure. The present inventor, Hiromu, has repeatedly investigated the relationship between the metal structure due to solution temperature and the stress corrosion cracking resistance due to hydrogen sulfide. As a result, when 7-elite exists, the metallographic structure is highly heterogeneous and susceptibility to stress corrosion cracking increases. High metal! In other words, if the solution treatment temperature is set to the austenite-undissolved carbide coexistence region, the sulfide water volume contributes greatly to the formation of liI, which has a high resistance to stress corrosion cracking of 1n#t.
It was 41tIa that jl1 tissue was obtained, and
This high resistance to stress corrosion cracking caused by hydrogen sulfide is due to the tempered martenite, which does not contain ferrite and has undissolved carbides evenly dispersed, and the dense structure consisting of undissolved carbides and solid matter precipitated during tempering. However, it is difficult to uniformly obtain such a texture with component yarns such as Al8I410 and Al8I420 as mentioned above. That is, the metal structure in the phase diagram of the austenite-undissolved carbide coexistence region in the above-mentioned component system is actually extremely unstable, and the undissolved carbide distribution 111 is non-uniform, and the composition is uneven. Ferrite formation is inevitable. As a result of further investigation, we found that N1, which is known as an element that stabilizes austenite, is a factor that controls the metallographic structure of martempuit stainless steel.
is IIIiK effective, 4! The addition of an appropriate amount of Ni to the above component system stabilizes the metal structure in the austenite-undissolved carbide coexistence region and is effective in obtaining an optimal metal structure that is resistant to stress corrosion cracking caused by hydrogen sulfide. The present invention is based on the knowledge that there is a good thing. For the basic martenitic stainless steel composition represented by KAISI 410 and 420, an appropriate amount of Ni is added to 41 to change the composition of the steel to tempered martensite,
It is characterized by a mixed structure consisting of undissolved carbides and good carbides precipitated during tempering. KAISI 410 and 420 as described above
Assuming the martenite stainless steel pot OH represented by K, the component system is C; 0.2111 or more - F
, 81: 1.00s or less, Mn: 1.0G- or less, P: 0.040% or less, s: o, oaos or less, C
r: The steel containing 11.10-14.00- is further made to satisfy C (10 Ni (嗟)/3G>0.15%) and contains 0.05-0.5-0.5-N1 of stone. I will not explain the above basic ingredients in detail here, but @tcp
and 8, if these amounts are too large, the stress corrosion cracking properties which are the object of the present invention will deteriorate. In this sense, the preferable upper limit is P: 0.015% S
:0.01%. As mentioned above, Ni#i is added to stabilize the austenite-undissolved carbide coexistence region, and if it is less than O,OS-, the stabilizing effect cannot be expected.However, if it is less than 0. ! ! If the IG is exceeded, the corrosion resistance deteriorates, and the resistance to stress corrosion cracking caused not only by sulfides but also by chlorides deteriorates.In this way, the content range of K Ni is specified, but this does not limit the stabilizing effect of K. In order to reliably obtain the content, it is not enough to simply set the content range like this.In other words, the content of N1 is related to C and O, and c (s
) It is necessary to satisfy 10Ni (*) / s o ≧ 0.15-, and by this, 7-elite is not mixed in the solution body, and moreover, undissolved carbide is uniformly dispersed in austenite-undissolved carbide. The coexistence region can be stably obtained.・Summary 1WA shows the range of the above set, and the diagonally shaded part in the figure is the Ni O content range that can be adopted in the present invention. Even in the ~0, iso range, unless the above relational expression is satisfied, ferrite will be formed due to black segregation in the material, and a stable eight-phase structure will not be obtained. The structure of the martenitic stainless steel of the present invention, which is composed of such components, does not contain 7-elite as described above, and undissolved carbides are uniformly dispersed, resulting in well-tempered martenite, undissolved carbides, and precipitated during tempering. This is a mixed structure consisting of carbides.This O mixed structure is created during solution treatment! l
Due to the action of undissolved members that are uniformly dispersed in the air), the prior austenite grain size is denser than BTM7.
The resistance to stress corrosion cracking caused by hydrogen sulfide has been significantly improved, making it a better product.The above-mentioned rutinite-based stainless steels are the same as steels with the above-mentioned compositions. Solution treatment is carried out in the austenite-undissolved carbide coexistence region shown by the diagonal line O, and from this temperature the cooling is performed at a cooling rate higher than that of air cooling, generally air cooling or oil cooling (20~B A), with the addition of an appropriate amount of N1. Since the above-mentioned coexistence region is extremely stabilized by this, the tempering process ffi is performed to a predetermined strength with the primary i that makes it possible to perform such heat treatment stably, but this J6111 itself is not special.
That is, for example, the photos of one sheet, one figure, and one (fake) or (e) in which tempering of 11g1 or more is performed at 5ooc or more show the difference in the structure obtained due to the difference in the above-mentioned solution heat treatment, and among these, the fake ) is the austenite single-phase region % conflict) is the austenite-undissolved carbide coexistence region targeted by the military @
(C) is air-cooled from the austenite-unreleased material-noelite coexistence region, and shows the metal structure of the in-situ metal during tempering. The non-containing particles are coarse and have good quality, whereas ferrite is formed in the ones with good quality.
It can be seen that in the case of (3), an extremely dense structure was obtained due to the action of undissolved carbides, undissolved ortenite, and tempered carbides. The table below shows the stress corrosion cracking resistance due to hydrogen sulfide of the steel according to the present invention, together with that of comparative materials.
) to (7) steel, -), 伽). (c) Air cooling from O each solution treatment salt temperature, yield point is 61
*Tempered to #//-. -) ~ (s) above
The Oi 1 body formation process is (a) austenite single phase region (b) niostenite-undissolved carbide coexistence region (c) niostenite-undissolved carbide-7 elite coexistence region), both of which have a shape 11 diagrammatically from each composition. The test for stress corrosion cracking resistance due to 1+ hydrogen sulfide was conducted by bubbling nitrogen gas containing 30-sulfide water into 6-salt water [K, yield point @ A C-type test piece to which a tremendous stress was applied was immersed for 1 month and 3 hours to determine whether or not cracks occurred. In addition, the following (1) is shown in Figure 1.
) to (7) are illustrated. According to the above table, steels (l) to (
3) Kk, -) and (Cl solution II & wear conditions, i.e. austenite single phase region and austenite -
Cracks occurred in all samples that were air-cooled from the unmelted carbide-7elite coexistence region. On the other hand, under the solution treatment conditions of the can (which is the condition of the present invention), that is, when air cooling is performed from the austenite-undissolved carbide coexistence region,
All of them were prevented from cracking and were worn one time. From these facts, it can be seen that the austenite-undissolved carbide coexistence region described above is extremely stabilized. On the other hand, among the comparative steels (4) to (7), steel (4) is N1
The amount of steel (5) is too small, and the amount of ttNi is too large, causing cracks in both steels (6) and (7) Fi.
The amount of Nl is o, oi~o. 6!4C) in the 510 range,
C (%) 10 Nl (1)/a O> o, ls Excellent is not satisfied, and therefore the austenite-undissolved carbide coexistence region obtained from the phase diagram is actually extremely unstable and does not match the original 2 The IIJI of Rasu is a phase organization.
It should be noted that even steel produced under 111 conditions shows no improvement in cracking resistance. Unexploded Ijio steel not only has resistance to stress corrosion cracking caused by sulfide water, but also A11R, which has the same corrosion resistance as conventional martensite stainless steel to carbon dioxide corrosion and resistance to stress corrosion cracking caused by sodium chloride. It has been masturbated. As described above, according to the present invention, the conventional martenitic stainless steel has corrosion resistance against carbon dioxide gas, resistance against stress corrosion cracking due to chloride, and yield point SO.
It has good resistance to stress corrosion cracking caused by hydrogen sulfide without any loss of high strength of ~70-1/-%.
In addition, since such steel can be manufactured stably, its industrial use in the field of steel pipes for coal, iron, and gas is possible.4a
It can be said that this invention has a high value.A simple diagram with a weak direction shows the NIO content conditions in the present invention. FIG. 2 is an equilibrium diagram 111 of the re-cr system. No. 8 m(a) to cl are micrographs magnified by 400 times of the structures of round steel obtained by solution treatment and tempering treatment, respectively. Tatami permit applicant Nippon Steel Pipe Co., Ltd. Kinsha

Claims (1)

【特許請求の範囲】 c:o、zi憾以下、81 二1.0011以下、Mn
:1、OO憾以下、P:004G−以下、a:o、oa
。 嚢以下、Cr : l 1.l$ @〜14.0011
を含有し且つこれKC■+Ni ell)/ g o≧
01!+参を満足させるようo、os−o、i憾のNl
を含有せしめ丸鋼を、オーステナイト−未溶解炭化愉共
存域から9冷以上の冷却速度で冷却し、しかる後、fi
MLJ6運を行って焼戻しマルテンサイト、未溶解炭化
物及び焼戻し縦化物からなる混食aIIkを有せしめ九
、硫化水素による応力腐食割れ抵抗性に優れたマルテン
サイト系ステンレス鋼の製造方法。
[Scope of Claims] c: o, zi 戉 or less, 81 21.0011 or less, Mn
:1, OO regret or less, P: 004G- or less, a: o, oa
. Below the capsule, Cr: l 1. l$ @〜14.0011
and this KC■+Ni ell)/go≧
01! + o to satisfy san, os-o, i regret Nl
The round steel containing the fi
9. A method for producing martensitic stainless steel that has mixed corrosion aIIk consisting of tempered martensite, undissolved carbides, and tempered vertical grains by performing MLJ6, and has excellent stress corrosion cracking resistance due to hydrogen sulfide.
JP2984582A 1982-02-27 1982-02-27 Manufacture of martensitic stainless steel with superior resistance to stress corrosion cracking due to hydrogen sulfide Granted JPS58147545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2984582A JPS58147545A (en) 1982-02-27 1982-02-27 Manufacture of martensitic stainless steel with superior resistance to stress corrosion cracking due to hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2984582A JPS58147545A (en) 1982-02-27 1982-02-27 Manufacture of martensitic stainless steel with superior resistance to stress corrosion cracking due to hydrogen sulfide

Publications (2)

Publication Number Publication Date
JPS58147545A true JPS58147545A (en) 1983-09-02
JPS613391B2 JPS613391B2 (en) 1986-01-31

Family

ID=12287327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2984582A Granted JPS58147545A (en) 1982-02-27 1982-02-27 Manufacture of martensitic stainless steel with superior resistance to stress corrosion cracking due to hydrogen sulfide

Country Status (1)

Country Link
JP (1) JPS58147545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254063A (en) * 1985-08-31 1987-03-09 Kawasaki Steel Corp Martensitic stainless steel for oil well tube

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320293U (en) * 1989-07-06 1991-02-27
JP5793556B2 (en) 2011-03-03 2015-10-14 エヌケーケーシームレス鋼管株式会社 862 MPa class low C high Cr steel pipe having high corrosion resistance and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254063A (en) * 1985-08-31 1987-03-09 Kawasaki Steel Corp Martensitic stainless steel for oil well tube
JPH0643626B2 (en) * 1985-08-31 1994-06-08 川崎製鉄株式会社 Martensitic stainless steel for oil country tubular goods

Also Published As

Publication number Publication date
JPS613391B2 (en) 1986-01-31

Similar Documents

Publication Publication Date Title
JP4946242B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welded material
US4499158A (en) Welded structural member having high erosion resistance
RU2421539C2 (en) Martensite stainless steel for welded structures
JP6140836B2 (en) High-strength austenitic steel material with excellent toughness of weld heat-affected zone and method for producing the same
JP2022516181A (en) Welding wires and methods for submerged arc welding of high manganese low temperature steel
DE112013007705T5 (en) Welding material for heat-resistant steel
CN106392376A (en) Extremely-low-carbon high-corrosion-resistance austenitic stainless steel welding rod
JPS58147545A (en) Manufacture of martensitic stainless steel with superior resistance to stress corrosion cracking due to hydrogen sulfide
KR20130137248A (en) Welding material and welded joint
CN108057964B (en) Sintered flux for submerged arc welding of nickel-based filament
JP2001246494A (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
JP3579610B2 (en) Weld metal with excellent low temperature toughness
JP4016770B2 (en) Seawater resistant steel and manufacturing method thereof
KR20140023787A (en) Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same
EP0546549A1 (en) Line pipe having good corrosion-resistance and weldability
JP7478821B2 (en) Wire rod for welding rod and its manufacturing method
JP2002521204A (en) Low alloy steel
JP6153747B2 (en) Structural high-strength cast steel
JPS61117213A (en) Manufacture of structural steel superior in toughness at weld zone
NO125248B (en)
JPH11117040A (en) Vanadium alloy bearing steel
JPH04107238A (en) Corrosion resistance and wear resistant cermet
KR102396818B1 (en) Submerged arc welded metal joint having excellent low temperature toughness and low hardness and welded steel pipe have the same
JP5609735B2 (en) Austenitic stainless steel welded joints
KR101568538B1 (en) Material for submerged arc welding