JPS58146898A - Method of processing radioactive waste - Google Patents

Method of processing radioactive waste

Info

Publication number
JPS58146898A
JPS58146898A JP2856382A JP2856382A JPS58146898A JP S58146898 A JPS58146898 A JP S58146898A JP 2856382 A JP2856382 A JP 2856382A JP 2856382 A JP2856382 A JP 2856382A JP S58146898 A JPS58146898 A JP S58146898A
Authority
JP
Japan
Prior art keywords
container
sintered body
radioactive waste
porous sintered
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2856382A
Other languages
Japanese (ja)
Other versions
JPH0119560B2 (en
Inventor
安斎 和雄
後藤 昭
辰彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2856382A priority Critical patent/JPS58146898A/en
Publication of JPS58146898A publication Critical patent/JPS58146898A/en
Publication of JPH0119560B2 publication Critical patent/JPH0119560B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、放射性廃棄物の処理方法に関し、さらに詳し
くは、放射性廃棄物か焼体とセラミック形成物質の混合
粉末を成形後、加熱焼成によって形成される多孔質焼結
体に溶融金属を含浸させることによって、化学的1機械
的に安定で半永久的貯蔵に適した放射性廃棄物貯蔵体を
製造する方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for disposing of radioactive waste, and more specifically, the present invention relates to a method for disposing of radioactive waste, and more specifically, a mixed powder of a radioactive waste calcined body and a ceramic-forming material is formed by heating and firing. The present invention relates to a method for manufacturing a radioactive waste storage body that is chemically and mechanically stable and suitable for semi-permanent storage by impregnating a porous sintered body with molten metal.

〔発明の技術的背景〕[Technical background of the invention]

原子力発電の普及にともない使用済核燃料の再処理工場
から発生する高濃度の放射性廃液は、年年増大する傾向
にあり、これらの放射性廃液を液状のままでタンク貯蔵
することには安全上の問題があるため、より安全に保管
できる固形貯蔵体への変換技術の確立が切望されている
With the spread of nuclear power generation, highly concentrated radioactive waste fluid generated from spent nuclear fuel reprocessing plants is increasing year by year, and there are safety issues in storing these radioactive waste fluids in their liquid form in tanks. Therefore, there is a strong desire to establish a technology to convert it into a solid storage medium that can be stored more safely.

一般に放射性廃棄物の処分に際しては、放射性物質の周
日ぺの拡散が最小限となる形態に廃棄物を固形化し、得
られた固形貯蔵体が、化学的、機械的に安定していて、
長期の貯蔵によっても環境汚染の原因にならないことが
必要である。このような観点で現在家でに提案されてい
る固形化方法としてセラミック固化体(たとえば特開昭
!;!−/u++7号、同!! −12441号、同s
s L ruoo号、同33−904I4J号各公報に
記載のもの等)がある。この方法は、放射性廃棄物のか
焼体に、例えばアルミナ、シリカ、チタニア等のセラミ
ック形成物質な適轟量添加し、圧縮成形後、加熱焼成す
ることにより一定形状のセラばツクス固化体を製造する
ものである。
Generally, when disposing of radioactive waste, the waste is solidified in a form that minimizes the daily diffusion of radioactive materials, and the resulting solid storage medium is chemically and mechanically stable.
It is necessary that long-term storage does not cause environmental pollution. From this point of view, ceramic solidification methods currently proposed at home include ceramic solidification (for example, JP-A-Sho!;!-/u++ No. 7, JP-A-12441, JP-A No. 12441, JP-A No.
s L ruoo, No. 33-904I4J, etc.). This method involves adding an appropriate amount of a ceramic-forming substance such as alumina, silica, or titania to a calcined body of radioactive waste, compression molding it, and then heating and firing it to produce a solidified ceramic body of a certain shape. It is something.

〔背景技術の問題点〕[Problems with background technology]

上述したような従来のセラ建ツク固化法によれば、通常
1200℃以上の高温で焼成することにより、比較的機
械的強度も大きく緻密で耐水性にすぐれた焼結体を得る
ことかで館るが、以下のような問題を有する。
According to the conventional ceramic solidification method described above, by firing at a high temperature of usually 1200°C or higher, it is possible to obtain a sintered body that has relatively high mechanical strength, is dense, and has excellent water resistance. However, it has the following problems.

ビ)一般に焼成温度は低いほど固化体の製造は容易であ
り、また炉等の焼成装置類への負担の低減の点で有利で
ある。そのため1100℃以下の比較的低温において焼
結体を形成できることが望ましい、ところが、本発明者
らの研究によれば、従来公表されているセラ建ツク形成
物質の組成範囲では、7100℃以下の温度で焼成1行
なうと、機械的に弱い、多孔質の焼結体しか帰られなか
った。
b) In general, the lower the firing temperature is, the easier it is to produce a solidified product, and it is advantageous in terms of reducing the burden on firing equipment such as a furnace. Therefore, it is desirable to be able to form a sintered body at a relatively low temperature of 1,100°C or lower. However, according to the research of the present inventors, the composition range of the ceramic building materials that have been published so far shows that it is possible to form a sintered body at a temperature of 7,100°C or lower. After one firing, only a mechanically weak and porous sintered body was returned.

(ロ)セラ2ツク固化体は、機械的衝撃に弱く、固化体
の貯蔵容器が破損した場合を想定すると、該固化体は外
部の雰囲気1例えば地中貯蔵の場合は地下水などと直接
接することになるため、水などの外部雰囲気に対する放
射性物質の浸出率を可能な限り少なくすることが彎請さ
れる。
(b) Cera2Tsuku solidified material is susceptible to mechanical shock, and assuming that the storage container for the solidified material is damaged, the solidified material may come into direct contact with the external atmosphere 1, for example, groundwater in the case of underground storage. Therefore, it is recommended to reduce the rate of radioactive substances leaching into the external atmosphere such as water as much as possible.

(ハ)セラミック固化体は熱伝導性が本質的に小さいた
め、固化体中に含まれる放射性物質の放射性崩壊に伴な
って発生する熱の放散が不充分となる。
(c) Since the ceramic solidified body has essentially low thermal conductivity, the heat generated due to the radioactive decay of the radioactive substance contained in the solidified body is insufficiently dissipated.

そのため、固化体内部の温度上昇による内部の変質、高
揮発性物質の外部への逸出を促すという問題が生じ、長
期にわたる放射性廃棄物の安全な貯蔵を困難にする。
This causes problems such as internal deterioration due to temperature rise inside the solidified body and the escape of highly volatile substances to the outside, making it difficult to safely store radioactive waste over a long period of time.

〔発明の目的〕[Purpose of the invention]

本発明は、上述したような従来のセラryり固化法の欠
点を除くものであり、機械的強度、化学的安定性および
熱放散性にすぐれ、長期にわたり安全に貯蔵し得るよう
な放射性廃棄物貯蔵体の製造法を提供することを目的と
する。
The present invention eliminates the drawbacks of the conventional cellar solidification method as described above, and produces radioactive waste that has excellent mechanical strength, chemical stability, and heat dissipation properties, and can be safely stored for a long period of time. The object of the present invention is to provide a method for manufacturing a storage body.

〔発明の概要〕[Summary of the invention]

本発明者らの研究によれば、放射性廃棄物のか焼体とセ
ラミック形成物質の混合物を、7200℃より、従来の
セラ電ツク固化体に比べ機械的強度、熱放散性にすぐれ
た放射性廃棄物貯蔵体が得られることが見出された。す
な妬ち、本発明の放射性廃棄物の処理方法は、か焼した
放射性廃棄物に〜り重量%とセラ2ツク形成物質to〜
60重量−とを混合し成形した後900−1100℃の
温度で加熱焼成し多孔質焼結体を形成する工程と、該多
孔質焼結体を容器に装入し、該容器中で溶融金属を前記
多孔質焼結体に含浸させ固化させる工程からなることを
特徴とするものである。
According to the research of the present inventors, a mixture of a calcined body of radioactive waste and a ceramic-forming substance is heated at 7200°C to form a radioactive waste material with superior mechanical strength and heat dissipation properties compared to conventional ceramic solidified bodies. It has been found that a reservoir is obtained. In other words, the method for treating radioactive waste of the present invention involves adding ~% by weight to the calcined radioactive waste and ~% by weight of the slag-forming substance to ~.
60 weight -, molded, heated and fired at a temperature of 900-1100°C to form a porous sintered body, and the porous sintered body is charged into a container, and the molten metal is heated in the container. The method is characterized by comprising a step of impregnating the porous sintered body with the porous sintered body and solidifying the porous sintered body.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明を更に詳細に説明する。以下の記載におい
て、「部」および「96」は特に断らない限り重量基準
とする。
The present invention will be explained in more detail below. In the following description, "parts" and "96" are based on weight unless otherwise specified.

本発明の処理対象となる放射性廃棄物としては、例えば
、使用済核燃料を処理した後、O,Puを回収した残り
の放射性廃棄物の他、混床式脱塩器の再生廃液の濃縮液
、建屋から発生する床ドレインあるいは機器ドレインの
濃縮廃液などの放射性物質を含む各種の廃液、更には原
子r水浄化系、燃料プール系、復水系、ドレイン系の各
系統から生ずる使用済イオン交換樹脂、フィルタースラ
ッジ。
The radioactive waste to be treated by the present invention includes, for example, radioactive waste remaining after O and Pu are recovered after processing spent nuclear fuel, as well as concentrated liquid of recycled waste liquid from a mixed bed desalter, Various waste liquids containing radioactive substances such as concentrated waste liquid from floor drains or equipment drains generated from buildings, as well as used ion exchange resins generated from various systems such as atomic r water purification systems, fuel pool systems, condensate systems, and drain systems. filter sludge.

廃液の凝集沈殿処理によって生ずる沈殿スラッジなどの
各種の固体廃棄物など、高レベルおよび中低レベルの放
射性廃棄物が含まれる。これら放射性廃棄物をか焼する
ことにより、原料としてのか焼体が得られる。一方、セ
ラ2ツク形成物質としてはムユ、O,、81Q、、 k
o 、 8rO、ZrO,、Tie、またはこれらの酸
化物の一部ないし全部を混合したものが含まれる。
It includes high-level, medium- and low-level radioactive wastes, such as various solid wastes such as sedimentation sludge produced by coagulation and sedimentation treatment of waste liquids. By calcining these radioactive wastes, a calcined body can be obtained as a raw material. On the other hand, Muyu, O,, 81Q,, k
8rO, ZrO, Tie, or a mixture of some or all of these oxides.

か焼体の含有量としては、あまりに少量であると廃棄物
の処理能率が低下するが、一方か焼体の量が多すぎると
セラ2ツク固化体の形成が困難となるため全重量に対し
、m −IAo %の範囲が適当である。本発明にした
かい、まず上記したようなか焼体粉末とセラ2ツク形威
物質粉末を混合した後一定形状に圧總、成形し、これを
too −1ioo tの温度で焼成して多孔質の焼結
体を形成する。 100℃以下で焼成した場合、か焼体
粉末とセラ2ツク形成物質が反応して化学的に安定な化
合物を形式するに到らず未反応のまま焼成が終了するこ
とが多く不適轟である。一方/200 ’C以上で焼成
した場合は焼結体が多孔質となりにくく溶融金属を含浸
させることが困難となる。
If the content of the calcined body is too small, the waste treatment efficiency will decrease, but on the other hand, if the amount of the calcined body is too large, it will be difficult to form a solidified body. , m-IAo % is suitable. In accordance with the present invention, first, the above-mentioned calcined body powder and ceramic powder are mixed, pressed and formed into a certain shape, and then fired at a temperature of too -1ioot to form a porous material. Form a sintered body. When firing at a temperature below 100°C, the calcined body powder and the ceramic-forming substance react to form a chemically stable compound, and the firing is often completed without any reaction. . On the other hand, if the sintered body is fired at a temperature of /200'C or higher, the sintered body becomes less porous and impregnated with molten metal becomes difficult.

また焼成時の圧力に関しては、一般に常圧下で焼成する
ことで足りる。焼結体強度を上げるため加圧することも
できるが、焼結体に気孔性を与える程度の圧力であるこ
とが好ましい。
Regarding the pressure during firing, it is generally sufficient to perform firing under normal pressure. Although pressure can be applied to increase the strength of the sintered body, it is preferable that the pressure be applied to a level that imparts porosity to the sintered body.

次いで、得られた多孔質焼結体を容器に装入し、該容器
中で溶融金属を上記多孔質焼結体に含浸させた後冷却固
化する。lW融金金属多孔質焼結体に含浸させる方法と
しては、(イ)多孔質焼結体を装入した容器中に溶融金
属を流し込む方法、幹)多孔質焼結体と金属(粉末)を
容器に装入した後、加熱   ゛し容器内部の金属を溶
融する方法などが用いられる。
Next, the obtained porous sintered body is charged into a container, and the porous sintered body is impregnated with molten metal in the container, and then cooled and solidified. Methods for impregnating lW molten metal into a porous sintered body include (a) a method in which molten metal is poured into a container charged with a porous sintered body; A method is used in which the metal is charged into a container and then heated to melt the metal inside the container.

さらに、多孔質焼結体への溶融金属の含浸を促進するた
めに以下のような方法をとることが好ましい。
Furthermore, in order to promote impregnation of the molten metal into the porous sintered body, it is preferable to take the following method.

(a)  多孔質焼結体を装入した容器をio  気圧
以下の真空度に保ちながら溶融金属の含浸を開始する方
法。
(a) A method in which impregnation with molten metal is started while maintaining a container containing a porous sintered body at a degree of vacuum of io atmospheric pressure or less.

(1))  溶融金属の多孔質焼結体への含浸ならびに
固化の過程で/〜100気圧の圧力で加圧する方法。
(1)) A method in which molten metal is impregnated into a porous sintered body and pressurized at a pressure of up to 100 atmospheres during the solidification process.

含浸用の金属材料としては、容器材料の耐熱温度以下で
の溶融性の点から、Ou、1・、ム1.ガ。
As the metal material for impregnation, Ou, 1., Mu1. Ga.

an、 jn 、 Ii およびこれらの金属の少なく
とも一種を主成分とする合金などが適する0例えば、O
u製の容器中で溶融金属を用いる場合は、 Fb 。
An, jn, Ii and alloys containing at least one of these metals as a main component are suitable.
Fb when using molten metal in a container made of u.

!in 、 Kn 、ム1およびこれらの金属の少なく
とも一種を主成分とする合金などが適する。
! In, Kn, Mu1, and alloys containing at least one of these metals as a main component are suitable.

焼結体を装入する容器の材料としては、例えばハ、ム1
. Ou 、 Ii 、Ti 、 zr  またはこれ
らのうちの少なくとも一種を主成分とする合金などが用
いられる。f’llえば、多孔質焼結体を含浸する金属
材料として(u −zn合金(anso慢、 znso
@ )を用いる場合、融点、機械的強度を考慮して、ν
e。
Materials for the container into which the sintered body is charged include, for example, C, M1,
.. Ou, Ii, Ti, zr, or an alloy containing at least one of these as a main component is used. For example, as a metal material impregnating a porous sintered body (U-ZN alloy (anso-arrogant, znso-
), consider the melting point and mechanical strength, and ν
e.

Ou 、 Ni 、 Ti 、 Zrまたはこれらのう
ちの少なくとも一種を主成分とする合金が好ましく用い
られる。
Ou, Ni, Ti, Zr, or an alloy containing at least one of these as a main component is preferably used.

容器の大きさは、その容積が大きい程、放射性廃棄物の
固化量を多くすることかできるが、大赦すぎると、熱伝
導性、機械的強度が低下するので好ましくない。例えば
、円筒状の容器とした場合、内径はkzsOwmが望ま
しい、また容器の肉厚は、厚い租腐食による減肉に対し
耐久性があり、また機械的強度の点でも有利であるが、
厚す「ると熱伝導性が低下するので0.!〜!−の範囲
が望ましtゝ− このようにして得られた。内部に金属で含浸された焼結
体固化体を有する容器(内部容器)のlまたは1以上を
、さらに外部容器(貯蔵容器)中に金属を用いて埋没す
ることもで館る。堀設方法としては、(イ)内部容器を
金属粉末とともに圧縮成形し、必要に応じて更に焼結す
るか、あるいは外部容器に装入して容器ごと加熱して内
部の金属を溶融後、冷却固化する方法、←)内部容器を
外部容器内に装入後、溶融金属を注入した後冷却する方
法、e)逆に外部容器内に適量の11!融金属を入れて
お赦、しかる後に内部容器を装入してから溶融金属を冷
却固化させる方法、などが用いられる。ただし、内部容
・を1以上埋設する場合も、互いに適宜離間させて、外
部容器の中央近傍に置いて外界からできるだけ遮断する
ことが望ましいのは云うまでもない。
As for the size of the container, the larger the volume, the more radioactive waste can be solidified, but if it is too generous, the thermal conductivity and mechanical strength will decrease, which is not preferable. For example, in the case of a cylindrical container, the inner diameter is preferably kzsOwm, and the wall thickness of the container is resistant to thinning due to thick corrosion, and is also advantageous in terms of mechanical strength.
As the thickness increases, the thermal conductivity decreases, so a range of 0.! to !- is desirable. It is also possible to further bury one or more of the inner container (inner container) in the outer container (storage container) using metal.As a method of trenching, (a) compression molding the inner container with metal powder; Either further sintering if necessary, or charging the inner container into the outer container and heating the entire container to melt the metal inside, then cooling and solidifying. ←) After charging the inner container into the outer container, the molten metal e) conversely, pour an appropriate amount of molten metal into the outer container, then charge the inner container, and then cool and solidify the molten metal. However, even when one or more internal contents are buried, it goes without saying that it is desirable to place them at an appropriate distance from each other, and to place them near the center of the external container to isolate them from the outside world as much as possible.

外部容器の材料としては、たとえば1・、ム1゜Cu 
、 Pb 、 Brs 、 Zn 、 lii 、 T
i 、 Zr  または、これらのうち少なくとも一種
を主成分とする合金などが用いられ、上記固化方法や埋
設方法に応じて適宜決定される8例えば、多孔質焼結体
にCuJn合金(0u30% 、 Zn5Y)fk )
を含浸させ固化させた内部容器を、溶融りを用いて外部
容器中で埋設する場合には、融点、機械的強度を考直し
て、1・。
As the material of the outer container, for example, 1.,mu1゜Cu
, Pb, Brs, Zn, lii, T
i, Zr, or an alloy containing at least one of these as a main component, which is appropriately determined depending on the solidification method and burial method8. For example, CuJn alloy (0u30%, Zn5Y )fk)
When embedding an inner container impregnated and solidified in an outer container by melting, the melting point and mechanical strength should be considered.

AI 、 ou 、 Ii 、 Ti 、 Xrまたは
これらのうち少なくとも一種を主成分とする合金が好ま
しく用いられる。
AI, ou, Ii, Ti, Xr, or an alloy containing at least one of these as a main component is preferably used.

なお上記固化工程および埋設工程後、それぞれ内部容器
および外部容器と同様な材料よりなるフタをかぶせ、周
縁を溶接等により密封する。
After the solidification step and the burying step, a lid made of the same material as the inner container and the outer container is respectively placed on the container, and the periphery is sealed by welding or the like.

上述したような本発明の方法により得られる放射性廃棄
物貯蔵体は、たと、えば外部容器中に7個の内部容器を
埋設する場合について図面に示すような構造となる。す
なわち、金属で含浸された多孔質焼結体/が金属ととも
に内部容器コ中で固化されており、この内部客器コが外
部容II3のほぼ中央部において、更に金属夢中に埋設
されている。
The radioactive waste storage body obtained by the method of the present invention as described above has a structure as shown in the drawings, for example, when seven inner containers are buried in an outer container. That is, the porous sintered body impregnated with metal is solidified together with the metal in the inner container, and the inner container is further buried completely in the metal at approximately the center of the outer container II3.

このように金属により多重に被覆された結果、本発明に
よる放射性廃棄物貯蔵体は、機械的、化学的安定性が極
めて高く、長期にわたる安全な貯蔵に好適なものとなる
。すなわち、本発f14による貯蔵体の場合、万一貯蔵
容器(外部容・)Jが破損した場合でも、放射性廃棄物
とセラミック形成物質から形成される多孔質焼結体に金
属を含浸させたもの/は、更に埋設金属参および内部容
器コにより外部雰囲気、例えば痺水から遮断されている
ため、外部雰囲気に直接接触するおそれは極めて少ない
。金属の水への極めて小さい浸出率を考直すると、上記
のとと館貯蔵容器破損の事故があってもなお長期の安全
貯蔵は確保される。また、万が一理設金属ダを通じての
浸水ならびに内部容器の破損があっても、か焼した放射
性廃棄物とセラミック形成物質から形成される多孔質焼
結体に金属を含浸させたものlは内部容器コに囲まれて
いるため外部とは隔離されている。また、更に内部容器
−が破損しても、内容物である多孔質焼結体は金属によ
って含浸されているため、機械的に強く、多孔質焼結体
から成る固化体に較べてはるかにすぐれている。
As a result of being coated multiple times with metal in this way, the radioactive waste storage body according to the present invention has extremely high mechanical and chemical stability, and is suitable for long-term safe storage. In other words, in the case of the storage body according to f14 of the present invention, even if the storage container (external container) J is damaged, the porous sintered body formed from radioactive waste and ceramic forming material is impregnated with metal. / is further isolated from the external atmosphere, such as numbing water, by the buried metal parts and the inner container, so there is extremely little risk of direct contact with the external atmosphere. Considering the extremely small leaching rate of metals into water, long-term safe storage can be ensured even in the event of the damage to the Totodate storage container mentioned above. In addition, even if the internal container is damaged due to water intrusion through the installed metal pipe, the inner container will be protected even if the internal container is damaged. It is isolated from the outside world because it is surrounded by trees. Furthermore, even if the inner container is damaged, the porous sintered material inside is impregnated with metal, so it is mechanically strong and far superior to a solidified material made of porous sintered material. ing.

〔発明の実施例および比較例〕[Examples and comparative examples of the invention]

実施例 下表に示す組成の模擬放射性廃棄物のか焼体粉末(再処
理工場より出る廃液をか焼して得られる酸化物を模擬し
たもの)を用意した。
EXAMPLE Calcined powder of simulated radioactive waste (simulating the oxide obtained by calcining waste liquid from a reprocessing plant) having the composition shown in the table below was prepared.

表 上記した模擬放射性廃棄物のか焼体粉末と、ムx、o、
<y96. SiO*u% 、 Be、Ojr% 、 
BrO,1% 。
Calcined powder of the simulated radioactive waste mentioned above, mu x, o,
<y96. SiO*u%, Be, Ojr%,
BrO, 1%.

zro、 j % 、 TLO雪j嘔からなるセラ建ツ
ク形成物質粉末を重量比にして3:りで均一に混合した
のちに金型に入れ/ ton 7cm”の圧力で圧縮し
、直径X■高さ30鵡の円柱状の成形体を得た。この成
形体を1000℃の温度にて1時間焼成して直径約U■
高さJJ’wの円柱状多孔質焼結体を得た。焼結体の気
孔率は約、16%であった。この多孔質焼結体を内径X
鵡、肉厚jm、高さ40厘のニッケル製円筒状容器に入
れ、iooメッシ為以下のOu −Rn合金(0u50
% 、 Zn30% )の粉末をつめる。このニッケル
製円筒状容器を真空加熱炉に装着して10−”気圧以下
の真空脱気雰囲気下において、900℃で1時間加熱し
て合金を溶融させ、次いで加熱したままムr等の不活性
ガスを真空加熱炉に導入して大気圧にもどし、溶融金属
を多孔質焼結体に、含浸させたのち冷却固化した。さら
にニッケル製円筒内に直径X離剥、肉厚!■のニッケル
製内ブタを落とし、周囲をT工G溶接により密封し、ま
た溶接部分より上部は切り落とした。次に上記ニッケル
容器(内部容器〕を内径yW、高さSO鴎のステンレス
製容器内に入れ、周囲な100メツシ島以下の銅粉末で
包み覆った後、4 ton /ls”で圧縮し、更に水
素気流中で100℃、1時間焼結処理を施した。
After uniformly mixing the ceramic building material powder consisting of ZRO, J%, and TLO at a weight ratio of 3:3, it was put into a mold and compressed with a pressure of 7cm/ton, and was molded to a diameter x height. A cylindrical molded body of approximately 30 parrots was obtained. This molded body was fired at a temperature of 1000°C for 1 hour to a diameter of approximately U.
A cylindrical porous sintered body having a height of JJ'w was obtained. The porosity of the sintered body was approximately 16%. This porous sintered body has an inner diameter of
A parrot was placed in a nickel cylindrical container with a wall thickness of Jm and a height of 40 cm, and an Ou-Rn alloy (0u50
%, Zn30%) powder. This cylindrical nickel container was placed in a vacuum heating furnace and heated at 900°C for 1 hour in a vacuum degassing atmosphere below 10-" atmosphere to melt the alloy, and then inert while heating. The gas was introduced into a vacuum heating furnace and returned to atmospheric pressure, and the molten metal was impregnated into the porous sintered body, which was then cooled and solidified.Furthermore, a nickel cylinder with diameter x exfoliation and wall thickness! The inner lid was dropped, the surrounding area was sealed by T-G welding, and the area above the welded part was cut off.Next, the above nickel container (inner container) was placed in a stainless steel container with an inner diameter of yW and a height of SO, and the surrounding area was sealed. After wrapping and covering with copper powder having a particle size of 100 or less, it was compressed at 4 tons/ls'' and further sintered at 100° C. for 1 hour in a hydrogen stream.

このようKして得られた貯蔵体から貯蔵容器(外部容器
)を取りはずし内部固形体を露出させた。
The storage container (outer container) was removed from the storage body thus obtained to expose the internal solid body.

これをioo℃の純水10011中に1時間浸し、浸出
試験を行ない溶液中のλイオンを検出したところ、その
浸出率は検出限界/ y 10  I/3+”・ム1未
満であった。また、模擬廃棄物中に含まれる嵐イオンの
浸出も検出限界/x/DI乃が・+LIL7未満であっ
た。
When this was immersed in pure water 10011 at 100°C for 1 hour and a leaching test was performed to detect λ ions in the solution, the leaching rate was less than the detection limit / y 10 I/3+''・mu 1. The leaching of storm ions contained in the simulated waste also had a detection limit of /x/DI of less than +LIL7.

さらにニッケル容器の中央からzwxytl■X10T
IIIILの直方体状圧縮試験片を切り出し圧縮破壊デ
スシを行なったところ圧縮強度は!rOi” 以上あり
、機械的強度は大ぎかった。
Furthermore, zwxytl■X10T from the center of the nickel container
A rectangular parallelepiped compression test piece of IIIL was cut out and subjected to compression fracture desiccation, and the compressive strength was found! rOi" or more, and the mechanical strength was great.

比較例 実施例で用いた模擬放射性廃棄物のか焼体粉末と、ム1
,0,4c6% 、 810.@;)% 、 BaO!
 % 、 Br01−。
Comparative Example Calcined powder of simulated radioactive waste used in Example and Mu1
, 0.4c6% , 810. @;)%, BaO!
%, Br01-.

ZrO!j % 、 Tie、 j嘩からなるセラミッ
ク形成物質粉末を重量比にしてJニゲで均一に混合した
のちに金型に入れ/ ton /cII4”の圧力で圧
縮し、直径X■、高さX驕の円柱状成形体を得た。この
成形体を1000 ℃の温度で1時間焼成して直径約U
■、高さ約:Llmsの円柱状多孔質焼結体を得た。得
られた多孔質焼結体を内径30ym、内厚j1m、高さ
60wmのニッケル製円筒状容器に入れ、100メツシ
島以下の銅粉末をつめ4ton/α1の圧力で圧縮し、
さらにニッケル製円筒内に直径X諷弱、肉厚!■のニッ
ケル製の内ブタを落とし、周囲をτIG溶接により密封
し、また溶接部分より上部は切り落とした。次に、上記
密封済のニッケル容器を内径y−1高さ9−のステンレ
ス製容lsK入れ、周囲な100メツシ暴以下の銅粉末
で包み覆ってから圧力4tan/cps”で圧縮し、更
に水素気流中で100℃、1時間焼結処理を施した。
ZrO! Ceramic forming material powder consisting of J%, Tie, and J2 is mixed uniformly in a weight ratio using a Jnige, and then put into a mold and compressed with a pressure of /ton/cII4'', and is made into a material with a diameter of X and a height of X. A cylindrical molded body was obtained.This molded body was fired at a temperature of 1000°C for 1 hour to have a diameter of approximately U.
(2) A cylindrical porous sintered body with a height of approximately Llms was obtained. The obtained porous sintered body was placed in a nickel cylindrical container with an inner diameter of 30 ym, an inner thickness of 1 m, and a height of 60 wm, and packed with copper powder of less than 100 mesh islands and compressed with a pressure of 4 tons/α1.
Furthermore, inside the nickel cylinder, it has a diameter of 1.5 mm and is thick! The nickel inner lid of (2) was dropped, the surrounding area was sealed by τIG welding, and the portion above the welded portion was cut off. Next, the above sealed nickel container was placed in a stainless steel container with an inner diameter of y-1 and a height of 9-1, and the surrounding area was covered with copper powder of less than 100 mm, compressed at a pressure of 4 tan/cps, and further hydrogenated. Sintering treatment was performed at 100° C. for 1 hour in an air stream.

このようKして得られた貯蔵体から貯蔵容器(外部容器
)を取りはずし、内部固形体を露出させた。これを10
0℃の純水100d中に1時間浸し。
The storage container (outer container) was removed from the storage body thus obtained to expose the internal solid body. This is 10
Soaked in 100 d of pure water at 0°C for 1 hour.

浸出試験を行ない、溶液中の粗イオンを検出したところ
その浸出率は検出限界/ X io  I /備”・j
ay未満であった。また模擬廃棄物中に含まれる勘イオ
ンも検出限界/ X 10  I /cIM”・ムy未
満でありた。しかしながら、ニッケル円筒部の内容物の
中心付近から1mX!r■*10ymの直方体圧縮試験
片を切り出したところ、圧縮強度はjkg/am”K満
たず機械的強度は小さかった。
A leaching test was conducted to detect crude ions in the solution, and the leaching rate was below the detection limit.
It was less than ay. In addition, the ions contained in the simulated waste were also less than the detection limit / X 10 I /cIM''・muy.However, in a rectangular parallelepiped compression test of 1m When a piece was cut out, the compressive strength was less than jkg/am''K and the mechanical strength was low.

〔発明の効果〕〔Effect of the invention〕

上述した実施例、比較例から明らかなように、本発明の
貯蔵体は、7200℃以下の比較的低温の焼成によって
得られる多孔質焼結体の周辺および気孔内部が金属によ
り含浸、固化されているため。
As is clear from the above-mentioned Examples and Comparative Examples, in the storage body of the present invention, the periphery and inside of the pores of the porous sintered body obtained by firing at a relatively low temperature of 7200°C or less are impregnated and solidified with metal. To be there.

熱の放散性にすぐれるとともK、機械的、化学的に安定
である。
It has excellent heat dissipation properties and is mechanically and chemically stable.

さらKまだ、本発明の貯蔵体は、最外側の貯蔵容器が破
損して内部固形体が霧出した場合であっても、その内部
に固化された放射性元素が浸出することがなく、単なる
セランツク固化体よりも安全性、長期貯蔵性にすぐれて
いる。
Furthermore, even if the outermost storage container is damaged and the internal solid material is misted out, the storage body of the present invention does not allow the solidified radioactive elements to leach out, and is a mere cellulose container. It is safer and has better long-term storage than solidified materials.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の方法の一態様により得られる貯蔵体の
縦断面図である。 ハ・・か焼した放射性廃棄物とセラ建νり形成物質から
得られる多孔質焼結体に金属を含浸、固化させたもの、
コ・・・内部容器、J・・・外部容器、ダ・・・埋設用
金属。 出願人代理人   猪 股    清
The drawing is a longitudinal section through a storage body obtained by one embodiment of the method of the invention. C. A porous sintered body obtained from calcined radioactive waste and a ceramic-forming material impregnated with metal and solidified.
C...inner container, J...outer container, D...metal for burial. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 /、か焼した放射性廃秦物J−餐重量一とセラ2ツク形
成物質10〜60重量%とを混合し成形した後w 〜1
ioo℃の温度で加熱焼成し多孔質焼結体を形成する工
程と、該多孔質焼結体を容器に装入し、該容器中で溶融
金属を前記多孔質焼結体に含浸させ固化させる工程から
なることを特徴とする放射性廃棄物の処理方法。 λ、多孔質焼結体を装入した容器をIO気圧以下の真空
に保ちながら溶融金属の含浸を特徴する特許請求の範囲
jlI1項記載の放射性廃棄物の処理方法。 J、溶融金属の多孔質焼結体への含浸ならびに固化を、
/ −100気田の加圧下で行なう、特許請求の範囲第
7項または第2項記載の放射性廃棄物の処理方法。 ダ、金属を含浸させた多孔質焼結体を収納する前記容器
の少なくともlを、さらに外部容器内で金属に埋設する
工程を含む、特許請求の範囲第1項ないし第3項記載の
放射性廃棄物の処理方法。
[Claims] / After mixing and molding calcined radioactive waste J-1 by weight and 10 to 60 wt % of a ceramic forming substance w ~1
A step of heating and firing at a temperature of ioo°C to form a porous sintered body, and charging the porous sintered body into a container, impregnating the porous sintered body with molten metal and solidifying it in the container. A method for disposing of radioactive waste characterized by comprising steps. λ, the method of treating radioactive waste according to claim 1, characterized in that impregnation with molten metal is carried out while maintaining the container containing the porous sintered body in a vacuum of IO atmosphere or less. J, Impregnation and solidification of molten metal into porous sintered body,
The method for treating radioactive waste according to claim 7 or 2, which is carried out under a pressure of / -100 air pressure. The radioactive waste according to any one of claims 1 to 3, further comprising the step of further embedding at least one portion of the container containing the porous sintered body impregnated with metal in metal in an outer container. How to process things.
JP2856382A 1982-02-24 1982-02-24 Method of processing radioactive waste Granted JPS58146898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2856382A JPS58146898A (en) 1982-02-24 1982-02-24 Method of processing radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2856382A JPS58146898A (en) 1982-02-24 1982-02-24 Method of processing radioactive waste

Publications (2)

Publication Number Publication Date
JPS58146898A true JPS58146898A (en) 1983-09-01
JPH0119560B2 JPH0119560B2 (en) 1989-04-12

Family

ID=12252102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2856382A Granted JPS58146898A (en) 1982-02-24 1982-02-24 Method of processing radioactive waste

Country Status (1)

Country Link
JP (1) JPS58146898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350800A (en) * 1986-08-21 1988-03-03 新日本無線株式会社 Method of processing waste containing radioactive substance
US7365237B2 (en) * 2002-09-26 2008-04-29 Clean Technologies International Corporation Liquid metal reactor and method for treating materials in a liquid metal reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512448A (en) * 1978-07-14 1980-01-29 Tokyo Shibaura Electric Co Ceramiccsolidified radioactive waste* and manufacture thereof
JPS5512447A (en) * 1978-07-14 1980-01-29 Tokyo Shibaura Electric Co Ceramiccsolidified radioactive waste* and manufacture thereof
JPS5610296A (en) * 1979-07-06 1981-02-02 Tokyo Shibaura Electric Co Radioactive waste processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512448A (en) * 1978-07-14 1980-01-29 Tokyo Shibaura Electric Co Ceramiccsolidified radioactive waste* and manufacture thereof
JPS5512447A (en) * 1978-07-14 1980-01-29 Tokyo Shibaura Electric Co Ceramiccsolidified radioactive waste* and manufacture thereof
JPS5610296A (en) * 1979-07-06 1981-02-02 Tokyo Shibaura Electric Co Radioactive waste processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350800A (en) * 1986-08-21 1988-03-03 新日本無線株式会社 Method of processing waste containing radioactive substance
US7365237B2 (en) * 2002-09-26 2008-04-29 Clean Technologies International Corporation Liquid metal reactor and method for treating materials in a liquid metal reactor

Also Published As

Publication number Publication date
JPH0119560B2 (en) 1989-04-12

Similar Documents

Publication Publication Date Title
JPS59138997A (en) Method and vessel for storing radioactive waste material
KR20130012127A (en) Isotope-specific separation and vitrification using ion-specific media
JPS5990100A (en) Wrapping and higher density of granular substance
DE4408304A1 (en) Sintered parts made of oxygen-sensitive, irreducible powders and their production by injection molding
DE2756700A1 (en) METHODS FOR CONTAINING RADIOACTIVE WASTE
KR20120125670A (en) Container for storing waste
EP0044692A2 (en) Arrangements for containing waste material
JPS58131598A (en) Mold for sealing radioactive waste and its manufacture
JPS58146898A (en) Method of processing radioactive waste
GB2041912A (en) Moulded bodies containing radioactive waste
JPH0580197A (en) Solidifying method for radioactive ceramic waste
JPS58160899A (en) Method of processing radioactive waste
JPS58218696A (en) Method of processing radioactive waste
JPS5817399A (en) Method of processing radioactive waste
GB2099207A (en) Process for encasing radioactively contaminated solid substances or solid substances containing radioactive substance from nuclear plants in a matrix suitable for permanent storage
US20160260512A1 (en) Waste immobilization methods and storage systems
EP1430487B1 (en) Method for the detoxification of an object made from ceramic, graphite and/or carbon contaminated with at least one toxic agent in particular a radiotoxic agent
JPS6046395B2 (en) Method for producing solidified radioactive waste containing ruthenium
SU1036257A3 (en) Method for solidifying radioactive wastes by fixing them in a mass of substance resistant to leaching
JPS633280B2 (en)
JPS6112237B2 (en)
DE3018745C2 (en) Method for embedding tritium or tritium-containing radioactive gases
CA1186818A (en) Arrangements for containing waste material
JPS6022698A (en) Method of solidifying and treating radioactive waste
RU2137230C1 (en) Method for decontaminating liquid radioactive and toxic materials