JPS58145673A - Improvement of ceramic fiber formed body - Google Patents

Improvement of ceramic fiber formed body

Info

Publication number
JPS58145673A
JPS58145673A JP2669382A JP2669382A JPS58145673A JP S58145673 A JPS58145673 A JP S58145673A JP 2669382 A JP2669382 A JP 2669382A JP 2669382 A JP2669382 A JP 2669382A JP S58145673 A JPS58145673 A JP S58145673A
Authority
JP
Japan
Prior art keywords
ceramic fiber
chromium oxide
molded body
coating
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2669382A
Other languages
Japanese (ja)
Other versions
JPS6152117B2 (en
Inventor
雅章 山本
福崎 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Babcock Refractories Co Ltd
Original Assignee
Isolite Babcock Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Babcock Refractories Co Ltd filed Critical Isolite Babcock Refractories Co Ltd
Priority to JP2669382A priority Critical patent/JPS58145673A/en
Publication of JPS58145673A publication Critical patent/JPS58145673A/en
Publication of JPS6152117B2 publication Critical patent/JPS6152117B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ナ質セラミックファイバーを水に分散し、無機あるいは
有機の結合剤を加え、吸引濾過成形し乾燥して得るセラ
ミックファイバー成形体の改良法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for improving a ceramic fiber molded article obtained by dispersing natural ceramic fiber in water, adding an inorganic or organic binder, suction filtration molding, and drying.

このセラミックファイバー成形体は、軽量で、施工が容
易なこと、断熱性が著しく優れているが、スケールアタ
ックに弱く、ボード、バーナブロック、ローラーパッキ
ング等に使用する場合、レンガ、キャスタブル等と比較
し耐食性が劣るため、鉄、ないし酸化物粒子の当る場所
での使用が限定されていた。
This ceramic fiber molded body is lightweight, easy to construct, and has excellent heat insulation properties, but it is susceptible to scale attack and is difficult to use when used for boards, burner blocks, roller packing, etc. compared to bricks, castables, etc. Due to its poor corrosion resistance, its use was limited to areas where iron or oxide particles come into contact with it.

しかし、成形体の耐食性能向上がはかられ、各種の含浸
やコーティングにより、使用範囲がわずかずつ拡大され
てきたが、含浸、コーティング共にそれぞれ一長一短が
あり、最善とは言し1[力)つたO 成形体に、耐食性に優れた酸化クロム粉末を含浸させた
のみでは通常工業炉に使用される温度範囲において、耐
火物の構成成分として化合物で含有される場合でも少な
からず蒸散現象が起こる欠点があった。
However, efforts have been made to improve the corrosion resistance of molded bodies, and the range of use has gradually expanded through various impregnations and coatings, but both impregnation and coating have their own advantages and disadvantages, and although it is best to O If only the compact is impregnated with chromium oxide powder, which has excellent corrosion resistance, there is a drawback that transpiration occurs in the temperature range normally used in industrial furnaces, even when it is contained in the form of a compound as a component of a refractory. there were.

また成形体表面へ、咽にフ”ラズマコーテインク゛を行
なった場合、耐熱性、耐風速性は格段に向」一。
In addition, when a plasma coating is applied to the surface of the molded product, the heat resistance and wind speed resistance are greatly improved.

するが、使用時の時間経過と共に剥離が起こる欠点があ
った。
However, there was a drawback that peeling occurred over time during use.

本発明は、これらλつ、すなわち酸化クロム含浸と表面
プラズマコーティングのaつをセラミ゛ンクツアイバー
成形体に適用することにより、耐食性と耐熱性を兼ね備
えたコーティングを同時に得ると共に、一つの相乗作用
により、その両者ノ性能を格段に向上させ汀つ剥離等の
欠点が起こらない事を見出したものである。
The present invention applies one of these two methods, chromium oxide impregnation and surface plasma coating, to a ceramic fiber molded body to obtain a coating that has both corrosion resistance and heat resistance at the same time, and through a synergistic effect, It has been discovered that both performances are significantly improved and defects such as stagnation and peeling do not occur.

すなわち、酸化クロムを含浸させた成形体を通常使用さ
れる温度範囲に使用前又は使用時に昇温させる。このと
き、熱面側に蒸散してきた酸化クロムを、熱面側に酸化
アルミニウムのプラズマコーティングを行なうことによ
り、そのコーティング内へ固溶させ、2つの酸化物の相
乗作用により、従来より格段に向上した耐食性と耐熱性
を持った薄くて強固なコーティングを得るものである。
That is, the molded body impregnated with chromium oxide is heated to a commonly used temperature range before or during use. At this time, by plasma coating aluminum oxide on the hot side, the chromium oxide that has evaporated to the hot side is dissolved in the coating, and the synergistic effect of the two oxides makes it much better than before. The result is a thin, strong coating with excellent corrosion and heat resistance.

このとき、この蒸散してきた酸化クロムを固溶させるた
めには表面のコーテイング材が、酸化クロムに非常に似
通った結晶構造を持ち、原子半径も近似している酸化物
であることが必要である。
At this time, in order to dissolve the evaporated chromium oxide into solid solution, the surface coating material must be an oxide with a crystal structure very similar to that of chromium oxide and an atomic radius similar to that of chromium oxide. .

特に、このような目的に適している酸化物はある程度の
耐熱性と耐食性を兼ね備えている酸化アルミニウムであ
る。
A particularly suitable oxide for this purpose is aluminum oxide, which has a certain degree of heat resistance and corrosion resistance.

ここで無機質繊維をアルミノシリケート質又はアルミナ
質のセラミックファイバーに限定し、且つ含浸材料を酸
化クロムに限定したのは・この組合せにおいてのみ、高
温における固相反応によって熱収縮、耐食性が顕著に向
上するためであり、アルミナの成形体表面への塗布法を
高温プラズマスプレー法に限定したのは、常温での通常
の塗布又は刷毛塗等では、使用時又は使用前の加熱前に
容易に剥れてしまうのに対し、加熱時の基材物質との反
応性が良好となる事を見出した為である。
The reason why we limited the inorganic fibers to aluminosilicate or alumina ceramic fibers and limited the impregnation material to chromium oxide is that only in this combination, thermal shrinkage and corrosion resistance are significantly improved due to solid phase reaction at high temperatures. For this reason, we limited the method of applying alumina to the surface of the molded product to the high-temperature plasma spray method because ordinary application at room temperature or brush application would easily peel off during use or before heating. This is because it has been found that the reactivity with the base material during heating becomes better, whereas it is stored away.

又、高温プラズマスプレー法の採用によって極めて薄い
層の塗布によって顕著な効果の出ることを見出したもの
である。
It has also been discovered that by applying a high-temperature plasma spray method, remarkable effects can be obtained by applying an extremely thin layer.

以下、本発明の実施例を、これによって得られた効果を
他のコーテイング材との比較により示す。
Examples of the present invention will be described below, and the effects obtained will be shown in comparison with other coating materials.

実施例 アルミノシリケート並びにアルミナ質繊維より作られた
成形体中ヘキャリャーとしての無機質バインダを含んだ
中心粒径/〜乙μmの酸化クロム70%溶液を充分に含
浸乾燥させた後、AIO943 %、TiO2,23%、81022%、その他7.3%
(重R%)からなるコーティング用の粉末を濡あたり0
.0.23gの割合でプラズマ溶射コーティングを行な
った。
Example: A molded article made of aluminosilicate and alumina fibers was thoroughly impregnated with a 70% chromium oxide solution containing an inorganic binder as a carrier and having a median particle size of ~2 μm. After drying, 943% AIO, TiO2, 23%, 81022%, other 7.3%
(weight R%) per wet coating powder consisting of 0
.. Plasma spray coatings were applied at a rate of 0.23 g.

実施例について、それぞれ/300C,/り00 ?Z
’ %/300 tTの各温度における。2ダhr加熱
後の線収縮率及び各温度におけるFe粉末による耐食性
の比較テストを行なった。
Regarding the examples, /300C and /ri00, respectively. Z
' %/300 tT at each temperature. A comparative test was conducted on the linear shrinkage rate after heating for 2 days and the corrosion resistance of Fe powder at various temperatures.

比較のために同材質の基材である成形体に、他のコーテ
イング材、含浸材処理を行なったもの、又無処理−のも
のについて同様のテストを行なった。
For comparison, similar tests were conducted on molded bodies made of the same material treated with other coating materials and impregnation materials, and on molded bodies that were not treated.

表/、表−の結果に示す通り、酸化クロムを固溶すせプ
ラズマコーティングを行ない、熱処理したものは、母材
の収縮にある程度追従して剥離の可能性を少なくすると
共に、収縮そのものも抑制して収縮率で代表される耐熱
性を向上させると共に、従来のコーティングに比べ、顕
著に耐食性を向上させており、このため断熱特性に優れ
、省エネルギーに顕著な効果のあるセラミックファイバ
ー成形体のより高温での使用、及びある程度雰囲気の汚
れた工業窯炉への使用等、使用範囲を拡大することを可
能とする。
As shown in the results in Tables 1 and 2, the heat-treated products coated with chromium oxide solid solution and heat treated follow the shrinkage of the base material to a certain extent, reducing the possibility of peeling, and also suppressing the shrinkage itself. In addition to improving heat resistance as represented by shrinkage rate, it also significantly improves corrosion resistance compared to conventional coatings.This makes ceramic fiber molded bodies with excellent heat insulation properties and a remarkable effect on energy saving. It is possible to expand the scope of use, such as use at high temperatures and use in industrial furnaces with a somewhat dirty atmosphere.

Claims (1)

【特許請求の範囲】[Claims] (1)  アルミ/シリケート質又はアルミナ質のセラ
ミックファイバー成形体に酸化クロム粉末を含浸させ、
酸化クロム粉末を含浸せしめた該成形体表面に酸化アル
ミニウム粉末をプラズマ溶射して溶射被膜を形成し更に
該成形体を加熱処理して該成形体に含浸せしめた酸化ク
ロム該被膜に固溶せしめることを特徴とするセラミック
ファイバー成形体の改良法。
(1) Impregnating an aluminum/silicate or alumina ceramic fiber molded body with chromium oxide powder,
Plasma spraying aluminum oxide powder onto the surface of the molded body impregnated with chromium oxide powder to form a sprayed coating, and further heat-treating the molded body to solidly dissolve the chromium oxide powder into the coating impregnated into the molded body. A method for improving ceramic fiber molded bodies characterized by:
JP2669382A 1982-02-19 1982-02-19 Improvement of ceramic fiber formed body Granted JPS58145673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2669382A JPS58145673A (en) 1982-02-19 1982-02-19 Improvement of ceramic fiber formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2669382A JPS58145673A (en) 1982-02-19 1982-02-19 Improvement of ceramic fiber formed body

Publications (2)

Publication Number Publication Date
JPS58145673A true JPS58145673A (en) 1983-08-30
JPS6152117B2 JPS6152117B2 (en) 1986-11-12

Family

ID=12200462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2669382A Granted JPS58145673A (en) 1982-02-19 1982-02-19 Improvement of ceramic fiber formed body

Country Status (1)

Country Link
JP (1) JPS58145673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288183A (en) * 1986-06-06 1987-12-15 品川白煉瓦株式会社 Manufacture of refractory composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288183A (en) * 1986-06-06 1987-12-15 品川白煉瓦株式会社 Manufacture of refractory composite material
JPH0448756B2 (en) * 1986-06-06 1992-08-07 Shinagawa Refractories Co

Also Published As

Publication number Publication date
JPS6152117B2 (en) 1986-11-12

Similar Documents

Publication Publication Date Title
US4559270A (en) Oxidation prohibitive coatings for carbonaceous articles
JPH02217381A (en) Method for protecting product of carbon-containing composite material from oxidation,and product protected thereby
JPH07502249A (en) Method for protecting products made of carbon-containing composite materials against oxidation and products obtained by the method
JPS5860683A (en) Improvement of ceramic fiber formed article
US4608087A (en) Heat-resistant inorganic composition
JPS60238484A (en) Method of setting multilayer chemically hardened refractory coatings on substrate
US3232782A (en) High temperature resistant vitreous material and method of producing same
US3389002A (en) Heat and corrosion resistant coating composition
JP2001505519A (en) Refractory composites protected from oxidation at high temperatures, precursors of the above materials, their production
US3709717A (en) Ceramic coated articles
US3875971A (en) Ceramic coated articles
JPS58145673A (en) Improvement of ceramic fiber formed body
JPH02102171A (en) Refractory for ceramic calcination
JPS6356194B2 (en)
US5326595A (en) Post coating treatment of silicon carbide coated carbon-carbon substrates
JPS59169963A (en) High strength ceramic foam and manufacture
RU2193545C2 (en) Method of forming protective coating on chamotte objects
SU1451113A1 (en) Coating for protecting steels from oxidation and decarbonization
JPH03138373A (en) Ceramic coated material having excellent wear resistance and thermal impact resistance
EP0393332A1 (en) Treatment of reaction-bonded silicon nitride articles
JPH01108186A (en) Sic structural material for stream-resistant atmosphere
JPS6250440B2 (en)
JPS60221373A (en) Corrosion preventing treatment for refractory heat-insulating lining material in heating furnace
JPH03177377A (en) Sio2-impregnated brick for ceramic burner in hot blast stove
CN105175025A (en) Silicon carbide fiber surface alumina-titanium oxide composite coating preparation method