JPS58145642A - Strengthening of glass - Google Patents

Strengthening of glass

Info

Publication number
JPS58145642A
JPS58145642A JP2799482A JP2799482A JPS58145642A JP S58145642 A JPS58145642 A JP S58145642A JP 2799482 A JP2799482 A JP 2799482A JP 2799482 A JP2799482 A JP 2799482A JP S58145642 A JPS58145642 A JP S58145642A
Authority
JP
Japan
Prior art keywords
glass
film
ion exchange
sio2
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2799482A
Other languages
Japanese (ja)
Other versions
JPH0158135B2 (en
Inventor
Hisanori Suzuki
久則 鈴木
Hisao Kawai
河合 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2799482A priority Critical patent/JPS58145642A/en
Publication of JPS58145642A publication Critical patent/JPS58145642A/en
Publication of JPH0158135B2 publication Critical patent/JPH0158135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments

Abstract

PURPOSE:To manufacture strengthened glass, by coating SiO2 to the surface of a glass plate containing Na and Li, and carrying out the ion exchange treatment of the glass, thereby eliminating the influence of the surface microcracks of the glass on the strength. CONSTITUTION:A soda-lime silicate glass 3 is immersed in a solution of SiO2 in e.g. ethyl acetate, taken out of the solution, and heated in an oven to expel the organic solution 4 and form an SiO2 film 1. The microcracks 2 on the surface of the glass 3 are completely covered with the film 1 by this procedure. The coated glass is immersed in molten KNO3 in an electric furnace to effect the ion exchange and introduce the compressive stress to the surface of the glass. Since the film 1 has a network structure, the alkali ions in the glass 3 are diffused in the film 1 during the above process. In the figure, the numbers 5 and 6 represent K<+> ion and Na<+> ion, respectively. The treated glass is taken out of the furnace slowly, cooled to room temperature, and washed with water to remove the KNO3.

Description

【発明の詳細な説明】 この発明はガラスの強化法に関するものである。[Detailed description of the invention] This invention relates to a method for strengthening glass.

従来例えば電子部品用ガラス基板に用いられるガラスの
強化には、化学的強化と物理的強化の2種類がある。方
ラスには元来Griffith’5flatyと呼ばれ
るガラスの構造に固有な非常に細かい割れ目が存在する
。二のflawの存在するガラスの表面層を取り除いて
も、加工損傷によりカラス表面に新しいマイクロクラッ
クが発生する。
Conventionally, there are two types of strengthening of glass used for glass substrates for electronic components: chemical strengthening and physical strengthening. Glass originally has very fine cracks called Griffith's flats, which are unique to the structure of the glass. Even if the surface layer of the glass containing the second flaw is removed, new microcracks will occur on the glass surface due to processing damage.

従って、このマイクロクラックの存在する表面層に永久
的な圧縮応力を導入することにより、ガラスの強度を増
大させることが可能である。
Therefore, by introducing permanent compressive stress into the surface layer where these microcracks exist, it is possible to increase the strength of the glass.

このカラス表面に圧縮応力髪導入させる方法として化学
的強化、及び物理的強化がある。
Chemical strengthening and physical strengthening are methods for introducing compressive stress hair onto the surface of the crow.

化学的強化には、先ずガラスを転移温度以下でカラス中
のアルカリイオンをこれより大きなイオン手軽のアルカ
リイオンと交換することにより表面に圧縮応力を導入す
る低温型イオン交換がある。また刃ラスの転移温度以上
の温度でイオン交換を行ない、これによりガラス表面層
に膨張係数の小さい層を形成し、これを室温まで冷却し
た時、表面層と内部との膨張係数の差により、表面に圧
縮、内部に引っ張り応力を生じさせる高温型イオン交換
がある。更にその他基礎となるガラスより小さい膨張係
数をもつ異種のカラスを高温でコーティングし、冷却し
た時に覆っているガラスが圧縮されていることを用いた
方法もある。
Chemical strengthening involves low-temperature ion exchange, in which compressive stress is introduced to the surface of the glass by first exchanging the alkali ions in the glass with larger ions and easily available alkali ions below the glass's transition temperature. In addition, ion exchange is performed at a temperature above the transition temperature of the blade lath, thereby forming a layer with a small expansion coefficient on the glass surface layer, and when this layer is cooled to room temperature, due to the difference in expansion coefficient between the surface layer and the inside, There is a high-temperature ion exchange that produces compressive stress on the surface and tensile stress on the inside. Still another method involves coating a different type of glass at high temperature with a smaller coefficient of expansion than the underlying glass, and then compressing the covering glass when it cools.

次に物理的強化は、板ガラスを軟化点近くまで加熱し、
次に空気を吹きつけ、ガラス表面を急冷することにより
ガラス内外に生じる温度差による熱応力を利用して表面
に圧縮応力を生じさせる風冷強化、又高温に加熱された
ガラスを熱容量の大きな低温の液体に接触させ、表面に
圧縮応力を生じさせる液冷強化である。
Next, physical strengthening involves heating the sheet glass to near its softening point.
Next, air is blown onto the glass surface to rapidly cool it, making use of the thermal stress caused by the temperature difference between the inside and outside of the glass to create compressive stress on the surface. This is liquid-cooling strengthening in which compressive stress is created on the surface by bringing it into contact with a liquid.

従来のこれらの方法では、表面に永久的な圧縮応力を導
入しても、ガラス表面にマイクロクロクラックが存在す
るため、クラックに応力集中が起き、そ二から破壊が発
生し、強度が低下した。
With these conventional methods, even if permanent compressive stress was introduced to the surface, the presence of micro-cracks on the glass surface caused stress concentration on the cracks, which led to fracture and reduced strength. .

二の発明のガラス強化法は、上記のような従来の欠点を
除去するためになされたもので、マイクロクランクのガ
ラスの強度に及ぼす影響をなくそうとしたものである。
The glass strengthening method of the second invention was made in order to eliminate the above-mentioned conventional drawbacks, and was intended to eliminate the influence on the strength of the glass of the microcrank.

すなわちナトリウムおよび/またはリチウノ、を含有す
るガラスを1       用い、方ラスの表面上にS
iO2を塗布し、その後塗布したガラスに対してイオン
交換処理を行うことを特徴とするものである。
That is, using glass containing sodium and/or lithium, S
This method is characterized by applying iO2 and then performing ion exchange treatment on the applied glass.

以下、二の発明を一実施例に基いて説明する。The second invention will be explained below based on one embodiment.

まず酢酸エチルに溶けている5i02の入った容器の中
に、ソーダ・石灰・ケイ酸カラス(Si02   : 
 7 011101 % +  N  a  2 0 
:15mo1 % 、CaO: ] 5 mo1%)、
大きさ23.2x+OOx]、6mmを浸し、次にこれ
を取りだしてオーブンにより450°Cで1時間加熱し
た。5i02の膜厚は100OAてあった。そして二の
ガラスを43F)℃〜450℃に保った電気炉中の硝酸
カリウノ、に浸漬し、4時間イオン交換処理をした。そ
して30分かけてゆっくり炉から取り出し、室温まで冷
却した後、硝酸カリウムを水で洗い落とした。
First, in a container containing 5i02 dissolved in ethyl acetate, add soda, lime, and silicate glass (Si02:
7 011101% + N a 2 0
:15 mo1%, CaO: ]5 mo1%),
size 23.2x+OOx], 6 mm, was then taken out and heated in an oven at 450°C for 1 hour. The film thickness of 5i02 was 100OA. Then, the second glass was immersed in potassium nitrate in an electric furnace maintained at 43F) to 450C and subjected to ion exchange treatment for 4 hours. Then, it was slowly taken out of the oven over a period of 30 minutes, cooled to room temperature, and then potassium nitrate was washed off with water.

ウェーブガイド法でこのガラスの歪量及び歪層の深さを
測定した。第1図は基礎となるガラスJ上に5i02/
をコーティングしたものであり、マイクロクラック−の
中まて充分に8102/かは入り込んでいる。第2図は
これを450°Cに加熱することによって有機溶剤を追
い出すとともに、カラス3とコーティングされた3− 8i02/とて相互に拡散が起こるようにしたものであ
る。グは蒸発していく有機溶剤を示す。
The amount of strain in this glass and the depth of the strained layer were measured using the waveguide method. Figure 1 shows 5i02/5i02 on the underlying glass J.
It is coated with 8102, and 8102/2 is fully penetrated into the micro cracks. In Figure 2, this was heated to 450°C to drive out the organic solvent and to cause mutual diffusion between the glass 3 and the coated 3-8i02/. The mark indicates an organic solvent that is evaporating.

以」―の工程によってマイクロクラック−を完全に封入
している。次に低温型のイオン交換処理(450℃に保
持したK N O3中において)をすることにより、ガ
ラス表面に圧縮応力を導入した(第3図参照)。二の5
i02/の網目構造により、コーティングした5i02
/中をアルカリイオンが拡散するのである。6はに+イ
オンを、乙はNa+イオンを示す。実験結果から、ガラ
ス表面の歪量はSi○2コーティングなしてイオン交換
した無コーテイング処理ガラス(比較例)で最大49 
、56kg/mm2、最小38 、92kg/+um2
、平均44 、80kg/mm2、σn=3.30とな
りSiO2をコーティングしたものは最大52 、08
kg/mm2.最小33゜32 kg/av+” 、平
均44.48kg/mm” 、  σn6゜23となる
。また歪層の深さは無コーテイング処理ガラスで最大1
4.7μm、最小14.5i1 rrl、平均14.6
μm、ono、10、Si4− 〇2をコーティングしたもので最大14.6μm、最小
14.2μn1、平均14.4μm、σno、I2とな
って両者はほぼ一致した。従って、5i02をコーティ
ングしても充分にイオン交換はされていることを示して
いる。このことを表−1に示す。
The microcracks are completely encapsulated through the following process. Next, compressive stress was introduced into the glass surface by low-temperature ion exchange treatment (in KNO3 maintained at 450°C) (see Figure 3). 2-5
5i02 coated with a network structure of i02/
/Alkaline ions diffuse inside. 6 indicates a + ion, and O indicates a Na+ ion. From the experimental results, the amount of strain on the glass surface was up to 49% for the uncoated glass (comparative example) that was ion-exchanged without Si○2 coating.
, 56kg/mm2, minimum 38, 92kg/+um2
, the average is 44.80 kg/mm2, σn=3.30, and the maximum weight is 52.08 for the one coated with SiO2.
kg/mm2. The minimum is 33°32 kg/av+", the average is 44.48 kg/mm", and σn6°23. In addition, the depth of the strained layer is maximum 1 for uncoated glass.
4.7μm, minimum 14.5i1 rrl, average 14.6
μm, ono, 10, and those coated with Si4-〇2 had a maximum of 14.6 μm, a minimum of 14.2 μn1, an average of 14.4 μm, and σno, I2, which were almost the same. This indicates that sufficient ion exchange was achieved even if 5i02 was coated. This is shown in Table-1.

表−1*は無次元 なお上記実施例では、低温型イオン交換でナトリウムを
含むガラスについて説明したが、リチウムを含むガラス
をアルカリ塩(例えば硫酸塩、硝酸塩)の中に浸漬し、
ガラス中のリチウムイオンをナトリウムまたはカリウム
イオンと交換しても良く、上記実施例と同様な効果を奏
する。
Table 1 * is dimensionless. In the above example, glass containing sodium was explained by low temperature ion exchange, but glass containing lithium was immersed in an alkali salt (e.g. sulfate, nitrate),
Lithium ions in the glass may be replaced with sodium or potassium ions, and the same effects as in the above embodiments can be obtained.

またコーティングした5i02を450℃に加熱したが
、これはイオン交換をする際にもカラスを予備加熱する
ので省略しても良い。
Although the coated 5i02 was heated to 450° C., this may be omitted since the glass is preheated during ion exchange.

次に第4図に示す通り、オートグラフで抗折強度を測定
した。図において7はガラス、8はスパン、7はガラス
の厚さを、10は荷重を示す。抗折強度Sは次式で求め
た。
Next, as shown in FIG. 4, the bending strength was measured using an autograph. In the figure, 7 indicates the glass, 8 indicates the span, 7 indicates the thickness of the glass, and 10 indicates the load. The bending strength S was determined using the following formula.

2d” ω(kg/man” ) 以上のように、二の発明のガラス強化法はマイクロクラ
ックを封入するので、5i02コーテイング後の抗折強
度の測定結果が、Smax=17 、90kg/n+n
+” 、 Sm1n= 7 、 16kg/mm2、S
=11.87kg/mm2.an=3.67  となり
、未処理ガラス(イオン交換処理、St○2コーティン
グともになし)と比べ抗折強度が約22%増加した。ま
たイオン交換処理後はSmax=49.05kg/mm
2.8m1n=20.91kg/nun2 、  S:
=3 7. 0 3kg/mm”  、  (7n=9
. 58となり未処理ガラスと比べ抗折強度が約3゜8
倍となり、また前記無コーテイング処理カラスよりも約
31.6%抗折強度が増加した。これを表−2に示す。
2d" ω (kg/man") As described above, since the glass strengthening method of the second invention encapsulates microcracks, the measurement results of the bending strength after 5i02 coating are Smax=17, 90kg/n+n
+”, Sm1n=7, 16kg/mm2, S
=11.87kg/mm2. an=3.67, and the bending strength increased by about 22% compared to untreated glass (no ion exchange treatment or St○2 coating). Also, after ion exchange treatment, Smax = 49.05kg/mm
2.8m1n=20.91kg/nun2, S:
=3 7. 0 3kg/mm”, (7n=9
.. 58, and the bending strength is approximately 3°8 compared to untreated glass.
The bending strength was increased by about 31.6% compared to the non-coated glass. This is shown in Table-2.

表−2*無次元 (注)参考例1はSi○2コーティングのみ、参考例2
は未処理ガラスである。
Table-2 *Dimensionless (Note) Reference example 1 only has Si○2 coating, Reference example 2
is untreated glass.

7−7-

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明のカラス強化法における各工
程でのガラスの状態を示す側面図で、第1図は5102
コーテイングを施したとき、第2図は450℃で加熱し
たとき、第3図はイオン交換処理をしているときを示す
。第4図は抗折強度の測定方法を示す概略側面図である
。 /  5i02   、.2 マイクロクラック3 ガ
ラス     ダ 有機溶剤 、5に+イオン   乙 Na+イオン7 ガラス  
   8 スパン ? ガラスの厚さ  10 荷重 8−
Figures 1 to 3 are side views showing the state of glass at each step in the glass strengthening method of the present invention, and Figure 1 is 5102.
When the coating is applied, FIG. 2 shows the state when heated at 450° C., and FIG. 3 shows the state during ion exchange treatment. FIG. 4 is a schematic side view showing a method for measuring bending strength. /5i02,. 2 Micro crack 3 Glass DA Organic solvent, 5 + ions O Na + ions 7 Glass
8 Span? Glass thickness 10 Load 8-

Claims (1)

【特許請求の範囲】 1、ナトリウムおよび/またはリチウムを含有するガラ
スを用い、ガラスの表面上に5in2を塗布し、その後
塗布したガラスに対してイオン交換処理を行うことを特
徴とするガラス強化法。 2、イオン交換処理が低温型イオン交換処理である特許
請求の範囲第1項記載のガラス強化法。
[Claims] 1. A glass strengthening method using glass containing sodium and/or lithium, which is characterized by applying 5 in 2 on the surface of the glass, and then subjecting the applied glass to ion exchange treatment. . 2. The glass strengthening method according to claim 1, wherein the ion exchange treatment is a low-temperature ion exchange treatment.
JP2799482A 1982-02-22 1982-02-22 Strengthening of glass Granted JPS58145642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2799482A JPS58145642A (en) 1982-02-22 1982-02-22 Strengthening of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2799482A JPS58145642A (en) 1982-02-22 1982-02-22 Strengthening of glass

Publications (2)

Publication Number Publication Date
JPS58145642A true JPS58145642A (en) 1983-08-30
JPH0158135B2 JPH0158135B2 (en) 1989-12-08

Family

ID=12236370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2799482A Granted JPS58145642A (en) 1982-02-22 1982-02-22 Strengthening of glass

Country Status (1)

Country Link
JP (1) JPS58145642A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153148A (en) * 1985-12-25 1987-07-08 Nippon Sheet Glass Co Ltd Glass panel to be irradiated with electron ray and rpoduction thereof
US5162136A (en) * 1988-08-01 1992-11-10 Blum Yigal D Process for increasing strength of glass by forming ceramic coating on glass surface
KR100468055B1 (en) * 1997-11-26 2005-04-08 삼성코닝 주식회사 Strengthening Method of Display Glass
WO2013094479A1 (en) * 2011-12-19 2013-06-27 旭硝子株式会社 Glass base plate for chemical reinforcement, and method for producing same
WO2013099620A1 (en) * 2011-12-26 2013-07-04 旭硝子株式会社 Method for reducing warping of glass substrate caused by chemically toughening treatment, and method for producing chemically toughened glass substrate
JP2014533233A (en) * 2011-11-09 2014-12-11 コーニング インコーポレイテッド Method for bonding nanoparticles to glass
US9499434B1 (en) 2012-08-31 2016-11-22 Owens-Brockway Glass Container Inc. Strengthening glass containers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243860A (en) * 1996-03-11 1997-09-19 Fujikura Ltd Ferrule made of quartz glass and apparatus for production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141718A (en) * 1974-10-08 1976-04-08 Ishizuka Glass Garasuseihinno kyokashorihoho
JPS529015A (en) * 1975-07-11 1977-01-24 Sharp Kk Substrate
JPS5510553A (en) * 1978-07-10 1980-01-25 Komatsu Ltd Position detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141718A (en) * 1974-10-08 1976-04-08 Ishizuka Glass Garasuseihinno kyokashorihoho
JPS529015A (en) * 1975-07-11 1977-01-24 Sharp Kk Substrate
JPS5510553A (en) * 1978-07-10 1980-01-25 Komatsu Ltd Position detector

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153148A (en) * 1985-12-25 1987-07-08 Nippon Sheet Glass Co Ltd Glass panel to be irradiated with electron ray and rpoduction thereof
US5162136A (en) * 1988-08-01 1992-11-10 Blum Yigal D Process for increasing strength of glass by forming ceramic coating on glass surface
KR100468055B1 (en) * 1997-11-26 2005-04-08 삼성코닝 주식회사 Strengthening Method of Display Glass
JP2014533233A (en) * 2011-11-09 2014-12-11 コーニング インコーポレイテッド Method for bonding nanoparticles to glass
US10155361B2 (en) 2011-11-09 2018-12-18 Corning Incorporated Method of binding nanoparticles to glass
WO2013094479A1 (en) * 2011-12-19 2013-06-27 旭硝子株式会社 Glass base plate for chemical reinforcement, and method for producing same
CN104039730A (en) * 2011-12-19 2014-09-10 旭硝子株式会社 Glass base plate for chemical reinforcement, and method for producing same
JPWO2013094479A1 (en) * 2011-12-19 2015-04-27 旭硝子株式会社 Glass substrate for chemical strengthening and method for producing the same
US9023480B2 (en) 2011-12-19 2015-05-05 Asahi Glass Company, Limited Glass substrate for chemical strengthening, and method for producing same
JPWO2013099620A1 (en) * 2011-12-26 2015-04-30 旭硝子株式会社 Method for reducing warpage of glass substrate due to chemical strengthening treatment, and method for producing chemically strengthened glass substrate
US9090501B2 (en) 2011-12-26 2015-07-28 Asahi Glass Company, Limited Method for reducing warpage of glass substrate caused by chemical strengthening process, and method for producing chemically strengthened glass substrate
WO2013099620A1 (en) * 2011-12-26 2013-07-04 旭硝子株式会社 Method for reducing warping of glass substrate caused by chemically toughening treatment, and method for producing chemically toughened glass substrate
US9499434B1 (en) 2012-08-31 2016-11-22 Owens-Brockway Glass Container Inc. Strengthening glass containers
US9932266B2 (en) 2012-08-31 2018-04-03 Owens-Brockway Glass Container Inc. Strengthening glass containers

Also Published As

Publication number Publication date
JPH0158135B2 (en) 1989-12-08

Similar Documents

Publication Publication Date Title
JP6883131B2 (en) Two-step method for strengthening glass
US10752542B2 (en) Asymmetric stress profiles for low warp and high damage resistance glass articles
JP6227019B2 (en) Thin substrate with mechanical durability edge
US4849002A (en) Ion-exchangeable germanate method for strengthened germanate glass articles
CN100379700C (en) Alkaline glasses with modified surfaces and method for producing
JP5255611B2 (en) GLASS SUBSTRATE FOR DISPLAY, PROCESS FOR PRODUCING THE SAME AND DISPLAY USING THE SAME
US3524737A (en) Method for thermochemical strengthening of glass articles
JP2003514758A (en) Glass substrate processing method and glass substrate for display screen production
JP2010202514A (en) Glass substrate for mobile liquid crystal display and method for producing the same, and mobile liquid crystal display using the same
US20060075783A1 (en) Method for strengthening flat glass plate for display
JP7396445B2 (en) Chemically strengthened glass manufacturing method and chemically strengthened glass
JPS5893102A (en) Method of producing reinforced glass dielectric for electric insulator and insulator obtained by same method
KR20060005920A (en) Method for manufacturing glass panel
EP2925699A1 (en) Surface treatment process for glass containers
JPS58145642A (en) Strengthening of glass
CN113840810A (en) Method of modifying textured glass substrates having regions under compressive stress to increase glass substrate strength
CN106746740A (en) A kind of method that induction glass surface crystallization is exchanged by High temperature ion
CN114988698B (en) Composition for preparing aluminosilicate glass, preparation method and application thereof
US3116991A (en) Desalkalinisation of glass
TW546263B (en) Treatment of vitreous material
JP2012229154A (en) Glass substrate for display, method for producing the same, and display using the same
KR20220055472A (en) Ion exchange process for ultra-thin glass
CN116161871B (en) Preparation method of high-strength glass
CN117466547A (en) Method for reducing tin penetration of float cover plate glass for electronic information display
Pintori et al. Electric-field assisted ion-exchange of innovative float glass