JPS58145329A - Molding method of casting mold - Google Patents

Molding method of casting mold

Info

Publication number
JPS58145329A
JPS58145329A JP2918882A JP2918882A JPS58145329A JP S58145329 A JPS58145329 A JP S58145329A JP 2918882 A JP2918882 A JP 2918882A JP 2918882 A JP2918882 A JP 2918882A JP S58145329 A JPS58145329 A JP S58145329A
Authority
JP
Japan
Prior art keywords
mold
carbon dioxide
dioxide gas
compressed air
cover member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2918882A
Other languages
Japanese (ja)
Other versions
JPH0118822B2 (en
Inventor
Nagato Unosaki
鵜崎 永人
Shigeru Ito
滋 伊藤
Hisashi Harada
久 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Shinto Industrial Co Ltd
Original Assignee
Sintokogio Ltd
Shinto Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Shinto Kogyo KK filed Critical Sintokogio Ltd
Priority to JP2918882A priority Critical patent/JPS58145329A/en
Publication of JPS58145329A publication Critical patent/JPS58145329A/en
Publication of JPH0118822B2 publication Critical patent/JPH0118822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • B22C9/123Gas-hardening

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To dry and harden a casting mold quickly and firmly by permeating gaseous CO2 and high temp. air through the casting mold which is molded of molding sand with calcium hydroxide and an org. resin as binders. CONSTITUTION:An aq. soln. of 2wt% calcium hydroxide and 50wt% water soluble phenolic resin is added as a binder to molding sand at 4wt% thereof, and after the mixture is mulled, the mixture is pressurized and molded, thereby molding a green casting mold 16. The mold 16 which is held placed on a bottom mold is put into a cover member 17, and gaseous CO2 of 1.0kg/cm<2> pressure is supplied for 10sec at 20l/min rate through a supply pipe 20 for gaseous CO2 to harden the mold to about 7kg/cm<2> compressive strength. In succession, the compressed air heated to 120 deg.C is supplied for 30sec at 350l/min rate through a supply pipe 19 to permeate the air through the mold, whereby the firm casting mold having 35kg/cm<2> compressive strength is molded in a short time.

Description

【発明の詳細な説明】 本発明は、鋳型造型方法に係り、より詳細には主として
水酸化カルシウムと有機性樹脂を結合剤とする鋳物砂を
使用して成型した鋳型を、急速にかつ強固に乾燥硬化さ
せる鋳型造型方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold making method, and more specifically, a method for rapidly and firmly molding a mold using foundry sand containing mainly calcium hydroxide and an organic resin as a binder. The present invention relates to a method for making a mold by drying and hardening.

従来、珪砂に水酸化カルシウムと、有機性樹脂と、必要
に応じて水を添加混合してなる鋳物砂を用いて成形した
鋳型に炭酸ガスを吹き込んで鋳型を硬化させて抜型した
あと、1日程度放置して鋳型の強度を高める方法はライ
ム鋳型として知られている。゛ 一般に、この有機性樹脂としては、メチルセルロースや
カルボキシメチルセルロース等の水溶性のセルロール誘
導体、或いはアクリル酸エステルとアクリル酸アンモン
の共重合体、さらにはレゾールタイプの水溶性フェノー
ル樹脂が使用されている。また、最近、重合度の異なる
ポリビニルアルコールや、α−オレフィン無水マレイン
酸系重合体や、疎水性のフェノール樹脂のアルカリ水溶
液等が用いられている。
Conventionally, carbon dioxide gas is blown into a mold made by mixing silica sand with calcium hydroxide, an organic resin, and water as necessary, and after the mold is hardened and removed, the mold is molded for one day. The method of increasing the strength of the mold by leaving it for a while is known as lime molding. Generally, as this organic resin, water-soluble cellulose derivatives such as methyl cellulose and carboxymethyl cellulose, copolymers of acrylic ester and ammonium acrylate, and resol type water-soluble phenol resins are used. Recently, polyvinyl alcohols having different degrees of polymerization, α-olefin maleic anhydride polymers, alkaline aqueous solutions of hydrophobic phenolic resins, and the like have been used.

このようなライム鋳型は、CO2プロセス(珪酸ナトリ
ウムを添加混合した鋳物砂を使用して成形した鋳型にC
O2ガスを吹き込んで該鋳型を硬化造型する方法)によ
って造型した鋳型に比較して注湯後の鋳型の崩壊性が良
(、またシェルモールド法やコールドボックス法に比較
して造型時に有害ガス、悪臭ガスが発生しない、という
利点があるが、鋳型の強度を所定の硬度にまで高めるた
めには、前記したように、抜型後の鋳型を1日程度放置
するか、或いは、最近、技術公開されているように、1
〜2時間程度オーブン式の乾燥炉に入れるかのどちらか
であり、いずれにしても生産性が悪(実用的でなかった
This type of lime mold is produced using a CO2 process (a mold made using molding sand mixed with sodium silicate).
The mold disintegrates better after pouring compared to a mold made by a method of hardening and molding the mold by blowing in O2 gas (also, compared to the shell molding method or cold box method, there are no harmful gases or It has the advantage of not emitting foul-smelling gas, but in order to increase the strength of the mold to a predetermined hardness, as mentioned above, the mold must be left for about a day after being demolded, or it is necessary to use a technique that has recently been published. As shown, 1
Either the product must be placed in an oven-type drying oven for about 2 hours, and in either case, the productivity was poor (it was not practical).

本発明はこれらの問題点に鑑みて成されたものであって
、主として水酸化カルシウムと有機性樹脂を結合剤とす
る鋳物砂で成形した鋳型中に炭酸ガスと熱風を通気させ
ることにより、該鋳型を急速にかつ強固に乾燥硬化する
鋳型造型方法を提供することを目的とするものである。
The present invention has been made in view of these problems, and is made by blowing carbon dioxide gas and hot air into a mold made of foundry sand containing calcium hydroxide and an organic resin as binders. The object of the present invention is to provide a mold making method that rapidly and firmly dries and hardens a mold.

以下に、本発明の構成を実施例に基づき説明する。(1
)はベッド(2)上面に、所定間隔を設けてコラム(3
)を立設し、該コラム(3)の上端部を上部フレーム(
4)によって連結した門型状のフレームで、該ベッド(
2)の上面中央部には、クランプシリンダー(5)が上
向きに取付けてあって・そのピストンロッド(5a)の
先端には、昇降テーブル(6)が固着連結され該昇降テ
ーブル(6)上面には、内部に中空部(7)を備え、か
つ上面に該中空部(7)に連通して貫通孔(8)を穿設
すると共に一端側面に排気孔(9)を備えた排気台(1
0)が取付けられている。
The configuration of the present invention will be explained below based on examples. (1
) are placed on the top surface of the bed (2) with columns (3) at predetermined intervals.
) is erected, and the upper end of the column (3) is connected to the upper frame (
The bed (
2) A clamp cylinder (5) is mounted upward in the center of the upper surface, and an elevating table (6) is fixedly connected to the tip of the piston rod (5a). The exhaust stand (1) has a hollow part (7) inside, has a through hole (8) in the upper surface communicating with the hollow part (7), and has an exhaust hole (9) in one end side.
0) is installed.

該排気台(10)の上面には、中央部に貫通孔(11)
を穿ったパツキン(12)が該貫通孔(11)を排気台
(10)の貫通孔(8)に略一致させて置かれており、
さらにその上面には、下面に凹部(13)を備え、かつ
上面に該凹部(13)に連通して多数の通気孔(14)
を穿設した下型(15)が凹部(13)を貫通孔(8)
 (11)に位置させるとともに未硬化鋳型(16)を
模型上面に支持して載置されている。該未硬化鋳型(1
6)は、珪砂に主として水酸化カルシウムと有機性樹脂
と必要に応じて水を添加混合した鋳物砂から成っている
。(17)はフレーム(1)の上部フレーム(4)F面
に支持部材(18)を介して固設され、かつ下面を開「
1とした中空状のカバ一部材で、該カバ一部材(17)
の−側倒壁面には、内部中空部に連通して加熱圧縮空気
の供給管(19)と炭酸ガスの供給管(20)が接続し
てあって、該供給管(19)は開閉弁(21)を介して
加熱圧縮空気の貯留タンク(図示せず)に、また他方の
供給管(20)は開閉弁(22)を介して炭酸ガスの貯
留タンク(図示せず)に、それぞれ連通接続されている
。尚、(23)は先端を昇降テーブル(6)に固着連結
したガイドロッドで、ベッド(2)に取付けられた案内
筒(24)に摺動自在に嵌挿され、昇降テーブル(6)
の水平面内の回動を阻止できるようにしである。
The upper surface of the exhaust stand (10) has a through hole (11) in the center.
A gasket (12) with a hole is placed so that the through hole (11) substantially coincides with the through hole (8) of the exhaust stand (10),
Further, the upper surface has a recess (13) on the lower surface, and a large number of ventilation holes (14) on the upper surface communicating with the recess (13).
The lower die (15) with which the recess (13) is drilled connects the through hole (8) to the recess (13).
(11), and an uncured mold (16) is supported and placed on the upper surface of the model. The uncured mold (1
6) is made of foundry sand that is a mixture of silica sand, mainly calcium hydroxide, an organic resin, and water as necessary. (17) is fixed to the F side of the upper frame (4) of the frame (1) via a support member (18), and has an open bottom surface.
1, the hollow cover member (17)
A heated compressed air supply pipe (19) and a carbon dioxide gas supply pipe (20) are connected to the internal hollow part on the side tilted wall surface, and the supply pipe (19) is connected to an on-off valve ( 21) to a heated compressed air storage tank (not shown), and the other supply pipe (20) is connected to a carbon dioxide gas storage tank (not shown) via an on-off valve (22). has been done. In addition, (23) is a guide rod whose tip is fixedly connected to the lifting table (6), and is slidably inserted into the guide tube (24) attached to the bed (2), and is connected to the lifting table (6).
This is to prevent rotation in the horizontal plane.

このように構成されたものにおいて、下型(15)と上
型(図示せず)から成る鋳型箱に、珪砂に主として水酸
化カルシウムと有機性樹脂と必要に応じて水を添加混合
してなる鋳物砂を、ブローイング或いは手込め等の慣用
手段にて充填したあと、上型(図示せず)を取り除いて
、下型(15)に残された未硬化鋳型(16)を、下型
(15)に乗せたま一排気台(10)上面にパツキン(
12)を介して凹部(13)を貫通孔(8) (11)
に位置させて載置するとともに、クランプシリンダ(5
)の作動により、昇降テーブル(6)を上昇させて排気
台(10)上面をカバ一部材(17)の下端面にパツキ
ン(12)を介して当接させて未硬化鋳型(16)を支
持した下型(15)をカバ一部材(17)で気密状に被
ったのち、炭酸ガス用の開閉弁(22)を開いて、気密
状に閉鎖されたカバ一部材(17)内に炭酸ガスを供給
すると、この炭酸ガスは開放された未硬化鋳型(16)
の露出表面から入り、該鋳型(16)中を通って通気孔
(14) 、凹部(13)及び貫通孔(11) (8)
を経て排気孔(9)から排出される。
In this structure, a mold box consisting of a lower mold (15) and an upper mold (not shown) contains a mixture of silica sand, mainly calcium hydroxide, an organic resin, and water as necessary. After filling molding sand with conventional means such as blowing or hand filling, the upper mold (not shown) is removed and the unhardened mold (16) remaining in the lower mold (15) is filled with molding sand. ) on top of the exhaust stand (10).
12) through the recess (13) through the through hole (8) (11)
At the same time, place the clamp cylinder (5
), the lifting table (6) is raised and the upper surface of the exhaust platform (10) is brought into contact with the lower end surface of the cover member (17) via the packing (12) to support the uncured mold (16). After covering the lower mold (15) airtightly with the cover member (17), the on-off valve (22) for carbon dioxide gas is opened to release carbon dioxide gas into the airtightly closed cover member (17). When this carbon dioxide gas is supplied, the uncured mold (16)
vents (14), recesses (13) and through holes (11) (8) through the exposed surface of the mold (16).
It is discharged through the exhaust hole (9).

この際、炭酸ガスは鋳型(16)内の水酸化カルシウム
と反応をして該鋳型(16)を硬化させる。次いで、炭
酸ガス用の開閉弁(22)を閉じたあと、加熱圧縮空気
用の開閉弁(21)を開いて、加熱圧縮空気をカバ一部
材(17)内に供給すると、加熱圧縮空気は前記と同様
に該鋳型(16)中を通って排気孔(9)から排出され
る。ここで、この未硬化鋳型(16)は急速に加熱され
るとともに、該鋳型(16)中の水分は迅速に蒸発せし
められ、その結果、結合剤としての有機性樹脂の重合或
いは縮合と、該鋳型(16)の脱水がほとんど同時に進
行し、下型(15)上面の未硬化鋳型(16)は、前記
水酸化カルシウムと炭酸ガスとの反応と相まって、極め
て短時間のうちに強固lこ硬化されるものである。
At this time, the carbon dioxide gas reacts with calcium hydroxide in the mold (16) to harden the mold (16). Next, after closing the on-off valve (22) for carbon dioxide gas, the on-off valve (21) for heated compressed air is opened to supply heated compressed air into the cover member (17). Similarly, it passes through the mold (16) and is discharged from the exhaust hole (9). Here, the uncured mold (16) is rapidly heated and the water in the mold (16) is rapidly evaporated, resulting in polymerization or condensation of the organic resin as a binder and The dehydration of the mold (16) proceeds almost simultaneously, and the unhardened mold (16) on the upper surface of the lower mold (15), combined with the reaction between the calcium hydroxide and carbon dioxide gas, becomes solidly hardened in an extremely short period of time. It is something that will be done.

尚、前記実施例においては、未硬化鋳型(16)中に炭
酸ガスを通気さすたあと、加熱圧縮空気を通気させるよ
うにしたが、炭酸ガスと加熱圧縮空気を混合しながら同
時に通気させるようにしてもよ0゜ 次に、上記方法を用いて行った実施例を下記に示す。
In the above embodiment, heated compressed air was vented after carbon dioxide gas was vented into the uncured mold (16), but carbon dioxide gas and heated compressed air were mixed and vented at the same time. Next, examples performed using the above method are shown below.

(実施例1) 珪砂ニ、水酸化カルシウムを2重量%と、水溶性フェノ
ール樹脂の50重量%水溶液を4型破%と、をそれぞれ
添加混合した鋳物砂を、上型と複数個の通気孔(14)
を備えた下型(15)とからなる円柱状を成す合せ模型
のキャビティ部に充填後、上型を取り除いて、下型(1
5)上面に残された未硬化鋳型の表面に圧力1.0’j
%の炭酸ガスを20−の割合で10秒間作用させたとこ
ろ該鋳型の抗圧力は7へとなった。次いで、この鋳型に
120°Cに加熱された圧力1・Ok楡の加熱圧縮空気
を350−の割合で30 秒間作用させたところ鋳型の
抗圧力は35へになった。
(Example 1) Foundry sand prepared by adding and mixing silica sand, 2% by weight of calcium hydroxide, and 4% by weight of a 50% by weight aqueous solution of water-soluble phenolic resin was placed in an upper mold and a plurality of ventilation holes. (14)
After filling the cavity of a cylindrical composite model consisting of a lower mold (15) with
5) Apply a pressure of 1.0'j to the surface of the unhardened mold left on the top surface.
When carbon dioxide gas was applied at a rate of 20% for 10 seconds, the resistive pressure of the mold became 7. Next, heated compressed air heated to 120 DEG C. and a pressure of 1.degree. OK was applied to this mold at a rate of 350 DEG C. for 30 seconds, and the mold's resistive pressure became 35.

(実施例2) 実施例1と同じ配合の鋳物砂を、前記模型のキャビティ
部に充填後、上型を取り除いて、複数個の通気孔(14
)を備えた下型(15)上面に残された未硬化鋳型(1
6)の表面に、圧力1.0 vAの炭酸ガスを10ζ寓
の割合で、また120°Cに加熱された圧力になった。
(Example 2) After filling the cavity of the model with molding sand having the same composition as in Example 1, the upper mold was removed and a plurality of ventilation holes (14
) left on the upper surface of the lower mold (15) with the uncured mold (1
6) Carbon dioxide gas at a pressure of 1.0 vA was applied to the surface at a rate of 10 μm, and the pressure was heated to 120°C.

次に、模型形状が複雑で、上型を取り除くに際して、未
硬化鋳型を壊す心配がある場合には、上型を取り除く前
に、予め炭酸ガスを通気させて該鋳型を予備硬化してお
くと都合がよい。
Next, if the shape of the model is complex and there is a risk of breaking the unhardened mold when removing the upper mold, it is recommended to pre-cure the mold by aerating carbon dioxide gas before removing the upper mold. convenient.

即ち、前記実施例と同様に、上型と下型(15)からな
る鋳型箱のキャビティ内に、前記実施例と同じ配合の鋳
物砂を充填するとともに、該キャビティ内に炭酸ガスを
吹込んで、複雑な形状の鋳型でも抜型できるように該鋳
物砂を予備硬化したあと、上型(図示せず)を取り除い
て、下型(15)に残された予備硬化鋳型(16)を、
クランプシリンダ(5)の作動により、昇降テーブル(
6)を上昇させてF型(15)とともに、カバ一部材(
17)で気密状に被ったのち、加熱圧縮空気用の開閉弁
(21)を開いて、加熱圧縮空気をカバ一部材(17)
内に供給すると、加熱圧縮空気は開放された予備硬化鋳
型(16)の露出表面から入り、該鋳型(16)中を通
って通気孔(14) 、凹部(13)及び貫通孔(11
) (8)を経て排気孔(9)から排出される。
That is, as in the above embodiment, the cavity of the mold box consisting of the upper mold and the lower mold (15) was filled with molding sand having the same composition as in the above embodiment, and carbon dioxide gas was blown into the cavity. After pre-hardening the foundry sand so that it can be removed from molds with complex shapes, the upper mold (not shown) is removed and the pre-hardened mold (16) remaining in the lower mold (15) is
By the operation of the clamp cylinder (5), the lifting table (
6) and lift the cover part (15) together with the F type (15).
After covering the cover member (17) in an airtight manner, open the on-off valve (21) for the heated compressed air and cover the heated compressed air with the cover member (17).
When supplied into the mold, heated compressed air enters through the exposed surface of the open pre-cured mold (16) and passes through the mold (16) through the vents (14), recesses (13) and through holes (11).
) (8) and is discharged from the exhaust hole (9).

ここで、この予備硬化鋳型(16)は急速に加熱される
とともに、該鋳型(16)中の水分は迅速に蒸発せしめ
られ、その結果結合剤である有機性樹脂のポ合、或いは
縮合と、該鋳型(16)の脱水がほとんど同時に進行し
、下型(15)上面の予備硬化鋳型(16)は、水酸化
カルシウムと炭酸ガスの反応と相まって、極めて短時間
のうちに強固に硬化されるものである。なお、この際、
加熱圧縮空気とともに炭酸ガスをカバ一部材(17)内
に供給すると、水酸化カルシウムとの反応が一層確実に
なる。
Here, the pre-cured mold (16) is rapidly heated and the water in the mold (16) is rapidly evaporated, resulting in polymerization or condensation of the organic resin as a binder. Dehydration of the mold (16) proceeds almost simultaneously, and the pre-hardened mold (16) on the upper surface of the lower mold (15) is strongly hardened in an extremely short time due to the reaction between calcium hydroxide and carbon dioxide gas. It is something. In addition, at this time,
When carbon dioxide gas is supplied into the cover member (17) together with heated compressed air, the reaction with calcium hydroxide becomes more reliable.

次に、上記した如く、予備硬化後、加熱圧縮空気を通気
させて予備硬化鋳型を硬化させる方法を用いて行った実
施例を下記に示す。
Next, an example will be shown below in which the method of curing the pre-cured mold by passing heated compressed air after pre-curing as described above is used.

(実施例3) 珪砂に、水酸化カルシウムを2重量%と、水溶性フェノ
ール樹脂の50重量%水溶液を4重量%と、をそれぞれ
添加混合した鋳物砂を、上型と複数個の通気孔(14)
を備えた下型(15)とからなる比較的複雑な合せ模型
のキャビティ部に充填後、該キャビティ内に圧力1.0
 ”Q4の炭酸ガスを20福の割合で10秒間作用させ
たところ、該キャピテイ内の鋳物砂は抗圧力5への予備
硬化鋳型になった。
(Example 3) Foundry sand prepared by adding and mixing 2% by weight of calcium hydroxide and 4% by weight of a 50% by weight aqueous solution of water-soluble phenolic resin to silica sand was mixed with an upper mold and a plurality of ventilation holes ( 14)
After filling the cavity of a relatively complicated composite model consisting of a lower mold (15) with a lower mold (15), a pressure of 1.0
``When Q4 carbon dioxide gas was applied at a rate of 20% for 10 seconds, the molding sand in the chamber became a pre-hardened mold with a resistance pressure of 5.

次いで、上型を取り除いて、下型(15)上面に残され
た予備硬化鋳型の表面に120°Cに加熱された圧力1
.0〜の加熱圧縮空気を350−の割合で30秒間作用
させたところ、該鋳型の抗圧力は35に陥になった。
Next, the upper mold was removed, and the surface of the pre-cured mold remaining on the upper surface of the lower mold (15) was heated to 120°C under pressure 1.
.. When heated compressed air of 0 to 350 was applied for 30 seconds, the mold had a resistive pressure of 35.

(実施例4) 実施例3と同じ配合の鋳物砂を、前記合せ模型のキャビ
ティ部に充填後、該キャビティ内に圧力1.0 ’q、
4の炭酸ガスを2024□の割合で10秒間作用させて
該キャビティ内の鋳物砂を抗圧力5に1に予備硬化した
あと、上型を取り除いて、下型(15)上面の予備硬化
された予備硬化鋳型の表面に、圧力1.0’!l!p(
7) 炭酸力X ヲ10 fl/、、(D 割fr ”
’Q、t r: 120”Cに加熱された圧力1.0に
7の加熱圧縮空気を350−の割合で同時に30秒間作
用させたところ、該鋳型の抗圧力は39 k7になった
(Example 4) After filling the cavity of the composite model with molding sand having the same composition as in Example 3, a pressure of 1.0'q,
After pre-hardening the molding sand in the cavity to a resistance pressure of 5 to 1 by applying carbon dioxide gas of 4 at a rate of 2024 □ for 10 seconds, the upper mold was removed and the upper surface of the lower mold (15) was pre-hardened. Pressure 1.0' on the surface of the pre-cured mold! l! p(
7) Carbonic power
'Q, t r: When heated compressed air heated to 120''C at a pressure of 1.0 and 7 was simultaneously applied at a ratio of 350- for 30 seconds, the resistive pressure of the mold became 39 k7.

なお、従来の如く、鋳型に加熱圧縮空気を作用させない
場合の参考例を下記に示す。
A reference example in which heated compressed air is not applied to the mold as in the prior art is shown below.

(参考例1)   ′ 前記実施例と同じ配合の鋳物砂を、合せ模型のキャピテ
イ部に充填後、該キャビティ内に圧力1.0kVの炭酸
ガスを20−の割合で10秒間作用させたところ、該キ
ャビティ内の鋳物砂は抗圧力5への予備硬化状態の鋳型
になった。
(Reference Example 1) 'After filling the cavity of the composite model with molding sand having the same composition as in the above example, carbon dioxide gas at a pressure of 1.0 kV was applied to the cavity at a rate of 20-20 for 10 seconds. The molding sand in the cavity became the mold in a pre-hardened state to a counter pressure of 5.

この予備硬化鋳型を抜型後、常温で室内に放置して自然
に硬化させたところ、24時間後の抗圧力は22へとな
り、48時間後の抗圧力は34へとなった。
After cutting out this pre-cured mold, it was left indoors at room temperature to naturally harden, and the resistance pressure after 24 hours was 22, and after 48 hours it was 34.

尚、前記実施例においては、未硬化若しくは予備硬化鋳
型(16)を支持した下型(15)を昇降テーブル(6
)上面に排気台(lO)  を介して載置した構成とし
たが、昇降テーブル(6)に、その上面から外部に連通
ずる排気孔を穿ち、昇降テーブル(6)上面に未硬化若
しくは予備硬化鋳型(16)を支持したF型(15)を
該排気孔に四部(13)を位置させて直接乗せるように
してもよい。また、前記実施例においては、下型(15
)に通気孔(14)を設ける構成としが、上型に通気孔
を設けて、鋳物砂の充填後、上型をF方にして上載を取
り除くようにしてもよい。
In the above embodiment, the lower mold (15) supporting the uncured or pre-cured mold (16) is placed on the lifting table (6).
) The lifting table (6) has an exhaust hole that communicates with the outside from the top surface, and uncured or pre-cured The F-type (15) supporting the mold (16) may be placed directly on the exhaust hole with the four parts (13) positioned therein. Further, in the above embodiment, the lower mold (15
) is provided with a ventilation hole (14), but it is also possible to provide a ventilation hole in the upper mold and, after filling with molding sand, turn the upper mold to the F direction and remove the overlying material.

さらにまた、前記実施例においては、水平割の合せ模型
に鋳物砂の吹込み充填を行っているが、垂直割の合せ模
型に鋳物砂の吹込み充填を行い、その後談合せ模型を横
転して上になった上型模型を取り除(ようにしてもよい
Furthermore, in the above embodiment, the horizontally split model was blown and filled with molding sand, but the vertically split model was blown and filled with molding sand, and then the rigged model was turned over. You can also remove the upper model that is on top.

本発明は以上の説明によって明らかなように、珪砂に水
酸化カルシウムと有機性樹脂と必要に応じて水を添□加
混合してなる鋳物砂を用いて成型した未硬化若しくは予
備硬化鋳型に炭酸ガスとともに加熱圧縮空気を通気させ
るようにしたので、強固な鋳型を迅速に得ることができ
、生産性の向上に甚大に貢献するなど、優れた効果を有
し、この種の業界に寄与する効果は極めて著大である。
As is clear from the above description, the present invention applies carbonate to an uncured or pre-cured mold molded using foundry sand made by adding and mixing calcium hydroxide, an organic resin, and water as necessary to silica sand. Since heated compressed air is vented together with the gas, strong molds can be quickly obtained, which greatly contributes to improved productivity, which has excellent effects and is an effect that will contribute to this type of industry. is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す一部切欠正面図である。 (14) :通気孔    (15) :下型(16)
 :未硬化若しくは予備硬化鋳型(17) :カバ一部
FIG. 1 is a partially cutaway front view showing an embodiment of the present invention. (14): Ventilation hole (15): Lower mold (16)
: Unhardened or pre-hardened mold (17) : Cover part

Claims (1)

【特許請求の範囲】 1、少な(とも一方の横型がその内面と外面とを連通ず
る通気孔を備えた合せ模型箱に、珪砂に主として水酸化
カルシウムと有機性樹脂と必要に応じて水を添加混合し
てなる鋳物砂を充填して未硬化鋳型を成型する工程と;
該合せ模型箱の他方の模型を取除き、該成型された未硬
化鋳型を該一方の模型の前記内面上に乗せて支持する工
程と;該内面上に乗せて支持された未硬化鋳型を覆って
カバ一部材を被せる工程と;該カバ一部材内に炭酸ガス
と加熱圧縮空気を交互に、或いは同時に導入し、該炭酸
ガス又は/及び加熱圧縮空気を該内面上に乗せて支持さ
れた未硬化鋳型の露出表面から該鋳型中を貫通させて前
記通、気孔を介して該カバ一部材外に排出させて該未硬
化鋳型を硬化させる工程と;を具備する鋳型造型方法。 2、少なくとも一方の模型がその内面と外面とを連通す
る通気孔を備えた合せ模型箱に、珪砂に主として水酸化
カルシウムと有機性樹脂と必要に応じて水を添加混合し
てなる鋳物砂を充填するとともに該合せ模型箱内の鋳物
砂中に炭酸ガスを通気して該鋳物砂を予備硬化して予備
硬化鋳型を成型する工程と;該合せ模型箱の他方の模型
を取除き、該成型された予備硬化鋳型を該一方の模型の
前記内面上に乗せて支持する工程と;該内面上に乗せて
支持された予備硬化鋳型を覆ってカバ一部材を被せる工
程と:該カバ一部材内に炭酸ガスと加熱圧縮空気を交互
に、或いは同時に導入し、該炭酸ガス又は/及び加熱圧
縮空気を該内面上に乗せて支持された予備硬化鋳型の露
出表面から該鋳型中を貫通させて前記通気孔を介して該
カバ一部材外に排出させて該予備硬化鋳型を強固に硬化
させる工程と;を具備する鋳型造型方法。
[Scope of Claims] 1. Silica sand, mainly calcium hydroxide, an organic resin, and water as needed, are placed in a combined model box with a small amount of ventilation holes (both sides of which are provided with ventilation holes that communicate the inner and outer surfaces of the box). a step of filling an uncured mold with foundry sand formed by adding and mixing;
removing the other model of the combined model box and placing and supporting the molded uncured mold on the inner surface of the one model; covering the uncured mold supported on the inner surface; a step of introducing carbon dioxide gas and heated compressed air into the cover member alternately or simultaneously; placing the carbon dioxide gas and/or heated compressed air on the inner surface of the supported base; A method for making a mold, comprising: penetrating the inside of the mold from an exposed surface of the hardened mold and discharging the cover member to the outside of the cover member through the holes and pores to harden the unhardened mold. 2. In a combined model box in which at least one of the models is equipped with a ventilation hole that communicates its inner and outer surfaces, molding sand made by mixing silica sand with mainly calcium hydroxide, an organic resin, and water as necessary is added. a step of filling the molding sand in the combined model box and pre-hardening the molding sand by passing carbon dioxide gas into the molding sand to form a pre-hardened mold; removing the other model in the combined model box and molding the molding sand; placing and supporting the pre-cured mold on the inner surface of the one model; placing a cover member over the pre-curing mold supported on the inner surface; Carbon dioxide gas and heated compressed air are introduced alternately or simultaneously into the mold, and the carbon dioxide gas and/or heated compressed air is passed through the mold from the exposed surface of the pre-cured mold supported on the inner surface of the mold. A mold making method comprising: discharging the cover member to the outside through a ventilation hole to firmly harden the pre-cured mold.
JP2918882A 1982-02-24 1982-02-24 Molding method of casting mold Granted JPS58145329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2918882A JPS58145329A (en) 1982-02-24 1982-02-24 Molding method of casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2918882A JPS58145329A (en) 1982-02-24 1982-02-24 Molding method of casting mold

Publications (2)

Publication Number Publication Date
JPS58145329A true JPS58145329A (en) 1983-08-30
JPH0118822B2 JPH0118822B2 (en) 1989-04-07

Family

ID=12269221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2918882A Granted JPS58145329A (en) 1982-02-24 1982-02-24 Molding method of casting mold

Country Status (1)

Country Link
JP (1) JPS58145329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244502A (en) * 2012-05-24 2013-12-09 Asahi Organic Chemicals Industry Co Ltd Mold manufacturing device, manufacturing method of mold, and jacket for mold manufacturing device
WO2017152589A1 (en) * 2016-03-08 2017-09-14 沈阳汇亚通铸造材料有限责任公司 Method for producing mould and core through curing sodium silicate sand for casting by blowing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124128U (en) * 1991-04-19 1992-11-11 陳 森栄 Prosthetic leg center of gravity adjustment device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937610A (en) * 1972-08-09 1974-04-08
JPS517456A (en) * 1974-07-06 1976-01-21 Sanyo Electric Co Henatsukino kafukakenshutsusochi
JPS5354493U (en) * 1976-10-12 1978-05-10

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937610A (en) * 1972-08-09 1974-04-08
JPS517456A (en) * 1974-07-06 1976-01-21 Sanyo Electric Co Henatsukino kafukakenshutsusochi
JPS5354493U (en) * 1976-10-12 1978-05-10

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244502A (en) * 2012-05-24 2013-12-09 Asahi Organic Chemicals Industry Co Ltd Mold manufacturing device, manufacturing method of mold, and jacket for mold manufacturing device
WO2017152589A1 (en) * 2016-03-08 2017-09-14 沈阳汇亚通铸造材料有限责任公司 Method for producing mould and core through curing sodium silicate sand for casting by blowing

Also Published As

Publication number Publication date
JPH0118822B2 (en) 1989-04-07

Similar Documents

Publication Publication Date Title
US3059297A (en) Foundry molds and cores and process for making same
JPS58145329A (en) Molding method of casting mold
JPH05123825A (en) Method for producing sand mold and core for casting
US3795726A (en) Reduction of residual noxious gases in gas hardened molds and cores
JP4485343B2 (en) Method and apparatus for forming water-soluble core
US4196768A (en) Casting mold manufacturing process and apparatus therefor
JP2000190049A (en) Manufacture of mold
JPS5877739A (en) Molding method for casting mold
RU2486987C2 (en) Method of combined moulds from liquid-glass self-hardening mixes
JPS6034435Y2 (en) Drying and curing equipment for water-soluble glue molds
US7073557B2 (en) Method of drying a sand mold using a vacuum
JP4397040B2 (en) Core material
JPS6120384B2 (en)
JPS62176634A (en) Molding method for shell core
JP2004174598A (en) Molding sand for water-soluble core and method for making water-soluble core and water-soluble core
JPS59107746A (en) Forming device for vertically split casting mold by gas mold
FI72308B (en) SAETT ATT SNABBHAERDA BETONG
JPS59130645A (en) Mold forming method
JPS59153545A (en) Molding process of casting mold
JP6728550B2 (en) Method for removing mold remaining in casting
JP3460406B2 (en) Casting core, method of manufacturing casting core, and method of treating cast product
JPH0229003B2 (en)
SU522894A1 (en) Method of making coated casting molds
RU2017564C1 (en) Method for fabricating of casting molds and cores of molten glass compound
SU293418A1 (en) Method of manufacturing cores and moulds