JPS58145291A - Constituting method of stereoscopic picture - Google Patents

Constituting method of stereoscopic picture

Info

Publication number
JPS58145291A
JPS58145291A JP57027425A JP2742582A JPS58145291A JP S58145291 A JPS58145291 A JP S58145291A JP 57027425 A JP57027425 A JP 57027425A JP 2742582 A JP2742582 A JP 2742582A JP S58145291 A JPS58145291 A JP S58145291A
Authority
JP
Japan
Prior art keywords
screen
image
stereoscopic
forming
picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57027425A
Other languages
Japanese (ja)
Inventor
Akio Kumada
熊田 明生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57027425A priority Critical patent/JPS58145291A/en
Publication of JPS58145291A publication Critical patent/JPS58145291A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof

Abstract

PURPOSE:To form a stereoscopic image easily, by discriminating a long distance back and forth from small projection and recession in synthesizing a reproducing image and forming a stereoscopic image with both the left and right systems of substantial average original picture such as animation graphic display. CONSTITUTION:In synthesizing the stereoscopic picture by means of animation, two kinds of right and left original pictures 21, 22 corresponding to right and left images 16, 17, are prepared and original pictures 21, 22 are displayed on a monitor TV15 via right and left cameras 11 and 12. The reproducing picture is formed by shifting the right image 16 to the left side of the left image 17 in forming the stereoscopic pictur in front of the screen and by shifting the right image to the right side of the left image 17 in forming the image at the back of the screen. In taking the height of the screen of a receiver for the image forming space as H, the space is taken in a range surrounded with straight lines including three surfaces of a long surface of about 0.39HX0.52H at about 2.7H in front of the screen along the line linking the screen and the observer and a long surface of about 2.8HX3.7H at about 13H at the back of the screen, and the screen itself, allowing to form the stereoscopic picture effectively.

Description

【発明の詳細な説明】 本発明は左右に離れた2つの位置から視た向傷を同一画
面上に再生し、観察者の右眼には右位置から視た後が、
左眼には左位置から視た儂が、入力するようにした立体
テレビ装置における再生儂を合成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention reproduces on the same screen the visual damage seen from two left and right positions, and the viewer's right eye sees the image from the right position.
The present invention relates to a method of synthesizing a reproduced image in a three-dimensional television apparatus in which the image viewed from the left position is input to the left eye.

我々が物を立体的に視れるのは左右両眼のお陰であるこ
とは良く知られている。この原理を応用した立体画像の
観察手段はいろいろある。最近テレビジM〕などにより
立体画像を観察する立体テレビが開発されている。−例
として、左右2台のカメラによる撮儂を受儂機のブラウ
ン管上にフィールド順次に、交互に再生し、奇数フィー
ルドと偶数フィールドとが別々の眼に入力するように工
夫した立体視めがねを用いるものがある。立体視めがね
には透明セラ電ツクなどの電気光学シャッターが利用さ
れている。
It is well known that we are able to see things in three dimensions thanks to our left and right eyes. There are various means for observing stereoscopic images that apply this principle. Recently, 3D televisions for viewing 3D images have been developed by TV M and others. - As an example, we used stereoscopic glasses that were designed so that images taken by two left and right cameras were played back alternately field by field on a receiver's cathode ray tube, and the odd and even fields were input to separate eyes. There is something to use. Stereoscopic glasses use electro-optical shutters such as transparent ceramic batteries.

最近では、コンピュータによるグラフィックディスプレ
イ技術が進歩したので、動画立体グラフィックディスプ
レイも可能となつ九。コンビュ−タによるグラフィック
ディスプレイはデザイン。
Recently, advances in computer graphics display technology have made it possible to display moving 3D graphics. Graphic display by computer is designed.

設計、ゲームマシンなどの分野で活用されている。It is used in fields such as design and gaming machines.

一方、テレビ漫画の分野では、アニメーションが人気を
集めており、立体アニメーションの出現も轟然考えられ
るようになった。
On the other hand, in the field of TV comics, animation is gaining popularity, and the emergence of 3D animation is now being considered.

ところで、これら従来の立体テレビジョン1倫に、受倫
機の画面から観察者に向って面憎が飛び出して見るが、
画面の央への拡がりがない。すなわち、再生後は画面と
観察者とによって挾まれた空間のみに再現されるのが普
通である。しかも、観察者から一番遠くにある筈の物体
が、一番ピントが合つ友鮮明な状態で観察でき、不自然
である。
By the way, when you watch these traditional 3D televisions, you can see a lot of hatred jumping out at the viewer from the screen of the machine.
There is no spread to the center of the screen. In other words, after reproduction, the image is normally reproduced only in the space between the screen and the viewer. Moreover, the object that is supposed to be the farthest from the viewer can be observed in the clearest and most in-focus state, which is unnatural.

無限遠方にある物体に、画面の奥に遠ざかってぼやけて
見え、また観察者に近すぎる物体も1手前にぼやけて見
えるのが自然である。そして、カメラが捕えた筈の物体
だけが1画面の位置に鮮明に再現されてこそ自然である
It is natural for objects that are at an infinite distance to appear blurred and receding into the background of the screen, and objects that are too close to the viewer to appear blurred and moved one step closer to the viewer. It is only natural that only the object that the camera was supposed to capture is clearly reproduced in one screen.

本発明の目的は従来技術の欠点を打破し、立体テレビの
再生面憎を受儂機の画面を中心に1手前側と奥行きの深
い彼方の両側に広げると同時に、画面より前方に、ある
いは後方に遠ざかるにつれて%偉がぼやけて吃え、丁度
画面の位置に再現した儂だけが鮮明に晃える画情再生の
技術を提供することにある。
The purpose of the present invention is to overcome the drawbacks of the prior art, and to expand the playback surface of a 3D television to the front side and both sides of the receiver's screen at the center, as well as to the front and back of the screen. Our goal is to provide a technique for reproducing the image in which the image becomes blurred and stutters as you move away from the image, and only the image that appears exactly at the position on the screen shines clearly.

立体テレビにおける2台の撮倫カメラのなす角は、我々
の両眼と物体のなす角に等しいとき、再生儂が自然に見
える。すなわち、あたかも本物の物体が画面の位置にあ
るような再生f象を得るには次の関係が要求される。ま
ず、2台のカメラの間隔t、と2台のカメラと物体との
距1lIl!d、から、t。
When the angle between the two cameras on a 3D TV is equal to the angle between our eyes and the object, the reproduced image will look natural. In other words, the following relationship is required to obtain a reproduced image as if a real object were located at the position on the screen. First, the distance t between the two cameras and the distance 1lIl between the two cameras and the object! d, from, t.

2台のカメラのなす角度θ、ヰ□で懺わされd。The angle θ formed by the two cameras is shown by d.

る。カメラの位置に人間がいるとすると、約701離れ
ている両眼(両眼の間隔をt、とすると、普通1.中7
0mである。)と物体のなす角θ。
Ru. Assuming that there is a person at the camera position, both eyes are approximately 701 points apart (if the distance between the eyes is t, then the average distance is 1.
It is 0m. ) and the angle θ between the object.

中−2,=70である。ここで、d、は両眼とd、  
   d。
Medium-2, = 70. Here, d is both eyes and d,
d.

物体との距離である。テレビカメラのなす角度θ、がθ
、に等しいとき、撮影された儂は、我々の眼で眺めたよ
う′に見える。
It is the distance to the object. The angle θ made by the TV camera is θ
When , the image of me appears as seen with our eyes.

しかし、一般にテレビカメラは大きいので、t、を70
■にするのは困難であり、もつと大きくなる。この場合
、自然な備を得る条件はd、=割合で、物体から離れた
位置から撮儂することになる。このとき、物体が遠ざか
って、小さくなるので、その分だけズームアツプして拡
大すれば良い。
However, since television cameras are generally large, t is 70
■ It is difficult to reduce the size, and the larger the size becomes. In this case, the condition for obtaining natural preparation is d = ratio, and the photograph is taken from a position far away from the object. At this time, the object moves away and becomes smaller, so all you have to do is zoom up and enlarge it by that amount.

このようにして、我々がカメラの位置から物体を眺めた
ように撮影した儂を受僧機で再生することを考えてみよ
う。観察者と受儂機の距離をD、受儂機の画面の高さを
Hとすると、明視距離D0はDo=7Hとされている。
In this way, let's consider using a receiver to play back the image of me that we have photographed as if we were looking at an object from the position of the camera. When the distance between the observer and the receiver is D, and the height of the screen of the receiver is H, the clear viewing distance D0 is Do=7H.

20吋テレビの場合は2,100■離れて視るのが正常
な見方ということになる。さて、立体テレビの左右僧は
、一般に左右にずれており、このずれに比例した分だけ
再生儂が画面からとび出して見える。つまり、ずれが無
く、一致したl1i(#H受像画面の位置に再生され、
ずれた僧は、ずれに比例した分だけ画面の前に突き出九
借として認識される。つまりずれが大きい程、余計画面
前方にとび出して見えることになる。
In the case of a 20-inch TV, the normal viewing distance is 2,100 cm. Now, the left and right sides of a 3D TV are generally shifted left and right, and the reproduced image appears to protrude from the screen by an amount proportional to this shift. In other words, there is no deviation, the image is reproduced at the position of the matching l1i (#H receiving screen,
A monk who deviates is recognized as a nine-borrow who protrudes in front of the screen by an amount proportional to the deviation. In other words, the larger the deviation, the more the image appears to protrude to the front of the extra plane.

このずれの量が大きくなりすぎると、脳での立体f象と
しての結儂が不能となり鮮明は面憎として認識できなく
なる。立体イ象の結儂が可能なずれの範囲は個人差があ
り、訓練によっても限界を広げ得るとされているが、一
般に0.15H程度と言われている。
If the amount of this shift becomes too large, it becomes impossible for the brain to form a three-dimensional f-image, and it becomes impossible to perceive the image clearly as a nuisance. The range of deviation within which a three-dimensional image can be formed differs from person to person, and it is said that the limit can be expanded through training, but it is generally said to be around 0.15H.

20吋大のテレビ受僧機(H=300m)を明視距l1
11!(D、 =2,100■)だけ離れて観察すると
きのずれの範囲は45諺となる。すなわち第1図(a)
に示す通り右g11は左側へ、左イ象2に右側へ、それ
ぞれ225■づつずれる。これを観察した場合の、立体
13は画面10(7)前7ii約f=2.739H=8
20■の位置に結儂する。
Clear viewing distance l1 for a 20-inch TV receiver (H=300m)
11! When observed from a distance of (D, = 2,100 ■), the range of deviation is 45 words. That is, Fig. 1(a)
As shown in , the right g11 is shifted to the left, and the left g11 is shifted to the right by 225 cm. When observing this, the solid 13 is about 7ii in front of the screen 10 (7) f = 2.739H = 8
It concludes at the position of 20■.

また第1図(b)に示すようにずれの無い#14は画面
の場所に納置されるので画面前方に納置されるべき再生
儂のずれはすべて古傷は左側にずれ、左像は右側にずれ
ている。すなわち古傷を左側へ、左像を右側にずらすと
立体倫は画面から前方にとび出して見えるところで、こ
れとは反対に古傷を右側へ、左像を左側へずらすと、立
体儂4は画゛面の後方に結f象する。このとき古傷5と
古傷6のずれの範囲は45■であるから、装置位置4の
限界は画面後方b=12,6H=3,780■となる。
In addition, as shown in Figure 1 (b), #14 with no deviation is placed in the position of the screen, so all the deviations of the reproduced image that should be placed in front of the screen are caused by the old damage being shifted to the left, and the left image being placed on the right side. It's off. In other words, if you shift the old wound to the left and the left image to the right, the 3D lens will appear to jump out from the screen.On the other hand, if you shift the old wound to the right and the left image to the left, the 3D image will appear as if it were 4. An image appears behind the surface. At this time, since the range of deviation between old scratch 5 and old scratch 6 is 45 square meters, the limit of device position 4 is rearward of the screen b=12,6H=3,780 square.

すなわち装置可能な空間は画面前方2.74Hの位置で
約0.39 HX O,52Hの横長炉形面と画面およ
び画面後方12.6HO位置で約Z8HX3.73Hの
横長矩形面の三面を含む直線で囲まれた範囲である。
In other words, the available space for the device is a straight line that includes three sides: an oblong furnace-shaped surface of approximately 0.39 HX O, 52 H at a position of 2.74 H in front of the screen, and an oblong rectangular surface of approximately Z8 H x 3.73 H at a position of 12.6 HO behind the screen. This is the range surrounded by .

この考察によれば、20吋テレビH=300mで結イ象
可能な空間は、面憎1万2..74H=820簡の位置
で、幅0.52H=208簡、高さ0.39”  H=
117+wの矩形面と1画面(400+wX300■)
および、画面後方I Z6H=ミ786■ノ位置で、幅
3.73H=1,120.aiiさ2.8H=840m
の大きさの面とを含む空間である。この空間からはみ出
たIIは軸重され難くぼやけて見える。したがって、従
来の立体テレビ再生債が結イ象可能としていた画面前方
の空間だけでなく、画面後方に前方よりも約4.6倍強
の広い結儂空間が利用可能で桑り、立体像の奥行きが従
来よりも遥かに奥深く、広がった儂の軸重が可能となる
According to this consideration, the space that can be visualized with a 20-inch TV set at 300 meters is 12,000 meters long. .. At the position of 74H = 820cm, width 0.52H = 208cm, height 0.39" H =
117+w rectangular surface and 1 screen (400+wX300■)
And, at the rear of the screen IZ6H=786■, the width is 3.73H=1,120. aii Sa2.8H=840m
It is a space containing a surface of size . II, which protrudes from this space, is difficult to bear the weight of the axle and appears blurry. Therefore, in addition to the space in front of the screen that was possible with conventional 3D TV recycling bonds, a space approximately 4.6 times larger than the front is available behind the screen, making it possible to create a 3D image. The depth is much deeper than before, allowing for a wider axle load.

この原理は、コンピュータグラフィック、アニメーショ
ンなどの画f象を立体視するための原画の構成方法の指
針として役立つものである。以下、本発明を理解しやす
い実施例を用いて原理の説明を行なう。       
   □・1\ 第2図に基づいて説明する。\ 二重のカメラ11および12を用意し、これを立体儂撮
儂架台13上にセットした。この架台13fl右カメラ
11と左カメラ12の元軸が互いに逆まわりに同一角度
θおよび一〇だけ回転できるようになっている。θ=O
のとき、2台のカメラの光軸はともに架台13の中心線
に平行であり、無限遠にある被写体10をのぞむ状態で
ある。被写体10がカメラに近よって来るにしたがって
θの大きさが大きるなる。このとき、被写体は2台のカ
メラの光軸の交点上に置かれているので、ズームアツプ
しても被写体が画面からはずれることはない。ここで、
2台のカメラのズーミング機構は連動されており、双方
の0!j儂の大きさは、ともに同一の大きさになるよう
バランスがとられている。左右カメラの撮儂信号はミキ
サー4を通して、モニターテレビ15に入力する。ミキ
サーはフィールド同期信号で撮儂信号をスイッチングす
るので、モニターテレビ5には左右のカメラのfilが
交互に写し出される。右カメラの(116と左カメラの
僧7μずれているので、肉眼で見ると、二重写しのよう
に見える。電気光学シャッターを内蔵した立体メガネ8
を掛け、シャッターの開閉動作が交互に逆になるモード
でフィールド信号に同期させ、左眼には左カメラの僧、
右眼には右カメラの1し力為見えないように動作させる
。画面を両眼にこの立体メガネを掛けて見ると、儂は画
面から。
This principle serves as a guideline for how to construct an original image for stereoscopic viewing of images such as computer graphics and animation. Hereinafter, the principle of the present invention will be explained using examples that are easy to understand.
□・1\ This will be explained based on Figure 2. \ Dual cameras 11 and 12 were prepared and set on a 3D camera mount 13. The original axes of the right camera 11 and the left camera 12 of this mount 13fl can be rotated by the same angles θ and 10 in opposite directions. θ=O
At this time, the optical axes of the two cameras are both parallel to the center line of the pedestal 13, and are looking at the subject 10 located at infinity. As the subject 10 approaches the camera, the magnitude of θ increases. At this time, since the subject is placed on the intersection of the optical axes of the two cameras, the subject will not move off the screen even when zoomed in. here,
The zooming mechanisms of the two cameras are linked, and both 0! The sizes of the two are balanced so that they are both the same size. The photographic signals from the left and right cameras are input to a monitor television 15 through a mixer 4. Since the mixer switches the camera signals using the field synchronization signal, the files of the left and right cameras are alternately displayed on the monitor television 5. Since the right camera (116) and the left camera are shifted by 7μ, it looks like a double copy when viewed with the naked eye.Stereoscopic glasses with a built-in electro-optical shutter 8
, and synchronized with the field signal in a mode in which the shutter opening and closing operations are alternately reversed.
Operate the right camera so that it cannot be seen by the right eye. When I look at the screen with these 3D glasses on both eyes, I see myself from the screen.

とび出し立体的に見える。It stands out and looks three-dimensional.

この場合、ズーミングしても被写体が視野外に出ないよ
うに、被写体が移動しても、カメラの光軸を被写体の中
心と常に一致させている。すなわち撮儂の中心は常に画
面に位置しており、形状は立体的に見えるが、被写体が
前後に移動した感じつまり、被写体そのものが画面から
離れた感じにはならない。
In this case, the optical axis of the camera is always aligned with the center of the subject even if the subject moves so that the subject does not go out of the field of view even when zooming. In other words, the center of the image is always located on the screen, and although the shape appears three-dimensional, it does not give the impression that the subject has moved back or forth, or that the subject itself has moved away from the screen.

被写体そのものが前後の移動に伴って、テレビの画面か
ら離れて前後に移動したように見せるためにはθを一定
にして撮僧せねばならない。θを一定にしておくと、カ
メラの視野範囲が限定されるため、0を小さくして遠く
から撮影することになる。この場合は、前後の移動つま
り位置の変化は立体的に表示されるが、形状は立体表示
し難い。
In order to make it appear as if the subject itself is moving back and forth away from the TV screen, it is necessary to keep the angle θ constant. If θ is kept constant, the field of view of the camera will be limited, so 0 will be made small and images will be taken from a distance. In this case, forward and backward movements, that is, changes in position, are displayed three-dimensionally, but it is difficult to display the shape three-dimensionally.

形状を立体視すべく、ズームアツプすると被写体が視野
外に出てしまう不都合が生じる。
When zooming in to see a shape in 3D, there is an inconvenience that the subject may be out of the field of view.

さらに、2台のカメラの光軸の交点よりも前方に被写体
が移動したときは、画面をらとび出したように見えるが
、交点より後方へ移動したとき、画面の後方に結儂され
る効果は前方にとび出す効果よりもずっと圧縮される。
Furthermore, when the subject moves ahead of the intersection of the optical axes of the two cameras, it appears to jump out of the screen, but when the subject moves behind the intersection, the effect of collapsing to the rear of the screen is It is much more compressed than the effect of jumping forward.

したがって、被写体の移動範囲は一般に交点より前方の
範囲に制限されている。このため、右側のカメラのg1
ハ左側のカメラ惰よりも常に左側にずれた形でテレビ画
面に表示されることになる。
Therefore, the movement range of the subject is generally limited to the range in front of the intersection. Therefore, g1 of the right camera
The image will always be displayed on the TV screen shifted to the left of the camera on the left.

以上のべたように、被写体を2台のカメラで撮偉すると
きは、撮儂技術上の問題、撮僧の便宜などのため、立体
視の技法がかなり制約される。
As mentioned above, when photographing a subject with two cameras, the stereoscopic viewing technique is considerably restricted due to technical issues and the convenience of the photographer.

しかし、グラフィック・ディスプレイやアニメーション
などによる立体画イII!表示は、上述の制約が伴なわ
ないから、自由に立体1象を構成できる。
However, 3D images using graphic displays and animations! Since the display is not subject to the above-mentioned restrictions, a three-dimensional image can be freely constructed.

以下、その方法について第3図を用いて述べる。The method will be described below with reference to FIG.

アニメーションにより立体1僧を合成するには、右償6
と右儂7に相当する2糧類の平面原画21゜22を用意
する。この平面原画21および22はそれぞれ右カメラ
11と左カメラ12を通して、モニタテレビ15に入力
され古傷16.左壕17として光示される。
To compose a three-dimensional monk with animation, right compensation 6
Prepare flat original drawings 21° and 22 of two types corresponding to 7 and the right side. These two-dimensional original images 21 and 22 are inputted to the monitor television 15 through the right camera 11 and left camera 12, respectively, and old scratches 16. Lightly shown as left trench 17.

被写体が現実の物体もしくは風景のように本来立体のも
のならば、当然1個の被写体を単に、2台のカメラで撮
儂するだけであるが、立体アニメーションなど本質的に
は千面儂の被写体の場合は原画fJlfl右カメラ用と
左カメラ用の2系統の原画を別々に用意せねばならない
If the subject is essentially three-dimensional, such as a real object or landscape, then of course one subject is simply photographed using two cameras, but when shooting a subject that essentially has a thousand faces, such as three-dimensional animation, In this case, it is necessary to separately prepare two systems of original images, one for the right camera and the other for the left camera.

いま仮に、2系統の原画に同−1儂を用いればモニタテ
レビ15の古傷16と右儂17は重なり合って一体とな
り区別がつかなくなる。したがって、立体視めがね18
を用いても、立体儂には見えない。立体儂を構成するに
は、右f# 16と左壕17とが、少なくとも部分的に
ずれた状態で表示されねばならない。古傷16が右儂1
7の左側にずれれば脳で合成される儂ハ画面前方にずれ
量に比例した距離だけとび出して見え、右側にずれれば
合成僧は画面後方にずれに比例した分だけ奥まって見え
る。
Now, if we use the same one for the original picture of the two systems, the old damage 16 and the right side 17 of the monitor television 15 will overlap and become one, making them indistinguishable. Therefore, stereoscopic glasses 18
Even if I use , I can't see it in 3D. To form a three-dimensional image, the right f# 16 and the left f# 17 must be displayed at least partially offset. Old wounds 16 are my right servant 1
If it shifts to the left side of 7, the monk synthesized by the brain will appear to protrude in front of the screen by a distance proportional to the amount of shift, and if it shifts to the right, the synthesized monk will appear to recede to the back of the screen by an amount proportional to the shift.

ここで、原画21および22はモニタテレビ上の古漬1
6と右儂17とのずれが必要なだけ自由に選べる。ずれ
が大きすぎると装置作用が困難になるので、前述したよ
うに、ずれδは0.15H以内にとどめるべきである。
Here, original pictures 21 and 22 are Furuzuke 1 on the monitor TV.
You can freely select the difference between 6 and 17 as necessary. If the deviation is too large, the operation of the device becomes difficult, so as mentioned above, the deviation δ should be kept within 0.15H.

20吋大のテレビ受儂機(H=300■)を明視距離(
D、=2,100■)だけ離れて観察するとき、J−0
,15Hの左右向きのずれは画面上で45■であり、立
体イ象は画面前方820■=273Hの位置に装置する
。−万、δ=−0,15Hすなわち前の左右と逆の左右
向きに451ずらすと、立体gIIは画面後方3,78
0w=IZ、6H(D位置に結イ象する。
A 20-inch TV receiver (H=300■) is placed at clear viewing distance (
D, = 2,100■) when observing from a distance of J-0
, 15H in the horizontal direction is 45■ on the screen, and the three-dimensional image is placed at a position of 820■=273H in front of the screen. - 10,000, δ = -0,15H, that is, if you shift 451 to the left and right opposite to the previous left and right, the 3D gII will be 3,78 behind the screen.
0w=IZ, 6H (image is formed at D position.

ずれδにもとづくとび出し距離をfとすると、=1&2
δ  ・・・・・・・・・・・・・・・ (1)となる
。ずれ−δにもとづく後方への奥行き距離をbとすると =84δ  ・・・・・・・・・・・・・・・・・・ 
(2)となる。ここで、aに対するfを決める係数18
.2よりも、δに対するbの係数84の方が約4.6倍
も大きいことが問題である。つまり、負のずれ−6は正
のずれδのとび出しよりも英行き効果が大きくなること
である。別の言い方をすれば、被写体が実物の場合は、
立体儂が画面から離れる距1IIlfとbH,同一距離
ならばf=−bであるからつまり、前方にとび出させた
方が、奥に引き込ませるよりも、立体効果を出せる。
If the protrusion distance based on the deviation δ is f, then = 1 & 2
δ ・・・・・・・・・・・・・・・ (1). Let b be the depth distance to the rear based on the deviation - δ = 84 δ ・・・・・・・・・・・・・・・・・・
(2) becomes. Here, the coefficient 18 that determines f for a
.. The problem is that the coefficient 84 of b with respect to δ is about 4.6 times larger than that of δ. In other words, a negative deviation of -6 causes a larger biasing effect than a positive deviation δ. In other words, if the subject is real,
If the distance from the screen is 1IIlf and bH, and the distance is the same, then f=-b.In other words, making it stick out to the front produces a better three-dimensional effect than pulling it in to the back.

これに反して、合成原画の場合に、初めからずれ−を作
る。同じ大きさのδに対してHb>>fのため、負の−
を用いて奥行き感覚を出す万がとび出し感覚を利用する
よりも、広い空間に装置できる。
On the other hand, in the case of a composite original image, a deviation is created from the beginning. Since Hb>>f for the same size δ, the negative −
The device can be installed in a wider space than using the sense of protrusion to create a sense of depth.

ここでは、主人公を風景の中に立たせるシーンを作るの
に風景を背景として負のδで作成し、人物をδン0で作
成した。この結果、得られた立体イ象はδン0の与の画
イ象C結1象されるイ蒙と異なり、背景の奥行きがきわ
めて広く、広大な土地に立っているように光示でキ、シ
かも、人物の顔の細かい形状まで立体表示ができた。な
お、遠景はδ〉−α15H1手などを突き出した先端は
δ)0.15Hとしたところ、遠景は無限遠方向に遠ざ
がってぼやけ手の先端は観察者の目前に伸びてぼやけて
見えた。
Here, to create a scene in which the main character stands in a landscape, the landscape was created with negative δ as the background, and the person was created with δ minus 0. As a result, the obtained three-dimensional image differs from the image shown in the image C for a given δ n 0, in that the depth of the background is extremely wide, and the image is illuminated as if it were standing on a vast area. , it was possible to display the detailed shape of a person's face in 3D. In addition, when the distant view is δ〉-α15H1 and the tip of the protruding hand is δ)0.15H, the distant view moves away toward infinity and becomes blurry.The tip of the hand extends in front of the observer's eyes and appears blurry. Ta.

以上実施例にもとづいて詳述した本発明の立体テレビ用
l1li儂の構成方法の原理は、被写体が実物の場合は
従来のようにδ〉0になるようにカメラの視点をセット
するのが普通だが、アニメーション、グラフィックディ
スプレイ等本質的平面原画を左右二系統用いて立体儂を
結イ象させるためには、向後に長い距Sはδ〈0で表示
し、小さな凹凸はδ〉0で表示することにより、立体儂
を有効に結イ象できることを見出し、これにもとづく立
体テレビ用jii僧の構成方法についてのべた。
The principle of the configuration method for stereoscopic television of the present invention, which has been explained in detail based on the embodiments above, is that when the subject is a real object, the viewpoint of the camera is usually set so that δ>0, as in the conventional case. However, in order to visualize a three-dimensional image by using two systems of essentially flat original images such as animations and graphic displays, the long distance S in the backward direction is expressed as δ<0, and small irregularities are expressed as δ>0. We have found that it is possible to effectively visualize a three-dimensional image by doing this, and have described a method for constructing a three-dimensional television system based on this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)は立体テレビ画面の面憎と結備
の関係を示す図、第2図は立体テレビ撮儂方式を説明す
る図、第3図は本発明になる2系統の平面面憎をモニタ
TVに表示し、立体視メガネを用いて立体儂を結僧する
ための原理を説明する図である。 1.5・・・古漬、2,6・・・右儂、3・・・空間に
装置したもの、11・・・右カメラ、12・・・左カメ
ラ、13・・・撮f象台、14・・・ミキサー、15・
・・モニタテレビ。 16・・・石像、17・・・右儂、18・・・立体視メ
ガネ、¥J  1  図 (良)(b) 箔 2n 1jJ3  図
Figures 1 (a) and (b) are diagrams showing the relationship between 3D television screen features and connections, Figure 2 is a diagram explaining the 3D television shooting method, and Figure 3 is a diagram showing the two systems according to the present invention. FIG. 2 is a diagram illustrating the principle of displaying a two-dimensional image on a monitor TV and viewing a three-dimensional image using stereoscopic glasses. 1.5...furuzuke, 2,6...right servant, 3...equipment in space, 11...right camera, 12...left camera, 13...photography stand, 14...mixer, 15.
...Monitor TV. 16...Stone statue, 17...Sister, 18...Stereoscopic glasses, ¥J 1 Figure (Good) (b) Foil 2n 1jJ3 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、立体画像を構成するための古漬と右儂とを、受儂機
にフィールド順次に交互に表示させこのフィールドと同
期して左右交互に開閉する一対の元シャッターを用いて
古漬と右儂とからなる2系統の平面it(#を立体視1
iif#として構成する立体画像の形成方法において、
前記受儂機の画面上に構成する古漬と右儂のずれを、立
体視1偉を画面前方に結儂させるためには古漬を右儂の
左側にずらせ、立体視1儂を画面後方に結儂させるため
には右側を右儂の右側にずらせて再生1僧を構成し、且
その結儂空関を前記受倫機の画面の高さをHとした場合
、画面と観察者を結ぶ線に沿って1画面前方約2.7H
で、約0.39HX O,52Hの横長矩形面と、画面
および画面後方的13Hの位置で約18HX&7Hの横
長矩形面の三面を含む直線で囲まれた範囲とすることを
特徴とする立体i1(*の構成方法。
1. The furuzuke and the right man for composing a three-dimensional image are displayed alternately in field order on a receiver device, and a pair of original shutters that open and close alternately on the left and right in synchronization with the field are used to display the furuzuke and the right man. Two systems of plane it (# for stereoscopic vision 1
In a method for forming a three-dimensional image configured as iif#,
To correct the misalignment between the furusuke and the right side on the screen of the receiving machine, in order to bring the stereoscopic first side to the front of the screen, the first side of the stereoscopic view must be moved to the left of the right side, and the third side of the stereoscopic view must be connected to the rear of the screen. In order to make me, I shift the right side to the right side of my right side to form a reborn monk, and if the height of the screen of the Jurin machine is H, then the line connecting the screen and the observer is Approximately 2.7H forward one screen along
A solid i1 ( How to configure *.
JP57027425A 1982-02-24 1982-02-24 Constituting method of stereoscopic picture Pending JPS58145291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57027425A JPS58145291A (en) 1982-02-24 1982-02-24 Constituting method of stereoscopic picture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57027425A JPS58145291A (en) 1982-02-24 1982-02-24 Constituting method of stereoscopic picture

Publications (1)

Publication Number Publication Date
JPS58145291A true JPS58145291A (en) 1983-08-30

Family

ID=12220749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57027425A Pending JPS58145291A (en) 1982-02-24 1982-02-24 Constituting method of stereoscopic picture

Country Status (1)

Country Link
JP (1) JPS58145291A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193074U (en) * 1984-11-22 1986-06-16
US4723159A (en) * 1983-11-02 1988-02-02 Imsand Donald J Three dimensional television and video systems
WO1997001249A1 (en) * 1995-06-21 1997-01-09 Araujo De Sousa Mauricio A method for capturing and editing pictures so as to obtain a virtual depth effect
US7540249B2 (en) 2004-10-26 2009-06-02 Nam Soo Park Acceleration system for link belt-mounted ship

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723159A (en) * 1983-11-02 1988-02-02 Imsand Donald J Three dimensional television and video systems
JPS6193074U (en) * 1984-11-22 1986-06-16
WO1997001249A1 (en) * 1995-06-21 1997-01-09 Araujo De Sousa Mauricio A method for capturing and editing pictures so as to obtain a virtual depth effect
AU700188B2 (en) * 1995-06-21 1998-12-24 Mauricio Araujo De Sousa A method for capturing and editing pictures so as to obtain a virtual depth effect
US7540249B2 (en) 2004-10-26 2009-06-02 Nam Soo Park Acceleration system for link belt-mounted ship

Similar Documents

Publication Publication Date Title
KR100733047B1 (en) Digital stereo camera, 3-dimensional display, 3-dimensional projector, and printer and stereo viewer
RU2483469C2 (en) Stereoscopic system for forming and displaying images
US9094674B2 (en) Generation of three-dimensional movies with improved depth control
US8451326B2 (en) Three-dimensional television system, and three-dimensional television receiver
TWI440960B (en) Stereoscopic image pickup device
KR100710347B1 (en) Apparatus and method for displaying three-dimensional image
JP4421673B2 (en) 3D image display device
JPH08205201A (en) Pseudo stereoscopic vision method
Naimark Elements of real-space imaging: a proposed taxonomy
JP2003348621A (en) Means for setting two-viewpoint camera
CN200986649Y (en) Stereo digital photograph and viewing device combination
JPS58145291A (en) Constituting method of stereoscopic picture
JP3689976B2 (en) Optical adapter device for video shooting of 3D stereoscopic video signal converter
Kakeya Real-image-based autostereoscopic display using LCD, mirrors, and lenses
JPH09205660A (en) Electronic animation stereoscopic vision system and stereoscopic vision eyeglass
JP3235969U (en) A mobile phone equipped with a camera for shooting in 3D
JPH09182113A (en) Three-dimensional solid video signal conversion device and video camera device using the device
Butterfield Autostereoscopy delivers what holography promised
JP3357754B2 (en) Pseudo-stereo image generation method and pseudo-stereo image generation device
JPH0397390A (en) Solid display device
TWI632802B (en) Three-dimensional image pick-up and display system
JP2006287811A (en) Stereoscopic video image reproducing apparatus
JPH0553255B2 (en)
JP2002101430A (en) Three-dimensional color display unit
Xia Theory and Practice of the Stereo-View on the CRT Screen