JPS5814498B2 - super hard alloy - Google Patents

super hard alloy

Info

Publication number
JPS5814498B2
JPS5814498B2 JP2243375A JP2243375A JPS5814498B2 JP S5814498 B2 JPS5814498 B2 JP S5814498B2 JP 2243375 A JP2243375 A JP 2243375A JP 2243375 A JP2243375 A JP 2243375A JP S5814498 B2 JPS5814498 B2 JP S5814498B2
Authority
JP
Japan
Prior art keywords
phase
alloy
group
metal
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2243375A
Other languages
Japanese (ja)
Other versions
JPS5197508A (en
Inventor
俊雄 野村
毅 浅井
光雄 児玉
孝春 山本
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2243375A priority Critical patent/JPS5814498B2/en
Publication of JPS5197508A publication Critical patent/JPS5197508A/en
Publication of JPS5814498B2 publication Critical patent/JPS5814498B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はTiとWとを含む切削特性の著しく改善された
焼結硬質合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered hard alloy containing Ti and W that has significantly improved cutting properties.

炭化チタン基合金は、WC基合金に比べ、原料である炭
化チタンが安価であり、軽量であるなどの特質の他、切
削特性の面からみても種々の優れた特性を有している。
Compared to WC-based alloys, titanium carbide-based alloys have a variety of excellent properties in terms of cutting characteristics, in addition to the characteristics that titanium carbide, which is a raw material, is inexpensive and lightweight.

まず耐酸化性であるが、ビー・シュワルツコツフ(P
.Sc hwa rz ko p fら:Ref ra
ctory Hard Metals,Mac Mi
llan Co.(1953)P371)らによればT
ic基合金の耐酸化性は、WC基に比べ格段にすぐれて
いる。
First of all, it has oxidation resistance.
.. Ref ra
ctory Hard Metals, Mac Mi
llan Co. (1953) P371) et al.
The oxidation resistance of IC-based alloys is much better than that of WC-based alloys.

このような特性は、工具が高温にさらされる高速切削に
おいて酸化による工具の変質をうけにくいという極めて
望ましい特性である。
This characteristic is extremely desirable because it makes the tool less susceptible to deterioration due to oxidation during high-speed cutting where the tool is exposed to high temperatures.

第2は金属に対しての化学的親和性に関することである
The second concern is chemical affinity for metals.

切削時に高温にさらさnる工具表面において、被削材と
工具面に拡散、溶着等の化学反応が起り、これが工具の
摩耗を促進させることは深津ら(深津、油原:日本金属
学会誌、29(1965)、582)その他によって詳
しく、検討されている。
On the tool surface exposed to high temperatures during cutting, chemical reactions such as diffusion and welding occur between the workpiece and the tool surface, and this accelerates tool wear as reported by Fukatsu et al. 29 (1965), 582) and others.

これらの検討結果によるとTiCはWCに比べ主として
鉄との親和性が極めて少ないことも判っている。
According to the results of these studies, it has also been found that TiC has an extremely low affinity for iron compared to WC.

これは経験的に作成されて来た鋼切削用P系列合金にT
iCが入っており、この系列の合金の耐摩耗性がTiC
の入らない系列の合金に比べ格段にすぐれていることを
裏付けるものである。
This is a P series alloy for steel cutting that has been created empirically.
The wear resistance of this series of alloys is that of TiC.
This proves that it is significantly superior to alloys that do not contain .

従ってTiCiが大半を占めるTiC基合金では、例え
ば被削材との親和性にもとずく摩耗が極めて小さく抑え
られることは当然の帰結である。
Therefore, it is a natural consequence that a TiC-based alloy, in which TiCi is the majority, can suppress wear to an extremely low level due to its affinity with the workpiece material, for example.

以上のようにすぐれた特性をもつTiC基合金は将来の
工具として注目され、種々の合金が提案されて来ている
が、いまなおその使用範囲は限定されている。
TiC-based alloys with excellent properties as described above have attracted attention as future tools, and various alloys have been proposed, but their range of use is still limited.

その第1の原因は靭性にとぼしく欠けやすい欠点を有す
ることである。
The first reason is that it has poor toughness and is prone to chipping.

たとえば、断続切削等の衝撃力を受けるようなところで
使用する場合、あるいは工作機械の剛性が低い場合など
においてはTiC基合金が従来のWC基合金に比べ欠け
やすいことが経験的に知られている。
For example, it is known from experience that TiC-based alloys are more likely to chip than conventional WC-based alloys when used in places where they are subjected to impact forces such as interrupted cutting, or when machine tools have low rigidity. .

また、切削時に切屑のカールによってチップのエッジが
損傷する場合もあるが、これもTiC基合金の脆さを示
している。
Additionally, the edge of the chip may be damaged due to curling of chips during cutting, which also indicates the brittleness of the TiC-based alloy.

このような脆さを防ぐ手段の1つとして、工具の刃先に
丸みをつげるか、面取りを施して尖った刃先先端に直接
被削材が当らないようにし、刃先にかかる応力を減らす
方法がある。
One way to prevent this kind of brittleness is to round or chamfer the cutting edge of the tool to prevent the work material from directly hitting the sharp tip of the cutting edge, thereby reducing stress on the cutting edge. .

他の方法は結合金属量を増して、合金の靭性を向上させ
る方法である。
Another method is to increase the amount of bonded metal to improve the toughness of the alloy.

これらの2つの方法は、それぞれの分野で成果はあげて
はいるが、次にのべるTiC基合金の使用が限られる第
2の原因に関連して、すべての場合に有効であるとは言
えない。
Although these two methods have achieved results in their respective fields, they cannot be said to be effective in all cases, related to the second reason for the limited use of TiC-based alloys, which will be discussed next. .

TiC基合金の使用が限られる第2の原因は高温高圧下
における刃先の変形が大きいことである。
The second reason why the use of TiC-based alloys is limited is that the cutting edge deforms significantly under high temperature and high pressure.

上記の脆さを防ぐ2つの手段のうち前者は刃先の温度上
昇を招くために、後者は工具の硬度を下げるためにいず
nも変形を促進させて工具としての使用範囲を狭める結
果になることが多い。
Of the two methods for preventing brittleness mentioned above, the former causes a rise in the temperature of the cutting edge, while the latter reduces the hardness of the tool, which both promote deformation and narrow the range of use as a tool. There are many things.

刃先変形が、TiC基合金の使用範囲を限定することに
関し、さらに具体的にのべる。
More specifically, the deformation of the cutting edge limits the range of use of TiC-based alloys.

まず、切込み、送りの大であるP20,P30相当の重
切削では刃先の温度が高くなるので、Tic基合金では
刃先の変形が著しくなり、切削に耐えなくなる。
First, in heavy cutting equivalent to P20 and P30, which have large depths of cut and feed, the temperature of the cutting edge becomes high, so in Tic-based alloys, the cutting edge deforms significantly and cannot withstand cutting.

これが、TiC基合金が軽切削に限定されて使用されて
いる主要因であろう。
This is probably the main reason why TiC-based alloys are used only for light cutting.

また高硬度材を切削する際も刃先の温度上昇が著しいの
で、この場合もTiC基合金は不向きであり、これも又
この合金の使用範囲を限定する要因となっている。
Further, when cutting high-hardness materials, the temperature at the cutting edge increases significantly, so TiC-based alloys are also unsuitable in this case, and this is also a factor that limits the range of use of this alloy.

また刃先変形とは、まったく関係のないように考えられ
る刃先の欠損も、遠因は刃先変形にある場合がある。
In addition, there are cases where the underlying cause of a chipped edge that appears to have nothing to do with the deformation of the cutting edge is the deformation of the cutting edge.

たとえば、TiC基合金は高速、高送りの断続切削では
欠損しやすいが、これは刃先が軟化することによって、
強度が減少し、欠損に到るためと考えられている。
For example, TiC-based alloys are prone to chipping during high-speed, high-feed interrupted cutting, but this is due to the softening of the cutting edge.
It is thought that this is because the strength decreases and this leads to defects.

さらに、TiC基合金は、鋳鉄の切削に不向きであると
されているが、これも、刃先の変形と関係がある。
Furthermore, TiC-based alloys are said to be unsuitable for cutting cast iron, and this is also related to the deformation of the cutting edge.

鋳鉄切削の場合には鋼切削の場合と切削機構が異なり不
連続型の切屑が出ることはよく知られている。
It is well known that when cutting cast iron, the cutting mechanism is different from when cutting steel, and discontinuous chips are produced.

従ってこの場合には、鋼切削の場合に比べ接触面が短か
く切刃に集中力がかかる。
Therefore, in this case, the contact surface is shorter than in the case of steel cutting, and concentrated force is applied to the cutting edge.

鋳鉄の場合は黒鉛を介しているので一種の断続切削であ
り、この場合は刃先変形が起るかわりに軟化した部分が
取り去られることによって刃先のブランク摩耗が大きく
なるのである。
In the case of cast iron, since graphite is used, it is a type of interrupted cutting, and in this case, instead of deforming the cutting edge, the softened part is removed, resulting in increased blank wear on the cutting edge.

以上のような主として2つの欠点によって、TiC基合
金の使用範囲はいまなお限定されているが、本発明は、
このような欠点の改良された合金を提供することを目的
とする。
The range of use of TiC-based alloys is still limited due to the two main drawbacks mentioned above, but the present invention
It is an object of the present invention to provide an alloy that is improved in these drawbacks.

従来のTiC基合金とWC基合金の本質的な差違はWC
結晶とTiC結晶の性質の差にあると考えられる。
The essential difference between conventional TiC-based alloys and WC-based alloys is WC.
This is thought to be due to the difference in properties between the crystal and the TiC crystal.

たとえば、WC結晶が、強度と高温における耐塑性変形
性に極めて、すぐれることは、公知の事実であり、Ti
Cに他元素を固溶させる方式では、TiCそのものの性
質はほとんど変化せずWCのもつような高温強度をもた
すことは出来ないものと思われる。
For example, it is a well-known fact that WC crystal has excellent strength and plastic deformation resistance at high temperatures, and Ti
In a method in which other elements are dissolved in C, the properties of TiC itself hardly change, and it seems that it is not possible to provide the high-temperature strength that WC has.

従ってWC基合金と同等の強度と耐塑性変形性をTi基
合金に付与するには合金中にWC相を残存させることが
必須条件であると考えられる。
Therefore, in order to impart strength and plastic deformation resistance equivalent to those of a WC-based alloy to a Ti-based alloy, it is considered that it is an essential condition that the WC phase remains in the alloy.

ところで次に合金の他の重要な特性である耐摩耗性を考
えた場合、特に鋼を切削する場合には一般にWC相が少
なければ少ない程、また結晶構造がB1タイプ(NaC
l型)の硬質相(MC相)中のW量が少ない程Wと鋼と
の反応が減じ合金の耐摩耗性は向上する。
By the way, when considering wear resistance, which is another important property of alloys, in general, the less WC phase there is, the better the crystal structure is B1 type (NaC), especially when cutting steel.
The smaller the amount of W in the hard phase (MC phase) of type I), the less the reaction between W and steel and the better the wear resistance of the alloy.

当然のことではあるが、Ti−W−C系のみで考えれば
WC量および結晶構造がB1である(Ti.W)C相(
MC相)の組成は温度が一定ならば、W量の関数として
、ほぼ一義的に(C値による変動は化学量論値近傍では
無視出来る程であるので)定まってしまい、WC相量を
一定にしたまま(Ti.W)C相の耐摩耗性を向上させ
ることは不町能である。
Of course, if we consider only the Ti-W-C system, the (Ti.W)C phase (
If the temperature is constant, the composition of the MC phase will be almost uniquely determined as a function of the W content (as the variation due to the C value is negligible near the stoichiometric value), and the composition of the WC phase will be constant as a function of the W content. It is impossible to improve the wear resistance of the (Ti.W) C phase.

ところで、このMC相に関してはMの位置にIVaVa
VIa族の高融点金属が、又Cの位置にはNが置換しう
る。
By the way, regarding this MC phase, there is IVaVa at the M position.
A high melting point metal of Group VIa may be substituted, and N may be substituted at the C position.

本発明者らはこの点に注目し、鋭意研究をすすめ本硬質
相の組成を変えることにより、W含有量が少なく耐摩耗
性の高い結晶構造がB1のM(C,N)型硬質相とWC
相とを共存させ、合金の靭性をそこなうことなく、耐摩
耗性を向上させる方法を見出した。
The present inventors paid attention to this point, conducted intensive research, and by changing the composition of this hard phase, the crystal structure with low W content and high wear resistance was created with the M(C,N) type hard phase of B1. W.C.
We have discovered a method to improve the wear resistance of the alloy without impairing its toughness by coexisting with the phase.

以下本発明の理論的根拠について述べる。The theoretical basis of the present invention will be described below.

硬質相の安定性を考える一つの指標として、外殻電子数
(Valence Electron Concent
ration以下VECと略記)がある。
As one index for considering the stability of the hard phase, the number of outer shell electrons (Valence Electron Concent
(hereinafter abbreviated as VEC).

本発明の対象となる合金に含まれる硬質相の分子式は一
般に {(第■3族金属)A(第Va族金属)B(18族金J
E a)(CXNY)Z ・・・・・・・・・・
・・■ただし、A+B+C=1、X十Y=1 と表示できる。
The molecular formula of the hard phase contained in the alloy that is the object of the present invention is generally {(Group 3 metal) A (Group Va metal) B (Group 18 metal J
E a) (CXNY)Z ・・・・・・・・・・・・
...■However, it can be expressed as A+B+C=1, X0Y=1.

従って、そのVECは周知のごとく VBC=4・A+5・B+6・C+4XZ+5YZ・・
・・・・■と計算される。
Therefore, as is well known, the VEC is VBC=4・A+5・B+6・C+4XZ+5YZ...
...It is calculated as ■.

第■a族金属はTi又はTiを含む2種又は3種、第V
a族金属は1種又は2種以上、第Vla族金属はW又は
Wを含む2種又は3種であり、A,B,C,X,Yはモ
ル分率、Zは金属成分に対する非金属成分のモル比率、
0<A<1 .0<B<1.0<C<1なる関%がある
Group IV metals include Ti, two or three metals containing Ti, and Group V metals.
Group A metals are one or more types, Group Vla metals are W or two or three types containing W, A, B, C, X, and Y are mole fractions, and Z is a nonmetal relative to the metal component. molar ratio of components,
0<A<1. There is a relationship 0<B<1.0<C<1.

発明者らは■3,va,■3族金属の炭窒化物系につい
てVECと結晶の安定性との関%を検討した結果、vE
CくD(Dは雰囲気の窒素分圧の関■では結晶は安定で
あるが、vEC≧Dでは不安定となることを見出した。
The inventors investigated the relationship between VEC and crystal stability for carbonitride systems of group 3, va, and group metals, and found that vE
It has been found that the crystal is stable when C×D (D is a relation to the partial pressure of nitrogen in the atmosphere), but becomes unstable when vEC≧D.

さらに、この不安定となった炭窒化物結晶にWが含まれ
ている場合には、(Mo,M・・・・・・、wU) (
CxNY ) Z→(Mo/,M,/,・・・・・・
、WU’)(CX’NY’)z牛(U−IJ’)WC・
・・・・・■ (ただしU≧び、0.85≦Z≦1.0)なる反応が生
じてWCが析出し得ることも判った。
Furthermore, if this unstable carbonitride crystal contains W, (Mo, M..., wU) (
CxNY ) Z → (Mo/, M, /,...
, WU') (CX'NY')z Cow (U-IJ') WC・
It was also found that the following reaction occurred and WC could be precipitated.

Zの制限の理由を以下に記す。The reason for the restriction on Z is described below.

Zが0.85以下の場合は、WCとFe族結合金属が反
応して脆い相が析出するため実用的でなく、通常の焼結
ではZは1以上になり得ない。
If Z is 0.85 or less, the WC and Fe group bond metal will react and a brittle phase will precipitate, which is impractical, and Z cannot be greater than 1 in normal sintering.

以上よりVEC≧Dとなるように硬質相の組成を選ぶこ
とにより、WC相量を増加させ、M(C,N)相中のW
含有量を減じることが出来るのである。
From the above, by selecting the composition of the hard phase so that VEC≧D, the amount of WC phase can be increased, and W in the M(C,N) phase can be increased.
The content can be reduced.

Dの値は雰囲気の窒素分圧が高まる程小となる,理由は
窒素分圧が高い程炭窒化物が相対的に安定になることに
よるものと思われる。
The value of D becomes smaller as the nitrogen partial pressure of the atmosphere increases, and this is thought to be because carbonitrides become relatively more stable as the nitrogen partial pressure increases.

従って理論的には窒素分圧を高めわばDの値は極めて低
くすることが出来るが、あまり窒素分圧を高めると合金
の焼結性を阻害するので、実用的には変素分圧は50m
iHP以下である。
Therefore, theoretically, it is possible to make the value of D extremely low by increasing the nitrogen partial pressure, but increasing the nitrogen partial pressure too much will inhibit the sinterability of the alloy, so in practice, the transformation partial pressure is 50m
It is below iHP.

Dの値はまたB1結晶の硬質相の組成および均質度によ
って変化するが、本発明の対象範囲ではD≧8.6であ
ることが実験的に確かめられた。
Although the value of D also varies depending on the composition and homogeneity of the hard phase of the B1 crystal, it was experimentally confirmed that D≧8.6 within the scope of the present invention.

このような組成の合金を窒素が逃げないように焼結する
と合金中にはWC相と複炭窒化物相が存在することにな
る。
If an alloy having such a composition is sintered so that nitrogen does not escape, a WC phase and a double carbonitride phase will be present in the alloy.

合金の組成にも以下の当然制約がある。Naturally, the composition of the alloy also has the following restrictions.

VECを高めるにはN量は多い程よいのであるが、あま
り少なすぎては、その効果がなく、多すぎると合金の焼
結性を阻害する。
In order to increase the VEC, it is better to have a larger amount of N, but if it is too small, there is no effect, and if it is too large, the sinterability of the alloy will be inhibited.

従って■式の表示に従えば、0.05≦Y≦0.50が
望ましくそのうちでも0.10≦Y≦0.40が最適の
範囲である。
Accordingly, according to the equation (2), 0.05≦Y≦0.50 is desirable, and among these, 0.10≦Y≦0.40 is the optimum range.

Xは0.50から0.95で0.5より少ないと焼結性
が害され、0.95より多いとWC相が存在しなくなる
X is from 0.50 to 0.95, and if it is less than 0.5, sinterability will be impaired, and if it is more than 0.95, the WC phase will not exist.

第■3族元素のうちWはWC結晶を有する合金という本
発明の主旨から必須の元素である。
(2) Of the Group 3 elements, W is an essential element from the purpose of the present invention, which is an alloy having WC crystals.

Moは本発明合金の焼結性を向上させるので合金全体の
2重量%以上添加すると合金の靭性が一層向上する。
Since Mo improves the sinterability of the alloy of the present invention, adding 2% by weight or more of the entire alloy further improves the toughness of the alloy.

しかし60重量%以上では耐摩耗性が悪化する。However, if it exceeds 60% by weight, wear resistance deteriorates.

Crの添加は合金の耐触性を向上させる。第V,族元素
はVECを高め、しかも合金の耐摩耗性、靭性も向上さ
せるので、合金全体の2重量%以上の添加により、すで
に合金の特性を改善するが、70重量%以上では原料が
高価であるので実用的でない。
Addition of Cr improves the corrosion resistance of the alloy. Group V elements increase the VEC and also improve the wear resistance and toughness of the alloy, so adding more than 2% by weight of the entire alloy will already improve the properties of the alloy, but adding more than 70% by weight will reduce the raw material. It is not practical because it is expensive.

最も望ましくは5重景%から50重量%である。Most preferably it is 5% to 50% by weight.

第■3族元素はVECを低下させるので、WC析出の観
点からは少量程望ましいが、Tiに関しては安価である
こと、合金の焼結性を向上させB1結晶相の強度を高め
る等の利点があるので結晶構造がBlタイプであるM(
C,N)相に含まれる金属元素童の20原子%以下には
できない。
■Group 3 elements reduce VEC, so a small amount is desirable from the viewpoint of WC precipitation, but Ti has the advantages of being inexpensive, improving the sinterability of the alloy, and increasing the strength of the B1 crystal phase. Therefore, M(
The amount of metal elements contained in the C, N) phase cannot be reduced to less than 20 atomic percent.

しかしTiが80原子%より多くなると耐熱性が低下す
るZrは耐摩耗性を向上させるが 性をやや低下させる
However, when Ti exceeds 80 atomic %, heat resistance decreases. Zr improves wear resistance but slightly decreases wear resistance.

Hfも耐摩耗性を向上させる。Fe族金属からなる結合
相量が重量でB1結晶相とWC相との合計量の0.01
倍以下では合金が脆化し、余りに多いと例えば0.5倍
以上では合金の耐熱性が低く実用に供しえない。
Hf also improves wear resistance. The amount of the binder phase made of Fe group metal is 0.01 by weight of the total amount of the B1 crystal phase and the WC phase.
If it is less than 0.5 times, the alloy will become brittle, and if it is too much, for example, 0.5 times or more, the alloy will have low heat resistance and cannot be put to practical use.

このような合金は耐摩耗性がすぐれかつ耐熱きれつ性に
すぐれる等の特徴がある。
Such alloys have characteristics such as excellent wear resistance and heat cracking resistance.

本発明の主旨は本合金の耐摩耗性をさらに向上させるこ
とにある。
The gist of the present invention is to further improve the wear resistance of the present alloy.

第■式から判るように、A,B,C,Zが一定の場合Y
の値(N量)が高い程VECは高くなる。
As can be seen from equation (①), if A, B, C, and Z are constant, Y
The higher the value (N amount), the higher the VEC.

いま窒素入り合金のVECがDよりわずかに高い場合を
考えると、本合金中にはWC相が存在する。
Now, considering the case where the VEC of the nitrogen-containing alloy is slightly higher than D, a WC phase exists in this alloy.

ここで一部の窒素を炭素で置換して、VECを低めDよ
り低くすると合金中のWC相が消失する。
If some nitrogen is replaced with carbon to lower the VEC to below D, the WC phase in the alloy disappears.

ところで組成がほとんど一定の合金についていえば、W
C相のない方が合金の耐摩耗性は向上する。
By the way, when it comes to alloys whose composition is almost constant, W
The absence of C phase improves the wear resistance of the alloy.

しかし、合金の靭性は低下する。それ故B1結晶相とW
C相と、これら相を結合する結合金属相とからなる合金
の表面のみWC相の存在しない合金を作成すれば、 性
を落さずに耐摩耗性に優れた合金となる。
However, the toughness of the alloy decreases. Therefore, B1 crystal phase and W
If an alloy consisting of a C phase and a binder metal phase that binds these phases is made without the WC phase only on the surface, the alloy will have excellent wear resistance without sacrificing properties.

方法は上記の事実から容易に類推できるように、窒素を
含む合金組成をVECがDよりわずかに高くなるように
選んでおき焼結中または焼結後再加熱することによって
、表面の窒素を減少させ表面のVECをD以下にして表
面のみWC相のない組成にすればよい。
As can be easily inferred from the above facts, the method involves selecting an alloy composition containing nitrogen so that its VEC is slightly higher than D, and then reheating it during or after sintering to reduce nitrogen on the surface. It is sufficient to set the VEC of the surface to D or less so that only the surface has a composition free of WC phase.

焼結中または焼結後再加熱により表面の窒素を減少させ
るには、雰囲気を真空にするか浸炭性にすればよい。
In order to reduce nitrogen on the surface by reheating during or after sintering, the atmosphere may be evacuated or carburized.

以上VECがDよりわずかに多い場合について述べたが
はじめの組成がV E C >>Dであっても、表面の
窒素を減じることにより表面のWC量は減じるので、表
面の耐摩耗性が向上し、上記と同じ効果がある。
We have described the case where VEC is slightly higher than D, but even if the initial composition is V E C >> D, the amount of WC on the surface is reduced by reducing the nitrogen on the surface, so the wear resistance of the surface is improved. and has the same effect as above.

表面の窒素を減じることの効果は上記の事項以外に次の
ような効果もある。
In addition to the above-mentioned effects, reducing surface nitrogen also has the following effects.

特に真空中で処理した場合は表面窒素が放散することに
より内部からのCの拡散を考えてもYの減少とともにZ
も減少する。
In particular, when processing in a vacuum, surface nitrogen dissipates and even if we consider the diffusion of C from inside, Z decreases as Y decreases.
will also decrease.

従って窒素の減少は鈴木ら(鈴木、林:Trans.J
.Japan Inst.Metals,7,(196
6)99;旦(1967)253;旦( 1 9 6
8)77;鈴木、山本: Ins t .J .Pow
der Me t .3( 1967)17)によるW
C − T iC−C o , WC−TaC−C
o ,WC−T iC−TaC−C o系におけるCの
減少と同じ働きをし、結合相(Co又は/そしてNi)
中へのWの固溶量を増加させさらに減じると表面にη相
(Co3W3C)が析出してくる。
Therefore, the decrease in nitrogen is caused by Suzuki et al. (Suzuki, Hayashi: Trans.
.. Japan Inst. Metals, 7, (196
6) 99; Dan (1967) 253; Dan ( 1 9 6
8) 77; Suzuki, Yamamoto: Inst. J. Pow
Der Met. 3 (1967) 17)
C-TiC-Co, WC-TaC-C
o, WC-Ti has the same effect as the reduction of C in the iC-TaC-Co system, and the bonded phase (Co or/and Ni)
When the solid solution amount of W is increased and further decreased, η phase (Co3W3C) is precipitated on the surface.

結合相に多量のWが含まれると結合相の硬化が起り、合
金の耐摩耗性を向上させる。
When a large amount of W is contained in the binder phase, the binder phase is hardened and the wear resistance of the alloy is improved.

少量のη相の析出も合金の耐摩耗性向上に効果がある。Precipitation of a small amount of η phase is also effective in improving the wear resistance of the alloy.

以下実施例を示す。Examples are shown below.

実施例 1 窒化チタン96重量%炭化チタン14.1重量%炭化タ
ングステン76、3重量%を混合、1800℃で1時間
ホットプレスを行なった後粉砕して、複合炭窒化物を作
成した。
Example 1 96% by weight of titanium nitride, 14.1% by weight of titanium carbide, 3% by weight of 76% by weight of tungsten carbide were mixed, hot pressed at 1800° C. for 1 hour, and then crushed to produce a composite carbonitride.

分析結果この複合炭窒化物の組成は(TiO.75 W
0.25)(C0.70 N0.30)であった。
Analysis result The composition of this composite carbonitride is (TiO.75W
0.25) (C0.70 N0.30).

X線回析結果ではBlタイプの結晶構造を有しているこ
とが判った。
The X-ray diffraction results revealed that it had a Bl type crystal structure.

上記複合炭窒化物49.4重量%Ta0.75Nb0,
25C19. 1重量%、WC21.7重量%、Co9
.8重量%を計取し、アセトンを加えて超硬ボールを用
いステンレス製ボールミルにより湿式で混合した。
The above composite carbonitride 49.4% by weight Ta0.75Nb0,
25C19. 1% by weight, WC21.7% by weight, Co9
.. 8% by weight was weighed out, acetone was added, and the mixture was wet-mixed using a stainless steel ball mill using carbide balls.

この混合粉末に対しカンファを3重量%加え、2t/c
m2で型押した。
Add 3% by weight of camphor to this mixed powder, and add 2t/c
Embossed with m2.

この型押体を1200℃まで1 0−3mmHgの真空
下で1200℃以後1380℃の焼結温度ならびに焼結
終了まで1Torrの窒素分圧下で焼結した。
This stamped body was sintered under a vacuum of 10-3 mmHg up to 1200°C, at a sintering temperature of 1380°C from 1200°C, and under a nitrogen partial pressure of 1 Torr until the end of sintering.

得られた合金Aを顕微鏡で観察したところ、硬質相が2
相認められた。
When the obtained alloy A was observed under a microscope, it was found that the hard phase was 2
Recognized.

これらはBlタイプの硬質相とWC相であった。These were a Bl type hard phase and a WC phase.

別に同じ組成の合金を1380℃まで真空で、焼結温度
下ではCH4−H2混合加をITorrの圧力で流しな
がら焼結した。
Separately, an alloy having the same composition was sintered in a vacuum up to 1380° C. while flowing a CH4-H2 mixture at a pressure of ITorr at the sintering temperature.

得られた合金Bの表面にはBlタイプの硬質相とCo相
のみ観察された。
Only a Bl type hard phase and a Co phase were observed on the surface of the obtained alloy B.

内部はWC相とBlタイプの硬質相とCo相であった。The interior consisted of a WC phase, a Bl type hard phase, and a Co phase.

本合金を用いての耐摩耗試験および断続切削による靭性
試験を行なった。
Wear resistance tests and toughness tests using interrupted cutting were conducted using this alloy.

その結果を表1に比較合金とともに示す。The results are shown in Table 1 along with comparative alloys.

本発明合金が極めてすぐれていることが明らかであろう
It will be clear that the alloy according to the invention is extremely superior.

表中超硬PIOの組成は重量%で、51%WC122%
TiC,18%TaC,9%Coであり、TiC一Mo
−Ni基サーメットの組成は重量%で80%TiC,1
0%Mo2C,10%Niである。
The composition of carbide PIO in the table is in weight%: 51% WC122%
TiC, 18% TaC, 9% Co, TiC-Mo
-The composition of the Ni-based cermet is 80% TiC, 1% by weight.
0% Mo2C, 10% Ni.

実施例2 実施例1と同様な方法で(Ti0.75W0.25)(
CO,7N0.3)1を作成した。
Example 2 (Ti0.75W0.25) (
CO,7N0.3)1 was created.

この複合炭窒化物58・0重量%,TaO.75NbO
.25C27.0重量%、WC3.9重量%、Ni3.
5重量%、Co7.6重量%を秤取し、以下実施例1と
同様な方法で型押体を作成し、1380℃で10−3m
MPの真空焼結を行なった。
This composite carbonitride contained 58.0% by weight of TaO. 75NbO
.. 25C 27.0% by weight, WC 3.9% by weight, Ni 3.
5% by weight and 7.6% by weight of Co were weighed out, and a stamped body was prepared in the same manner as in Example 1.
MP was vacuum sintered.

得られた合金の表面30μはBlタイプの硬質相とCo
相より成りそれより内部はWC相、Bl型硬質相および
Co相であった。
The surface 30μ of the obtained alloy contains a Bl type hard phase and a Co
The inner part was a WC phase, a Bl-type hard phase, and a Co phase.

表面のCo相の格子定数は4.565Å,WCの析出し
ている部分の格子定数は4.550Åであり表面の方が
内部よりもCo相中のW量が多いことが確認さnた。
The lattice constant of the Co phase on the surface was 4.565 Å, and the lattice constant of the portion where WC was precipitated was 4.550 Å, and it was confirmed that the amount of W in the Co phase was greater on the surface than in the interior.

本合金を用いて表1と同じ条件下で耐摩耗試験および断
続切削による靭性試験を行なった。
Using this alloy, a wear resistance test and a toughness test by interrupted cutting were conducted under the same conditions as in Table 1.

その結果本発明合金のにげ面摩耗は0.04mm、クレ
ータ磨耗は0.02mm、断続切削試験結果は1000
サイクルまで欠けずに切削できた。
As a result, the surface wear of the present alloy was 0.04 mm, the crater wear was 0.02 mm, and the interrupted cutting test result was 1000.
I was able to cut through the cycle without chipping.

Claims (1)

【特許請求の範囲】 1 硬質相が、組織的にWC相と、WとTiを含有し、
結晶構造がB 1 (NaC l型結晶)の相とからな
り、硬質相の全組成の分子式が一般に {(第■a族金属)A(第Va族金属)B(第Via族
金属)c) (CxNy)z 〔但し第IVa族金属は、Ti又はTiを含む2種、T
iを含む3種でTi20〜80原子係、第Va族金属は
、1種又は2種以上で2〜70重量係、第Vla族金属
は、W又はWを含む2種、Wを含む3種であり、MOを
含む場合はMoが2〜60重量%、式中のA,B,C,
X,Yは各元素のモル分率、Zは金属元素に対する非金
属元素のモル分率、A+B+C=1、X+Y=1 ,0
<A<1,O<B<1 , O<C<1 , 0.5
0≦X≦0.9 5 , 0.0 5≦Y≦0.5 0
, 0.8 5≦Z≦1.0 0 , 4A+5 B
+6C+4XZ+5YZ≧8.6なる関係がある〕と表
わされ、硬質相全体の重量で0.01〜0.5倍の鉄族
金属によって硬質相が結合され、表面層の窒素含有量を
内部より小ならしめたことを特徴とする超硬質合金。
[Claims] 1. The hard phase structurally contains a WC phase, W and Ti,
The crystal structure consists of a phase of B 1 (NaCl type crystal), and the molecular formula of the entire composition of the hard phase is generally {(Group ■a metal) A (Group Va metal) B (Group Via metal) c) (CxNy)z [However, Group IVa metals include Ti or two types containing Ti, T
Ti is 20 to 80 atomic weight ratio for three types including i, Group Va metal is 2 to 70 weight ratio for one or more types, Group Vla metal is W or 2 types containing W, and 3 types containing W. When MO is included, Mo is 2 to 60% by weight, A, B, C,
X, Y are the mole fractions of each element, Z is the mole fraction of nonmetallic elements to metal elements, A+B+C=1, X+Y=1,0
<A<1, O<B<1, O<C<1, 0.5
0≦X≦0.9 5 , 0.0 5≦Y≦0.5 0
, 0.8 5≦Z≦1.0 0 , 4A+5 B
+6C + 4 A super hard alloy that is characterized by being hardened.
JP2243375A 1975-02-25 1975-02-25 super hard alloy Expired JPS5814498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243375A JPS5814498B2 (en) 1975-02-25 1975-02-25 super hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243375A JPS5814498B2 (en) 1975-02-25 1975-02-25 super hard alloy

Publications (2)

Publication Number Publication Date
JPS5197508A JPS5197508A (en) 1976-08-27
JPS5814498B2 true JPS5814498B2 (en) 1983-03-19

Family

ID=12082548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243375A Expired JPS5814498B2 (en) 1975-02-25 1975-02-25 super hard alloy

Country Status (1)

Country Link
JP (1) JPS5814498B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487719A (en) * 1977-12-23 1979-07-12 Sumitomo Electric Industries Super hard alloy and method of making same
US4784923A (en) * 1985-08-19 1988-11-15 Carboloy Inc. Hard metal alloy with surface region enriched with tantalum, niobium, vanadium or combinations thereof and methods of making the same

Also Published As

Publication number Publication date
JPS5197508A (en) 1976-08-27

Similar Documents

Publication Publication Date Title
US4049876A (en) Cemented carbonitride alloys
JPS5823457B2 (en) Tough cermet
JPS5867842A (en) Hard sintered alloy
JP2010531928A (en) Al-Ti-Ru-N-C hard material coating
JP4731645B2 (en) Cemented carbide and coated cemented carbide and method for producing the same
JPS5814498B2 (en) super hard alloy
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JPS581181B2 (en) super hard alloy
JPS582580B2 (en) super hard alloy
JPS585981B2 (en) Tough cermet containing titanium nitride
JPS616254A (en) High hardness and high toughness nitrided powder high speed steel
JPS6117899B2 (en)
JPH0471986B2 (en)
JPS6343454B2 (en)
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
JPS6245290B2 (en)
JPS589957A (en) Material for cutting tool with superior characteristic at high temperature
JPS6245291B2 (en)
JPH0517298B2 (en)
JPS593533B2 (en) hard alloy
JPS59115102A (en) Surface coating cutting tool
JPS6147899B2 (en)
JPS5914533B2 (en) Oxygen-containing tungsten/titanium carbonitride-based sintered hard alloy
JPS5864340A (en) Sintered material for cutting tool with superior characteristic at high temperature