JPS58144701A - Method and measuring tool for measuring thickness of covering layer of bathed surface of melted metal bath - Google Patents

Method and measuring tool for measuring thickness of covering layer of bathed surface of melted metal bath

Info

Publication number
JPS58144701A
JPS58144701A JP2682082A JP2682082A JPS58144701A JP S58144701 A JPS58144701 A JP S58144701A JP 2682082 A JP2682082 A JP 2682082A JP 2682082 A JP2682082 A JP 2682082A JP S58144701 A JPS58144701 A JP S58144701A
Authority
JP
Japan
Prior art keywords
layer
coating layer
surface coating
bath
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2682082A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakuratani
桜谷 敏和
Seiji Itoyama
誓司 糸山
Yasuhiro Kakio
垣生 泰弘
Hiromitsu Yamanaka
山中 啓充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2682082A priority Critical patent/JPS58144701A/en
Publication of JPS58144701A publication Critical patent/JPS58144701A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Continuous Casting (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To measure the thickness of the coating layer, by vertically piercing and moving a highly corrosion resisting probe into the coating layer of the bathed surface of the melted metal bath, and detecting the change in an electric signal at a high temperature. CONSTITUTION:In the probe 7 for measuring electric conductivity, an electrode 7' is constituted by embedding a pair of metal wires (W, Mo, Pt, and the like) in a rod made of e.g. BN. The electric conductivity of the rod is extremely small at the high temperature. The rod has high corrosion resistance against both slag and melted steel. The metal wires are slightly protruded from the tip of the rod. Wiring is performed so that a pair of the metal wires constitute an impednace measuring circuit. The probe 7 is moved up and down on a mold powder deposited layer 16 on the melted steel in a continuous casting mold at a high speed by using a guide 15 wherein an automatic lifting mechanism is built in. Thus the electric conductivity is measured.

Description

【発明の詳細な説明】 この発明は、溶融金属浴の浴ai被覆層厚測定方法およ
び測定具に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and a measuring tool for measuring the bath ai coating layer thickness of a molten metal bath.

金属の溶融段階、とぐにその精錬ないし造塊過程、殊に
最近発展し九連続鋳造工程などにおいて、溶融金属浴の
表面被覆を司るスラグは重要な役割を積極的に、ときに
社消極的に坦っていてとくに前者については、その特性
、品質または使用法についても、よシ良質な金属製品を
、よシ経済的に得るための研電開発が、活発に進められ
ているが、浴融金鍼浴面上における浴FIiJ被覆層自
体の性状は、従来目視によシ判断されるを通例とした〇
九とえば精錬炉から数組に出鋼する際に出鋼流に不可避
的に巻き込まれて流出し、最終的に取鍋内鋼浴面上に存
在することになる精−炉スラグは、取鍋内鍋浴成分の経
時変動、すなわちスラグ中P、0.による復りんや、ス
ラグ中Fe0Kよる溶鋼酸化などKよる悪影響をもたら
し、このような鋼浴成分の変動の程度は、スラグの流動
性が高い程大きく、tたスラグ量が多い1著しい。
During the metal melting stage, smelting or agglomeration process, especially in the recently developed continuous casting process, slag, which controls the surface coating of the molten metal bath, plays an important role, sometimes actively and sometimes passively. Regarding the former, in particular, research is being actively carried out to develop metal products of better quality in terms of properties, quality, and usage. The properties of the bath FIiJ coating layer itself on the surface of the gold acupuncture bath were conventionally determined by visual inspection. The refinery slag that flows out and finally exists on the surface of the steel bath in the ladle is caused by changes in the components of the bath in the ladle over time, that is, P in the slag, 0. K causes adverse effects such as oxidation of molten steel due to Fe0K in the slag, and the degree of fluctuation in the steel bath composition increases as the fluidity of the slag increases.

従って混入するスラグ量を低減させる方法の検討以外に
も、MfOなどを投入してスラグを固化し、“流動性を
抑制する手法などが試みられたが、鋼浴上のスラグ層の
量、なかでも流動性を有する溶融スラグ層厚を簡便にか
つ正確に測定する方法がなかったことの故に1操業管理
上に不安定さを持ち込み、実用され難い。
Therefore, in addition to investigating ways to reduce the amount of slag mixed in, attempts have been made to solidify the slag by adding MfO and other substances to suppress its fluidity. However, since there is no method to easily and accurately measure the thickness of the fluid molten slag layer, it introduces instability in operational management and is difficult to put into practical use.

一方鋼の凝固、とシわけ省エネルギーの観点から最近盛
んKなってきた連続鋳造プロセスでは、合成スラグに対
し溶融速度を調節する九めのC粉を主体とすゐ骨材を配
合し九いわゆるモールドパウダーが用いられる0モ一ル
ドパウダー社、粉体または粒状の何れの場合でも第1図
に示すように、連続鋳造鋳型l内の溶鋼面2上で溶鋼面
IK液接触る冑から大気111に向けて、浴融スラグ層
8、亭溶融層鴫、焼結層器および固体の粉末ま九は粒状
層6のような層別区分構成をと条ことKよシ次の・よう
な機能を果す〇 すなわち第1は、溶鋼面の断熱・保温であや、第8は、
溶鋼中から浮上してくる非金属介在物を溶融スラグ層δ
で吸収することであ夛、第8に祉鋳型と凝固殻の間に!
融スラグがスラグフィル^として流入していくととKよ
〕鋳型と凝固殻の焼付きを防ぎ、かつ溶鋼から鋳型への
抜熱を安定化させて鋳片の割れ欠陥を防止する機能であ
る・以上の三つの機能を十分に発揮するためKは鋳型的
溶鋼面上のモールドパウダーは、フラックス組成物の堆
積層全体としての厚みのはか、とシわけIw融ススラグ
8の厚みを適確に制御する。ことが必要である。それに
本かかわらず、その検出手段が欠けていたため、連続鋳
造作業が不安定とな)ブレークアウト発生、縦割れ発生
などのトラブルを生ずることが多かつ次。
On the other hand, in the continuous casting process, which has recently become popular from the perspective of solidifying steel and energy saving, synthetic slag is mixed with aggregate mainly composed of C powder to adjust the melting rate. Regardless of whether the powder is used in the form of powder or granules, as shown in Figure 1, the molten steel surface 2 in the continuous casting mold 1 is exposed to the atmosphere 111 from the molten steel surface IK liquid in contact with the molten steel surface 2. Therefore, the bath molten slag layer 8, the molten layer 8, the sintered layer and the solid powder layer have a stratified structure such as the granular layer 6, and perform the following functions. 〇That is, the first is insulation and heat retention of the molten steel surface, and the eighth is,
The non-metallic inclusions floating from the molten steel are removed from the molten slag layer δ.
8th, between the mold and the solidified shell!
When molten slag flows in as slag fill, it prevents the mold and solidified shell from seizing, and stabilizes the heat transfer from the molten steel to the mold, thereby preventing cracking defects in the slab.・In order to fully demonstrate the above three functions, K is the mold powder on the mold-like molten steel surface, and the thickness of the entire deposited layer of flux composition is determined. control. It is necessary. Regardless of this, the lack of a detection means often causes troubles such as unstable continuous casting operations (breakouts, vertical cracks, etc.).

この発明は、以上のような状況に鑑みてなされたもので
あ夛、正確にして簡便Kかつ迅速に、溶融金属浴面上に
おける浴面被覆層の厚み、とくにそれが多層堆積をなす
ときはその全厚と層別区分の構造、すなわち溶融スラグ
層、半溶融層、焼結層および固体粉末層の動向を個別に
あわせ測定することができる方法とその方法の実施に有
利に用いることができる測定具を提案しようとするもの
である。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to accurately, simply and quickly determine the thickness of the bath surface coating layer on the molten metal bath surface, especially when it is deposited in multiple layers. A method that can individually measure the total thickness and the structure of layered sections, that is, the trends of the molten slag layer, semi-molten layer, sintered layer, and solid powder layer, and can be advantageously used in the implementation of the method. This is an attempt to propose a measuring tool.

この発明は、溶融金属浴の浴面被覆層に対し、誼浴面と
平行な面内で対をなす高温下高耐食性材料の電極を先端
でそれぞれ露出させ良高温下高耐食性の絶縁材料よ)な
るプローブを、浴面被覆層を鉛直に貫通する向きに移動
させ、浴面被覆層に固有の電気的性質によって浴面被覆
層を貫通したときに上記電極間に生起される電気信号の
変化を、プローブの移動変位とともに検出する溶融金属
浴の浴面被覆層厚測定方法である〇 この発明は、浴面被覆層が、溶融金属浴面に沿い、スラ
グ化した融体層上で半溶融ないし焼結などの中間層を介
して重なる粉末または粒状層を含むフラックス組成物の
堆積層であ〕、グローブの移動変位の間に、上記層別区
分の各層における電気的性質の熱的影響に由来し良電気
信号の変化として、該層別区分の動向をあわせ検出する
こと、また電気信号の変化として浴面被覆層の層内電気
伝装置あるいは電気容量を検出すること、さらに検出し
良電気信号につき該信号の対数をと〕、その逆数を10
−プの移動変位の関数として処理することか実施上のぞ
ましい0またこの発明は、高温下高耐食性材料の電極を
それぞれ先端に霧出させた高温下高耐食性の絶縁材料に
よる二股分岐成形体よりなるグローブと、該プローブの
浴面被覆層に対する鉛直姿勢を確保するガイドとからな
り、上記溶融金属浴の浴面被覆厚測定方法の実施に用い
る測定具である。
In this invention, a pair of electrodes made of a material with high corrosion resistance under high temperature are exposed at the tip of the bath surface coating layer of a molten metal bath in a plane parallel to the surface of the bath. The probe is moved in a direction that vertically penetrates the bath surface coating layer, and changes in the electrical signal generated between the electrodes when penetrating the bath surface coating layer are detected due to the electrical properties specific to the bath surface coating layer. , a bath surface coating layer thickness measurement method of a molten metal bath that is detected along with the moving displacement of a probe. This invention is a method for measuring the bath surface coating layer thickness of a molten metal bath along the molten metal bath surface, on a slag-formed molten layer. A deposited layer of a flux composition containing overlapping powder or granular layers through an intermediate layer such as sinter], resulting from the thermal influence of the electrical properties in each layer of the above stratified divisions during the moving displacement of the globe. It is possible to detect the trend of the stratification as a change in the electrical signal, to detect the intralayer electrical conductor or capacitance of the bath surface coating layer as a change in the electrical signal, and to detect the electrical signal. Let the logarithm of the signal be] and its reciprocal be 10
In addition, this invention consists of a bifurcated molded body made of an insulating material highly resistant to corrosion at high temperatures, each of which has an electrode made of a material highly resistant to corrosion at high temperatures sprayed at its tip. This measuring tool is composed of a glove and a guide for ensuring a vertical posture of the probe with respect to the bath surface coating layer, and is used to carry out the method for measuring the bath surface coating thickness of a molten metal bath.

以下連続鋳造鋳型内溶鋼面上におけるモールドパウダー
の例についてフランクス組成物の堆積層構造の検出を行
う場合につき具体的にこの発明の脱明を進める。
In the following, the present invention will be explained in detail with regard to the detection of the deposited layer structure of a Franks composition on an example of mold powder on the surface of molten steel in a continuous casting mold.

さてモールドパウダー堆積層は、上述層別区分の各層構
造の各々が電気伝導度に関して固有の性質を有している
事実が発明者らにより確認された。
Now, the inventors have confirmed that in the mold powder deposited layer, each of the layer structures of the above-mentioned layered divisions has unique properties regarding electrical conductivity.

すなわち、第1図に示し九ようにモールドパウダー堆積
層の大気側は、固体粉末層6であり、9隙率が極めて大
きく、有効電気伝導度は事実上はとんど零である0 その下方の焼結層5においては固体粒子同志の接触が生
じており、層内が比較的高温であることも相tって、小
さいながらも電気伝導度を有する。
That is, as shown in FIG. 1, the atmosphere side of the mold powder deposited layer is a solid powder layer 6, and the porosity is extremely large, and the effective electrical conductivity is practically zero. In the sintered layer 5, solid particles come into contact with each other, and together with the relatively high temperature inside the layer, the sintered layer 5 has electrical conductivity, although it is small.

さらkその下側の半溶融層4はスラグ液滴が構成する層
であり、同時に骨材脚軍粉が液滴の凝集を防いでいる九
めに空rlI率がある8度高く、その結果スラグ融体そ
のものの有する電気伝導度よ〉も小さな値を有効電気伝
導度として有している。
Furthermore, the semi-molten layer 4 below it is a layer composed of slag droplets, and at the same time, the aggregate leg powder prevents the droplets from agglomerating. The effective electrical conductivity is smaller than the electrical conductivity of the slag melt itself.

そして溶鋼に接する溶融スラグ層8は、上記8つの各層
に比べてよシ大きな電気伝導度を有する・従ってモール
ドパウダー堆積層の厚み方向に電気伝導度を測定してい
くと、電気伝導度の不連続がモールドパウダーの層構造
の境界で検出され、容易に各層の厚みを測定できモール
ドパウダー堆積層構造を決定することができる。
The molten slag layer 8 in contact with the molten steel has a much higher electrical conductivity than each of the eight layers mentioned above.Therefore, when measuring the electrical conductivity in the thickness direction of the mold powder deposit layer, it is found that the electrical conductivity is not uniform. Continuity is detected at the boundaries of the mold powder layer structure, and the thickness of each layer can be easily measured and the mold powder deposit layer structure can be determined.

なお異相構造を有する層が、−面は高mKさらされ、他
の面が低温にさらされる場所に存在する際には、層内の
sf分布が各異層構造の有する有効熱伝導度の逆数に比
例する温度勾配を有することになるのは周知であるが、
この現象を上記電気伝導[6119!によるモールドパ
ウダー堆積層の構造検出法に応用すると次のような極め
て精度の高いデータ解析手法を確立できる。
In addition, when a layer having a different phase structure exists in a place where the negative side is exposed to high mK and the other side is exposed to low temperature, the sf distribution within the layer is the reciprocal of the effective thermal conductivity of each different layer structure. It is well known that there is a temperature gradient proportional to
This phenomenon can be explained by the electrical conduction [6119! When applied to the method for detecting the structure of mold powder deposited layers, the following highly accurate data analysis method can be established.

すなわち、スラグの電気伝導度の温に依存性は、アレニ
ウスタイプであり次式(1)で表現できる。
That is, the dependence of the electrical conductivity of the slag on temperature is of the Arrhenius type and can be expressed by the following equation (1).

λ−eXp、(−に/T)      ・・・・・・(
1)λX電気伝導度、冨:活性化エネルギー、T:II
j 一方パウダ一層の温度分布は、モールドパウダー堆積層
の厚み方向の距離に対して次の線型関数(3)で表現で
きる。
λ-eXp, (-to/T) ・・・・・・(
1) λX electrical conductivity, Tom: activation energy, T: II
j On the other hand, the temperature distribution of one layer of powder can be expressed by the following linear function (3) with respect to the distance in the thickness direction of the mold powder deposited layer.

r(x、)=A+Bix    、  −−−−−−<
 2 )T(x):温度 A:モールドパウダー堆積層上面の温罠B工はモールド
パウダー堆積層の中の各異相構造のうち、第1番目の層
の有効熱伝導層の逆数に比例する定数、Xはモールドパ
ウダー堆積層上面からの距離である。
r(x,)=A+Bix, --------<
2) T(x): Temperature A: Temperature trap B on the upper surface of the mold powder deposit layer is a constant proportional to the reciprocal of the effective heat conductive layer of the first layer among the different phase structures in the mold powder deposit layer. , X is the distance from the upper surface of the mold powder deposited layer.

前記(1)%(!I)式より次式(8)の関係が導かれ
ゐ。
From the above equation (1)%(!I), the following equation (8) is derived.

znλ嘱−罵/〒= −に/(A+BL)c)x/ln
λ―(A + Bix) /I! −Bix  −・−
・(8)すなわち、電気伝導度の対数の逆数を、モール
ドパウダー堆積層の厚み方向に対してプーットすると、
層構造の便化する位置で勾配の変化する直線関係が得ら
れる。
znλ嘱-偱/〒=-に/(A+BL)c)x/ln
λ-(A + Bix) /I! -Bix -・-
・(8) That is, when the reciprocal of the logarithm of electrical conductivity is put in the thickness direction of the mold powder deposited layer,
A linear relationship with a changing gradient is obtained at the position where the layered structure is facilitated.

従ってこのプロットの勾配が変化する点間の距離を測定
するととくよシ、モールドパウダー堆積層の溶融スラグ
層厚みをはじめとする各構造層の厚みを正しく測定でき
る。
Therefore, by measuring the distance between the points where the slope of this plot changes, it is possible to accurately measure the thickness of each structural layer, including the thickness of the molten slag layer of the mold powder deposit layer.

、ここに従来から物理的状態を異にするスラグ異層の構
造検出を電気伝導に測定によ)行なつ九事例はなく、固
体スフグ或いは溶融スラグといった物理的に均一な畢に
対しての電気伝導f測定が行なわれたKすぎない0この
場合PcFi系の中にある特定の場所に存在するスラグ
の電気伝導縦を測定するわけではなく、電極としては裸
1を用い峠は足りる。
However, there has never been a case in which the structure of different layers of slag with different physical states has been detected by measuring electrical conduction, and there is no case in which the structure of different layers of slag with different physical states has been detected by measuring electrical conduction. In this case, the electric conduction length of the slag existing at a specific location in the PcFi system is not measured, and a bare electrode 1 is used as the electrode.

この方法をかりにモールドパウダー堆積層の検出にその
まま用いる場合を仮定すると、電極先端位置が、層構造
の不連続点を通過した際であっても、電極の先端以外の
部分で検出される電気伝導度信号の中に、電極先端部が
検出した電気伝導度の不連続さが埋没してしまい、層構
造の検出の精鮫を期待できない。
Assuming that this method is used as is to detect the mold powder deposit layer, even if the electrode tip position passes through a discontinuity point in the layer structure, electrical conduction will be detected at a portion other than the electrode tip. The discontinuity in electrical conductivity detected by the electrode tip is buried in the electrical conductivity signal, making it impossible to expect a precise detection of a layered structure.

□゛しかるに電極線を電気伝導度が高温においても極め
て小さな材質の棒の中に埋設し、棒の先端から僅かに電
極線を突出させることKより、局所的な電気伝導度測定
を可能にさせ、ここにモールドパウダー堆積層構造の検
出8度を大きく増大させ得るわけである0 第2図のように電気伝導度測定用の10−プ7は、高温
においても電気伝導度が極めて小さくかつスラグおよび
溶鋼の両方に高耐食性を事するたとえばBN製の棒に一
対の金属線(W、 Mo、 Ptなど〕を埋め込み、こ
れらの金属線を棒の先端で僅・かに突出させて電極7′
を構成し、一対の金14iIは、通常のインピーダンス
測定回路を構成するように#I[する。第1図において
、8は電位印加用の高周波電圧発信機、9はブローブチ
の電極12間に存在する被測定媒体の電気伝導度に比例
して流れる電流を電圧として取出す丸めの抵抗である0
この電圧値は交流信号であり、記録に不便なので、φ変
換器10を介して直流に変換し、DCアンプ11によシ
増幅した後記置針13に記録するO なおりCアンプ11からの信号は演算回路18によシ対
数の逆数として処理し、記録計14に記録することがの
ぞましい。
□゛However, by burying the electrode wire in a rod made of a material whose electrical conductivity is extremely small even at high temperatures and allowing the electrode wire to protrude slightly from the tip of the rod, it is possible to measure local electrical conductivity. As shown in Figure 2, the 10-p 7 for measuring electrical conductivity has extremely low electrical conductivity even at high temperatures, and can greatly increase the detection rate of the mold powder deposited layer structure. A pair of metal wires (W, Mo, Pt, etc.) are embedded in a rod made of, for example, BN, which has high corrosion resistance for both steel and molten steel, and these metal wires are slightly protruded at the tip of the rod to form the electrode 7'.
and a pair of gold 14iI #I[ to configure a normal impedance measurement circuit. In FIG. 1, 8 is a high-frequency voltage transmitter for applying a potential, and 9 is a round resistor that extracts the current flowing in proportion to the electrical conductivity of the medium to be measured between the electrodes 12 of the blowchit as a voltage.
This voltage value is an alternating current signal, which is inconvenient to record, so it is converted to direct current via the φ converter 10, amplified by the DC amplifier 11, and recorded on the later-described position needle 13. It is preferable that the arithmetic circuit 18 process this as a reciprocal of the logarithm and record it on the recorder 14.

グローブチは、自動昇降機構(図示時)を組み込んだプ
イド16を用いて、一定の速度で連続鋳造鋳型自溶鋼上
のモールドパウダー堆積層18に対して上下に移動させ
つつ電気伝導度に和尚する上記電圧信号を記録するO記
録計11によって得喪信号の一例を第8図に示す。
GLOBECH uses a poid 16 incorporating an automatic lifting mechanism (as shown) to move the mold powder deposited layer 18 on the self-melting steel of the continuous casting mold up and down at a constant speed while adjusting the electrical conductivity. FIG. 8 shows an example of the gain/loss signal produced by the O recorder 11 that records the voltage signal.

第8図の記録は、ブローブチを溶鋼邸内から、引き上げ
、モールド・パウダー堆積層中を上向きに移動させた際
に得たものであるが、層構造の変化に追従する信号の変
化は明瞭であり、十分な精度でパウダー堆積層の構造検
出が可能である。
The record in Figure 8 was obtained when the blowbutch was lifted from the molten steel house and moved upward through the mold powder deposit layer, but the changes in the signal that followed the changes in the layer structure were clear. This makes it possible to detect the structure of the powder deposit layer with sufficient accuracy.

すなわち、第8図において1〜6間の信号は高値を示し
ており、かつ安定し、これは検出電極7′が電気伝導度
の高い溶鋼中にあったことを示す0つぎに5〜0間では
ゆるやかに信号が低下しており、溶融スラグ層8内に電
極7′が位置し九ことを示す。
That is, in FIG. 8, the signal between 1 and 6 shows a high value and is stable, which indicates that the detection electrode 7' was in molten steel with high electrical conductivity. In this case, the signal gradually decreases, indicating that the electrode 7' is located within the molten slag layer 8.

干してc−,6間の急檄な信号低下は電極フ′が溶融ス
ラグ層8の直下の半fn融層4にあつ九ことを示し、以
下同様K d % e関は焼結層5、そしてe−fr&
J1#i固体粉末層6であることを反映し、ここでr魚
は電極7′が大気中に出て、電気伝導度が検出されなく
なった点である〇 一方記録計14によって得良電気伝導度信号の対数の逆
数を検出端の移動距離に対して、プロットしたのが第4
図である0第8図のa −fに対応する層構造変化の点
が第1図a′〜f′のように折°れ■の交点として極め
て明らかに検出される。
The sudden signal drop between c- and 6 after drying indicates that the electrode plate is in the semi-fn molten layer 4 directly below the molten slag layer 8, and similarly, K d % e is the sintered layer 5, and e-fr&
Reflecting the fact that J1#i is the solid powder layer 6, here the electrode 7' is exposed to the atmosphere and the electrical conductivity is no longer detected.Meanwhile, the recorder 14 indicates that the obtained electrical conductivity is no longer detected. The fourth graph plots the reciprocal of the logarithm of the conductivity signal against the moving distance of the detection end.
Points of layer structure change corresponding to a-f in FIG.

ちなみに従来からも、モールドパウダー堆積層の構造に
つき、該層を全体として汲み出し、そのまま冷却凝固さ
せえ後に1切断しその断面に検討が加えられることはあ
ったが、いわばこれは破壊検査であ夛、シかも判定迄に
各種の操作を要し時間がかかることから連続鋳造の過程
KsPけるモールドパウダー堆積層構造の検出手法とし
ては実用にならぬものであつ九。
By the way, in the past, regarding the structure of the mold powder deposit layer, the layer was pumped out as a whole, cooled and solidified, and then cut into pieces and the cross section was examined, but this was done in a destructive test. This method is not practical as a method for detecting the layer structure of mold powder deposits in the process of continuous casting, since various operations are required and time is required to determine whether or not the mold powder is deposited.

これに反してこの発明によれば非破壊的にしかも迅速に
即時的なモールドパウダー堆積層につき層別区分、構造
を判定できるので、その結果として4たらされる、連続
鋳造操業の安定化の効果社極めて大きいものである。
On the other hand, according to the present invention, the stratification and structure of the mold powder deposited layer can be determined non-destructively and quickly, and as a result, the continuous casting operation is stabilized. The company is extremely large.

なお上記電気伝導度検出に用いるブローグー造に関して
は、高11において電気伝導度が極めて小適い棒にその
先端でスラグよシも高い電気伝導度を有する電ii*を
露出させて埋没し九二股分舷成形体に慶るものとする。
Regarding the Brogou construction used for the above-mentioned electrical conductivity detection, a rod with extremely low electrical conductivity is buried at the tip of the rod with an electrical conductivity as high as that of slag. It is suitable for bulk molded bodies.

グローブ主体に適合する絶縁体としては、BNノ他、8
1.N4、Aj、O,、MjOlZrO,,810j。
Insulators suitable for the main body of gloves include BN, etc., and 8
1. N4,Aj,O,,MjOlZrO,,810j.

BaOなどでもよく、オ九電極線としては、黒鉛その他
、Mo、W%Pt、Taなどの高融点金属を使用しても
よい。
BaO or the like may be used, and graphite or other high melting point metals such as Mo, W%Pt, and Ta may be used as the electrode wire.

ブローブチの電極間隔は5〜80m、と〈K2O趨前後
が好オしく、狭すぎるときには溶融スラグが電極間にブ
リッジングして層別区分の検出を妨げるつれいかあ)、
この点ではプローブの電極露出面を単一平面としたとき
、この面に沿う溶融スラグの付着で同様な障害となるお
それがあるので、第8図のような二股分岐にする必要が
ある。
The electrode spacing of the blowch is 5 to 80 m (preferably around the K2O trend; if it is too narrow, molten slag may bridge between the electrodes and interfere with the detection of stratification).
In this respect, if the electrode exposed surface of the probe is made into a single plane, there is a possibility that the molten slag will adhere to this surface and cause a similar problem, so it is necessary to make it bifurcated as shown in FIG. 8.

電極に用いる金属INKついては外径0.2〜0.5M
l1の範囲かのぞましく、″を次その先端露出は0.5
龍程度とすることが好ましい。太すぎる電極もまたブリ
ッジングを生じS<、tC先端露出が長ずざると溶損の
不利が伴われる◇ 上にモールドパウダー堆積層の層別区分に固有な電気伝
導度のちがいKよる電気信号の変化を検出する場合につ
いて説明をしたが、電気伝導度のほかに電気容量を測定
することKよってもこの発・明の目的に適合する。
For metal INK used for electrodes, the outer diameter is 0.2 to 0.5M.
It seems to be in the range l1, and the tip exposure is 0.5 after ''.
It is preferable to make it about the size of a dragon. An electrode that is too thick also causes bridging S<, tC If the tip is not exposed for a long time, there is a disadvantage of melting. Although the case of detecting a change in K has been described, measuring capacitance in addition to electrical conductivity is also suitable for the purpose of this invention.

すなわちモールドパウダー堆積層の構造を交流電圧を附
加され九電極が検出する電気容量から4検出することが
できる。
That is, the structure of the mold powder deposited layer can be detected from the capacitance detected by the nine electrodes to which an alternating current voltage is applied.

交流電圧が十分小さく電気分極が生じない条件を選ぶと
検出する電気容量は、界面電気二重層の電気容量に和尚
する◇ この界面電気二重層の電気容量は、電極が接する媒体の
相の有する誘電率によって大きく異な)、また同一の相
内であってもその内部の温度により電極界面近傍に存在
して電気二重層を構成するイオンの移動度が異なること
により電気二重層容量の値が異なることKなる。この原
理を利用し、電気容量を測定することにより電気伝導度
の測定によって層構成を測定したと同様な検出ができる
わけである。
If conditions are selected in which the AC voltage is sufficiently small so that electric polarization does not occur, the detected capacitance will be the capacitance of the interfacial electric double layer. Furthermore, even within the same phase, the value of electric double layer capacitance differs because the mobility of ions that exist near the electrode interface and make up the electric double layer differs depending on the internal temperature. K becomes. Utilizing this principle, by measuring capacitance, it is possible to perform detection similar to measuring layer structure by measuring electrical conductivity.

この鳩舎電極フ′は通常のインピーダンス測定法である
西端子@路の部分を構成するように自動インピーダンス
測定機に接続して電気容量成分を連続的に計測し、記録
針に連続記録する・第す図はこうして得られ良信号を溶
鋼面から、モールドパウダー堆積層上面への距離として
示す。
This pigeonhole electrode plate is connected to an automatic impedance measuring machine so as to constitute the west terminal part of the normal impedance measurement method, and the capacitance component is continuously measured and continuously recorded on the recording needle. The figure shows the good signal obtained in this way as the distance from the molten steel surface to the upper surface of the mold powder deposit layer.

第6図においてa′〜b′間の信号は、電極が溶鋼内に
あることを示す。
In FIG. 6, the signal between a' and b' indicates that the electrode is within the molten steel.

これは、電極−溶融金属間の界面電気二重層容量が極め
て小さいことに対応する◇ 一方溶融スラグー電極間の界面電気二重層容量は、極め
て大きく、また正の温度依存性を有することからb1〜
C′間を溶融スラグ層と判定できる。
This corresponds to the fact that the interfacial electric double layer capacity between the electrode and the molten metal is extremely small ◇ On the other hand, the interfacial electric double layer capacity between the molten slag electrode is extremely large and has a positive temperature dependence, so b1~
The area between C' can be determined to be a molten slag layer.

浴融スラグ簡充横層である牛溶融層では空隙の存在に伴
う電気容量低下がIl!測され、oe〜d1間がそれで
あると判定できる〇 電極−固体間の電気容量は同様に固体の空隙率に依存し
、空S車の小さな焼結層は61〜65間、空隙率のよシ
大きな粉末層は6″〜f′間と判別される。
In the molten layer, which is a horizontal layer filled with bath molten slag, the capacitance decreases due to the presence of voids. The capacitance between the electrode and the solid also depends on the porosity of the solid. A large powder layer is determined to be between 6'' and f'.

上記の各実施例にあげ九モールドパウダー堆積層の構造
の解析にこの発明の方法は有利に適用され得るが、その
ほかKも、連続鋳造タンプッシュや取鍋についてはもち
ろん各種精錬容器中におけ゛るスラグや7ラツクス組成
物の性状判定にも、もちろんこの発明の手法を有利に適
用する仁とができる。
The method of the present invention can be advantageously applied to the analysis of the structure of the nine mold powder deposited layers listed in each of the above embodiments, but it can also be applied to continuous casting tumble pushers and ladles, as well as various refining vessels. Of course, the method of the present invention can also be advantageously applied to the evaluation of the properties of slag and 7 lux compositions.

以上述べ喪ようKして、この発明によれば溶融金属浴面
をおおう浴面被覆層の厚み、その他の性状を即時に臨場
的に検出することができ、その適否に応じ曳即応的な対
策の実行を可能ならしめ得るO
Having said the above, according to the present invention, the thickness and other properties of the bath surface coating layer covering the molten metal bath surface can be detected on the spot, and immediate countermeasures can be taken depending on the suitability of the detection. O that can enable the execution of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、連続鋳造鋳型内におけるモールドパウダー堆
積層の層別区分構造を示す断面図、第1図は、この発明
の実施の一形態を、スラダ電気伝導W測定要領について
示す説明図、第8図は、モールドパウダ一層の電気伝導
度のパウダ一層厚方向における変化を示すグラフ、第4
図は、電気伝導度信号を演算処理して対数の逆数として
得た信号のパウダ一層厚方向の変化を示すグラフ、 化を示すグラフである0 7・・・プローブ、7′・・・電極、15・・・ガイド
O特許出願人   川崎製鉄株式会社 第1図 第2図 第3図 、 第4図 KamlRtyつ≠層rflヘノl畠直−第5図
FIG. 1 is a sectional view showing the stratified structure of a mold powder deposited layer in a continuous casting mold; FIG. Figure 8 is a graph showing changes in the electrical conductivity of a single layer of mold powder in the direction of thickness of the powder layer.
The figure is a graph showing the change in the powder thickness direction of the signal obtained as the reciprocal of the logarithm by processing the electrical conductivity signal. 15... Guide O Patent Applicant Kawasaki Steel Corporation Figure 1 Figure 2 Figure 3, Figure 4

Claims (1)

【特許請求の範囲】 1 溶融金属浴の海面被覆層に対し、該浴面と平行な面
内て対をなす高温下高耐食性材料の電極を先端でそれぞ
れ露出させ丸高−下高耐食性の絶縁材料よ)なるプロー
ブを、海面被覆層を鉛直に貫通する向IK移動させ、海
面被覆層に固有の電気的性質によって浴面被覆層を貫通
したとIK上記電極間に生起される電気信号の変化を、
グローブの移動変位とともに検出することを特徴とする
溶融金属浴の浴面被榎層厚渕定方法◎ 亀 浴面被覆層が、溶融金属浴面に沿い、スラグ化し九
融体層上で半溶融ないし焼結などの中間層を介して重な
る費末オ九は粒状層を含む7ラツクス組成物の堆積層で
あり、グローブの移動変位の間に一上記層別区分の各層
におけゐ電気的性質の熱的彰響に由来し良電気信号の変
化として、骸層別区分の動向をあわせ検出する特許請求
の範囲l記載の方法。 亀 電気信号の変化として海面被覆層の層内電気伝装置
を検出する特許請求の範囲ltたは富記載の方法。 也 電気信号つ変化として浴面被覆層における電気容量
を検出する特許請求の範囲Itたは3記載の方法。 区 検出し良電気信号につき該信号の対数をと〕、その
逆数をグローブの移動変位の関数として処理する特許請
求の範1!1% m、8または番記載の方法O a  A11i下高耐食性材料の電極をそれぞれ先端に
露出させ九高温下高耐食性の絶縁材料による二股分岐成
形体よシなるグローブと、該10−プの浴面被覆層に対
する鉛直姿勢を確保するガイドとから表る溶融金属浴の
海面被覆層厚測定具。
[Scope of Claims] 1. To the sea surface coating layer of a molten metal bath, a pair of electrodes made of a material with high corrosion resistance under high temperature are exposed at their tips in a plane parallel to the bath surface to form an insulator with high corrosion resistance from round height to bottom. A probe made of material) is moved in the IK direction vertically penetrating the sea surface coating layer, and due to the electrical properties inherent to the sea surface coating layer, when it penetrates the bath surface coating layer, a change in the electrical signal generated between the IK electrodes is observed. of,
A method for determining the thickness of the bath surface covering layer of a molten metal bath, which is characterized by detecting the movement and displacement of a globe. The final layer, which overlaps through an intermediate layer such as sinter or sinter, is a deposited layer of 7 lux composition including a granular layer, and during the movement displacement of the globe, the electrical properties in each layer of the above stratification are changed. 2. The method according to claim 1, wherein the trend of stratification of the skeleton is detected as a change in the electrical signal derived from the thermal shock of the body. A method according to claim 1 for detecting an intralayer electrotransmission device in a sea surface coating layer as a change in an electrical signal. The method according to claim 3, wherein the capacitance in the bath surface coating layer is detected as a change in the electric signal. The method described in Claim 1!1% m, 8 or No. O a A11i Highly corrosion resistant material, which detects the logarithm of the signal for a good electrical signal and processes its reciprocal as a function of the movement displacement of the globe. A molten metal bath formed by a globe consisting of a bifurcated molded body made of an insulating material with high corrosion resistance at high temperatures, each having an electrode exposed at its tip, and a guide for ensuring a vertical posture with respect to the bath surface coating layer of the 10-plate. An instrument for measuring the thickness of sea surface coating.
JP2682082A 1982-02-23 1982-02-23 Method and measuring tool for measuring thickness of covering layer of bathed surface of melted metal bath Pending JPS58144701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2682082A JPS58144701A (en) 1982-02-23 1982-02-23 Method and measuring tool for measuring thickness of covering layer of bathed surface of melted metal bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2682082A JPS58144701A (en) 1982-02-23 1982-02-23 Method and measuring tool for measuring thickness of covering layer of bathed surface of melted metal bath

Publications (1)

Publication Number Publication Date
JPS58144701A true JPS58144701A (en) 1983-08-29

Family

ID=12203906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2682082A Pending JPS58144701A (en) 1982-02-23 1982-02-23 Method and measuring tool for measuring thickness of covering layer of bathed surface of melted metal bath

Country Status (1)

Country Link
JP (1) JPS58144701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667003A1 (en) * 1990-09-21 1992-03-27 Siderurgie Fse Inst Rech Method and device for continuously measuring the thickness of liquid slag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428810A (en) * 1977-08-01 1979-03-03 American Home Prod Pharmaceutical composition for eye disease containing 1*33dioxoo1hhbenzo *d * e* isoquinolinee2*3h**acetic acid
JPS56162001A (en) * 1980-05-20 1981-12-12 Ishikawajima Harima Heavy Ind Co Ltd Measuring device for oil film thickness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428810A (en) * 1977-08-01 1979-03-03 American Home Prod Pharmaceutical composition for eye disease containing 1*33dioxoo1hhbenzo *d * e* isoquinolinee2*3h**acetic acid
JPS56162001A (en) * 1980-05-20 1981-12-12 Ishikawajima Harima Heavy Ind Co Ltd Measuring device for oil film thickness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667003A1 (en) * 1990-09-21 1992-03-27 Siderurgie Fse Inst Rech Method and device for continuously measuring the thickness of liquid slag

Similar Documents

Publication Publication Date Title
EP1614489A1 (en) Molten metal vessel, its use and method for determining an interface
EP1593963A1 (en) Measurement set-up to determine the oxygen activity in metallic or slag melts
US4365788A (en) Process and apparatus for determining the level of molten metal in a metallurgical vessel, the temperature of the molten metal and the extent of wear of the refractory lining of the vessel
US6309442B1 (en) Refractory material sensor for determining level of molten metal and slag and method of using
JPH0131136B2 (en)
US3844172A (en) Thermocouple test cup and cupholder
US4037761A (en) Indication of levels in receptacles
JPS58144701A (en) Method and measuring tool for measuring thickness of covering layer of bathed surface of melted metal bath
IE45608B1 (en) Crucible for the thermal analysis of alloys
CN1077289C (en) Method of measuring electrochemical activity
CN100507534C (en) Sensor for metal liquid comprehensive performance on-line detection
CN204594386U (en) Metal surface liquid film thickness measuring device
Majumdar et al. An experimental method for measuring mould/metal gap variation with time in a metal casting process
WO2003027334A1 (en) Refractory material sensor
JPS5910621Y2 (en) Molten slag sample collection device
JPS61271401A (en) Thickness measuring method for molten slag layer
Okimura et al. Development of zirconia electrolyte sensor with auxiliary electrode for the in situ measurement of dissolved silicon in molten iron
CN214952430U (en) Molten metal sampler
PL179276B1 (en) Method of measuring electrochemical activity
CN200947090Y (en) Sensor for online detecting combination property of molten metal
KR100388027B1 (en) Detachable sensor for slag thickness measurement
DE202005020959U1 (en) Molten metal container has temperature measuring device having protective sheath comprised of mixture of heat resistant metal oxide and graphite, at predetermined distance form container wall
JPS6035885Y2 (en) Cast iron graphite shape furnace test equipment
JPH0620101Y2 (en) High temperature fluid flow meter
CS206780B1 (en) Probe for active oxygen content measuring at melted steel