JPS58144234A - Power supply device - Google Patents

Power supply device

Info

Publication number
JPS58144234A
JPS58144234A JP2668082A JP2668082A JPS58144234A JP S58144234 A JPS58144234 A JP S58144234A JP 2668082 A JP2668082 A JP 2668082A JP 2668082 A JP2668082 A JP 2668082A JP S58144234 A JPS58144234 A JP S58144234A
Authority
JP
Japan
Prior art keywords
voltage
load
output
current
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2668082A
Other languages
Japanese (ja)
Inventor
Kunio Yasumi
邦夫 八角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2668082A priority Critical patent/JPS58144234A/en
Publication of JPS58144234A publication Critical patent/JPS58144234A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector

Abstract

PURPOSE:To attain continuous power supply for a long period by integrating an output from a detecting means with a prescribed time constant, inputting the integrated output to a means to regulate voltage to be supplied to a load and detecting the temperature of the heating load to control the voltage to be supplied. CONSTITUTION:A voltage regulating transistor (TR) Q1 and a current detecting resistor element RS are connected between an input terminal IN of rectified voltage from a power supply device and an output terminal OUT to detect a load and a current detector U2 is connected to the element RS. Voltage proportional to the load current detected by the detector U2 is inputted to an integration circuit consisting of a capacitor element C6 and a resistor element R0 through a voltage reverse-current preventing diode D3. The time constant of the integration circuit is set up to a value correlated to the time constant of heating/radiation of the load and integrated voltage corresponding to the load current and power supply time is generated in an output point P1 of the circuit. The voltage is inputted to an error amplifier U1 through an amplifier U3 and a reverse-current preventing diode D2 and compared with the partial voltage of the input voltage to control the TR Q1 by the compared output.

Description

【発明の詳細な説明】 この発明は、大出力トランジスタや、ヒーター、感熱記
録装置の感熱ヘッド等のような発熱性の負荷を有する回
路や装置番と使用するのに好適な電源装置に係り、特に
長時間の連続通電を行っても、発熱性の負荷の温度上昇
を所定の範囲内に制御できるようにした電源装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply device suitable for use with a circuit or device having a heat generating load such as a high output transistor, a heater, a thermal head of a thermal recording device, etc. In particular, the present invention relates to a power supply device that can control the temperature rise of a heat-generating load within a predetermined range even when the current is continuously energized for a long time.

従来から、電源装置においては、負荷電流が設定値を超
えた場合、その出力電圧を減少させるようにした各種の
過電流保護回路が用いられている0第7図は、従来の電
源装置に用いられている過電流保護回路の一例を示す接
続図である。図面において、Qiは電圧調整トランジス
タ、Q!は電流検出トランジスタ、U/は誤差増幅器、
ZDはツェナーダイオード%R8は電流検出抵抗素子、
81〜R,は抵抗素子を示し、またINは整流電圧の入
力電圧の入力端子、 OUTは負荷が接続される出力端
子である。
Conventionally, various overcurrent protection circuits have been used in power supplies to reduce the output voltage when the load current exceeds a set value. FIG. 2 is a connection diagram showing an example of an overcurrent protection circuit. In the drawing, Qi is a voltage regulating transistor, Q! is a current detection transistor, U/ is an error amplifier,
ZD is a Zener diode %R8 is a current detection resistor element,
81 to R indicate resistance elements, IN is an input terminal for input voltage of rectified voltage, and OUT is an output terminal to which a load is connected.

第一図は、第1図の回路の電流−電圧特性を示す特性図
である。
FIG. 1 is a characteristic diagram showing the current-voltage characteristics of the circuit shown in FIG.

第1図の回路において、抵抗素子R8とR重は、電圧検
出用として設けられており、その接続点(は。
In the circuit shown in FIG. 1, the resistance element R8 and the R-type are provided for voltage detection, and their connection point (ha) is provided.

負荷への出力電圧に対応した分割電圧が検出され、この
検出出力が誤差増幅器U/の一方の入力端子へ接続され
る。そして2wA差増幅器U/により、ツェナーダイオ
ードZDのツェナー電圧と比較される。
A divided voltage corresponding to the output voltage to the load is detected, and the detected output is connected to one input terminal of the error amplifier U/. It is then compared with the Zener voltage of the Zener diode ZD by a 2wA difference amplifier U/.

電流検出抵抗素子鼠8を流れる負荷電流が設定値を超え
ると、電流検出トランジスタQ麿のC−Σ間インピーダ
ンスが低下する。
When the load current flowing through the current detection resistive element 8 exceeds a set value, the impedance between C and Σ of the current detection transistor Q decreases.

そのため、電圧調整トランジスタQlの14間電圧VI
IICが低下し、c−g間電圧VCgが大となるので、
出力電圧が低下される。
Therefore, the voltage VI of the voltage adjustment transistor Ql is
Since IIC decreases and the c-g voltage VCg increases,
Output voltage is reduced.

このような動作により、負荷および電圧調整トランジス
タQIに対する過電流が防止される◎ところが、発熱性
の負荷の場合には、この第1図のような過電流保護回路
を用いても、負荷の温度上昇を押えることは期待できな
い。
This operation prevents overcurrent to the load and voltage adjustment transistor QI. However, in the case of a heat-generating load, even if an overcurrent protection circuit like the one shown in Figure 1 is used, the temperature of the load will decrease. There is no hope of holding back the rise.

その理由は、例えば大出力のトランジスタや。The reason for this is, for example, high output transistors.

ヒーター、あるいは感熱記録装置の感熱ヘッドのような
発熱性の負荷では、蓄熱作用があり、電流とその通電時
間との積分値で決定される発熱量を制御するだけでは、
負荷の温度を制御することは不可能だからである。換言
すれば、電流値を所定の範囲に制御しても、蓄熱による
分だけ、温度は上昇してしまうととkなる。
Heat-generating loads such as heaters or thermal heads of thermal recording devices have a heat storage effect, and it is difficult to control the amount of heat generated by simply controlling the amount of heat determined by the integral of the current and the time it is energized.
This is because it is impossible to control the temperature of the load. In other words, even if the current value is controlled within a predetermined range, the temperature will rise by the amount of heat storage.

そこで、仁の発明の電源装置では、従来の過電流保護回
路のような電圧調整手段を備えた電源装置を改良し、発
熱性の負荷に対しても充分に機能するように1発熱性の
負荷に対する電流を制御するとともに、そ′の温度上昇
による供給電圧の制御も可能にして、長時間の連続通電
が行えるようにすることを目的とする。
Therefore, in the power supply device of Jin's invention, the power supply device equipped with a voltage adjustment means such as a conventional overcurrent protection circuit is improved, and it is designed to function satisfactorily even for heat-generating loads. The object of the present invention is to control the current to the capacitor and also to control the supply voltage according to the temperature rise of the capacitor, thereby enabling continuous current supply for a long period of time.

そのために、この発明の電源装置においては。Therefore, in the power supply device of the present invention.

第1に、負荷電流を電圧て検出する検出手段と。First, a detection means for detecting load current as a voltage.

この検出出力を所定の時定数で積分する積分回路とを付
加し、積分回路の出力を電圧a整手段へ与えて、発熱性
の負荷の温度が上昇した場合にも、供給電圧を低下させ
るように一御することを%像とする。
An integrator circuit that integrates this detection output with a predetermined time constant is added, and the output of the integrator circuit is given to the voltage adjustment means, so that the supply voltage can be reduced even when the temperature of the exothermic load increases. The idea is to have full control over the

第一に、負荷と直列に発熱素子を接続し、この発熱素子
の近傍にサーミスタ等の感温素子を配し、さらにこの感
温素子のインピーダンスを検出する検出手段を設け、イ
ンピーダンス検出手段からの検出出力を電圧調整手段へ
与えて、同様に、負荷の温度上昇に対応して供給電圧を
低下させることを特徴とする。
First, a heating element is connected in series with the load, a temperature sensing element such as a thermistor is arranged near the heating element, and a detection means for detecting the impedance of the temperature sensing element is provided. It is characterized in that the detection output is given to the voltage adjustment means to similarly lower the supply voltage in response to the rise in temperature of the load.

まず、この発明の電源装置の第1の%徴について、説明
する。
First, the first percentage characteristic of the power supply device of the present invention will be explained.

第3図は、この発明の電源装置の一実施例を示す接続図
である。図面における符号は第1図と同様であり、また
、Uコは電流検出器、U3は増幅器、D、〜D、は逆流
防止ダイオード、Roは積分抵抗素子、C・は積分容量
素子を示し、Plは積分回路の出力点を示す。
FIG. 3 is a connection diagram showing one embodiment of the power supply device of the present invention. The symbols in the drawings are the same as in FIG. 1, and U is a current detector, U3 is an amplifier, D and ~D are reverse current prevention diodes, Ro is an integral resistance element, and C is an integral capacitance element. Pl indicates the output point of the integrating circuit.

この第3図の電源装置は、従来から用いられている第1
図の場合と同様な作用、すなわちその出力電圧が設定値
を超えたときに出力電圧を減少させるだけでなく、さら
に、負荷へ出力される電流値とその通電時間とで決定さ
れる積分値が設定値を超えた場合にも、出力電圧を減少
させるように動作して、負荷の発熱を所定の範囲内に抑
制するO出力電流の検出は、電流検出抵抗素子R8と電
流検出器Uコとkよって行われる。すなわち、電流検出
抵抗素子R8を流れる負荷電流によって、抵抗素子R8
の両端に負荷電流に比例した電圧が発生される。そのた
め、電流検出器Uコの出力電圧は、負荷電流に比例して
発生され、逆流防止ダイオードD1を通して、積分回路
へ入力される。
The power supply device shown in FIG.
In addition to reducing the output voltage when it exceeds the set value, the integral value determined by the current value output to the load and its energization time is Detection of the output current, which operates to reduce the output voltage and suppress the heat generation of the load within a predetermined range even when the set value is exceeded, is performed by the current detection resistive element R8 and the current detector U. This is done by k. That is, due to the load current flowing through the current detection resistance element R8, the resistance element R8
A voltage proportional to the load current is generated across the terminal. Therefore, the output voltage of the current detector U is generated in proportion to the load current, and is input to the integrating circuit through the backflow prevention diode D1.

積分回路は、郷量素子C0と抵抗素子R6とから構成さ
れており、その時定数が負荷の発熱・放熱の時定数と相
関のある値となるように、容量素子C0の静電容量およ
び抵抗素子R・の抵抗値を設定する。
The integrating circuit is composed of a capacitive element C0 and a resistive element R6, and the capacitive element C0 and the resistive element Set the resistance value of R.

そのため、積分回路の出力点P、には、負荷電流とその
通電時間に対応した積分電圧が発生される。
Therefore, an integrated voltage corresponding to the load current and its energization time is generated at the output point P of the integrating circuit.

この積分電圧は、増幅器U3で増幅され、逆流防止ダイ
オードD、を介して、II差増幅器U/へ入力される。
This integrated voltage is amplified by the amplifier U3 and inputted to the II difference amplifier U/ via the backflow prevention diode D.

誤差増幅器U/へは、同時に、負荷への出力電圧を検出
するために、先の第1図の回路と同様に。
to the error amplifier U/, in order to simultaneously detect the output voltage to the load, similar to the circuit of FIG. 1 above.

電流検出抵抗素子R1とR1とkよる分割電圧が入力さ
れる0避流防止ダイオードD、は、増幅器UJの出力の
方が大きい場合に、逆流を阻止する。
The current detection resistance element R1 and the zero shunt prevention diode D to which the voltage divided by R1 and k is input block reverse current when the output of the amplifier UJ is larger.

誤差項@器U/には、これらの一つの入力、すなわち積
分電圧と、分割電圧の検出出力とが与えられ、そのいず
れか大きい方の電圧が比較入力とされる0そして、他方
の入力であるツェナー電圧との比較が行われる。
The error term @unit U/ is given one of these inputs, that is, the integrated voltage and the detection output of the divided voltage, and the larger of the two is used as the comparison input. A comparison is made with some Zener voltage.

したがって、この第3図の装置では、負荷電流とその通
電時間に対応した積分出力が設定値を超えたとき、ある
いは負荷への出力電流に対応した抵抗素子R3とR1と
の分割点の電圧検出出力が設定値を超えたときには、負
荷への出力電圧が低下され、負荷の発熱が押えられて、
所定の温度に保持される。
Therefore, in the device shown in Fig. 3, when the integrated output corresponding to the load current and its energization time exceeds the set value, or when the voltage at the dividing point between resistive elements R3 and R1 corresponding to the output current to the load is detected. When the output exceeds the set value, the output voltage to the load is reduced, suppressing heat generation in the load, and
It is maintained at a predetermined temperature.

なお、積分容量素子C・と直・並列に、他の抵抗素子を
挿入すれば、負荷の発熱参放熱特性との相関をさらに改
良することができる。
Note that by inserting another resistance element in series or parallel with the integral capacitance element C, the correlation between heat generation and heat radiation characteristics of the load can be further improved.

次に、この発明の電源装置の第一の特徴について説明す
る。
Next, the first feature of the power supply device of the present invention will be explained.

第9図は、この発明の電源装置の他の実施例を示す接続
図である。図面における符号は、先の第図および第3図
と同様であり、また、RTはサーミスタ、R&は抵抗素
子%pmはサーミスタRTと抵抗素子R,との接続点を
示す。
FIG. 9 is a connection diagram showing another embodiment of the power supply device of the present invention. The reference numerals in the drawings are the same as those in FIGS. 3 and 3, and RT indicates the thermistor, R& indicates the resistance element, and %pm indicates the connection point between the thermistor RT and the resistance element R.

この第参図の装置では、電流検出抵抗索子R8が負荷と
比例して発熱する仁とを利用している。
In the device shown in Fig. 1, the current detection resistor R8 utilizes a wire that generates heat in proportion to the load.

そして、この抵抗素子R8の温度を、その近傍に設けた
サーミスタBTによって検出するようにしている。すな
わち、負荷が発熱すると、この抵抗素子R8もそれに比
例して発熱するので、サーミスタRTの抵抗値が低下す
る。
The temperature of this resistance element R8 is detected by a thermistor BT provided near it. That is, when the load generates heat, this resistance element R8 also generates heat in proportion to it, so the resistance value of the thermistor RT decreases.

したがって、増幅器U3の入力電圧であるサーミスタR
Tと抵抗素子R4との接続点P、の電圧が上昇する。こ
の増幅器U3の出力は、ダイオードD。
Therefore, the input voltage of amplifier U3, thermistor R
The voltage at the connection point P between T and resistance element R4 increases. The output of this amplifier U3 is a diode D.

を介して、誤差増幅器U/へ与えられる。to the error amplifier U/.

それ以降の動作は、先のlK3図の場合と同様である。The subsequent operations are the same as in the case of the previous diagram IK3.

なお、この場合にも、サーミスタRTと直・並列に抵抗
素子を挿入すれば、負荷の発熱・放熱特性との相関は、
さらに改善される。
In this case as well, if a resistance element is inserted in series or parallel with the thermistor RT, the correlation with the heat generation and heat dissipation characteristics of the load is as follows.
Further improvements will be made.

次の第S図は、この発明の電源装置のさらに別の実施例
を示す接続図である。図面における符号は第y図と一様
であり、菫た、P、はサーミスタETと抵抗素子R,と
の!!続点を示す。
The next FIG. S is a connection diagram showing still another embodiment of the power supply device of the present invention. The symbols in the drawing are the same as those in Fig. ! Indicates a continuation point.

この第5図の装置でも、電流検出抵抗素子R8の温度が
、負荷の温度と比例して上昇すると、サーミスタRTの
抵抗値が低下する。
In the device shown in FIG. 5 as well, when the temperature of current detection resistive element R8 increases in proportion to the temperature of the load, the resistance value of thermistor RT decreases.

そのため、誤差増幅器U/へ入力される比較電圧、すな
わちサーミスタRTと抵抗素子R1との接続点P、の電
圧が上昇する。それ以降の動作は、先の第3図やs4を
図と同様である。
Therefore, the comparison voltage input to the error amplifier U/, that is, the voltage at the connection point P between thermistor RT and resistance element R1 increases. The subsequent operations are similar to those shown in FIG. 3 and s4.

なお、以上の実施例は、すべて電圧降下型の電源回路、
すなわちドロッパ一方式の場合である。
Note that all of the above embodiments are voltage drop type power supply circuits,
In other words, this is the case of a one-dropper type.

しかし、スイッチング方式の場合でも、検出電圧をV−
F(電圧−周波数)変換器を介して電圧調整回路へ入力
することにより、同様に実施することができる。
However, even in the case of the switching method, the detection voltage is
A similar implementation can be achieved by inputting to the voltage regulation circuit via an F (voltage-frequency) converter.

以上に詳細に説明したとおり、この発明の電源装置では
、第1に、従来の電圧調整手段へ積分回路を設け、この
積分回路の出力により発熱性の負荷の温度を検出し、所
定の温度に達したときは、負荷への供給電圧を低下させ
るようにしている。
As explained in detail above, in the power supply device of the present invention, firstly, an integrating circuit is provided in the conventional voltage regulating means, and the temperature of the exothermic load is detected by the output of this integrating circuit, and the temperature of the exothermic load is adjusted to a predetermined temperature. When this happens, the voltage supplied to the load is reduced.

さらに、第−k、負荷へ直列に発熱素子を接続し、仁の
発熱素子の近傍へ感温素子を設け、かつ感温素子のイン
ピーダンスを検出するインピーダンス検出手段を設けて
、インピーダンス検出手段の検出出力により発熱性の負
荷の温度を検出し、負荷への供給電圧を低下させるよう
にしている。
Further, a heating element is connected in series to the k-th load, a temperature sensing element is provided near the heating element, and an impedance detection means for detecting the impedance of the temperature sensing element is provided. The temperature of the exothermic load is detected by the output, and the voltage supplied to the load is reduced.

したがって、この発明の電源装置によれば、単に発熱性
の負荷への供給電流が制御されるだけでなく、その温度
の上昇に対しても供給電圧がIIJllされる。その結
果、大出力トランジスタや、ヒーター、さらに感熱記録
装置や感熱転写記録装置の感熱ヘッドのような、各種の
発熱性の負荷に対して、長時間の連続通電が可能となる
、という優れた効果が得られる。
Therefore, according to the power supply device of the present invention, not only the current supplied to the exothermic load is controlled, but also the supply voltage is controlled even when the temperature rises. As a result, it has the excellent effect of being able to continuously supply electricity for long periods of time to various heat-generating loads such as high-output transistors, heaters, and thermal heads of thermal recording devices and thermal transfer recording devices. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電源装置に用いられている過電流保饅回
路の一例を示す接続図、第一図は第1図の回路の電流−
電圧特性を示す特性図、第3図はこの発明の電源装置の
−!J!施例を示す接続図、第y図と第S図はこの発明
の電源装置の他の実施例を示す接続図である。 図面において、Qlは電圧調整トランジスタ、Q意は電
流検出トランジスタ、U/は誤差増幅器、υコは電流検
出器、U3は増幅器%ZDはツェナーダイオード、8丁
はサーミスタ、R8は電流検出抵抗素子を示す。 特許出願人 株式会社 リ コ −
Figure 1 is a connection diagram showing an example of an overcurrent protection circuit used in a conventional power supply device, and Figure 1 shows the current of the circuit in Figure 1.
A characteristic diagram showing voltage characteristics, FIG. 3, shows -! of the power supply device of this invention. J! Connection Diagrams Showing Embodiments FIG. Y and FIG. S are connection diagrams showing other embodiments of the power supply device of the present invention. In the drawing, Ql is a voltage adjustment transistor, Q is a current detection transistor, U/ is an error amplifier, υ is a current detector, U3 is an amplifier, ZD is a Zener diode, 8 is a thermistor, and R8 is a current detection resistor element. show. Patent applicant Rico Co., Ltd. −

Claims (1)

【特許請求の範囲】 L 負荷電流を電圧で検出する検出手段と、この検出手
段からの検出出力を所定の時定数で積分する積分回路と
、負荷への供給電圧を調整する電圧調整手段とを備え、
前記積分回路の出力を前記電圧調整手段へ入力すること
により、負荷への供給電圧を制御することを特徴とする
電源装置。 龜 負荷と直列に接続された発熱素子と、この発熱素子
の近傍に配設された感温素子と、この感温素子のインピ
ーダンスを検出するインピーダンス検出手段と、負荷へ
の供給電圧を調整する電圧調整手段とを備え、前記イン
ピーダンス検出手段からの検出出力を前記電圧調整手段
へ入力することにより、負荷への供給電圧を制御するこ
とを特徴とする電源装置。
[Scope of Claims] L A detection means for detecting load current in terms of voltage, an integrating circuit for integrating a detection output from the detection means with a predetermined time constant, and a voltage adjustment means for adjusting the voltage supplied to the load. Prepare,
A power supply device characterized in that a voltage supplied to a load is controlled by inputting an output of the integration circuit to the voltage adjustment means. A heating element connected in series with a load, a temperature sensing element disposed near the heating element, an impedance detection means for detecting the impedance of the temperature sensing element, and a voltage for adjusting the voltage supplied to the load. A power supply device comprising: an adjusting means, and controlling a voltage supplied to a load by inputting a detection output from the impedance detecting means to the voltage adjusting means.
JP2668082A 1982-02-20 1982-02-20 Power supply device Pending JPS58144234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2668082A JPS58144234A (en) 1982-02-20 1982-02-20 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2668082A JPS58144234A (en) 1982-02-20 1982-02-20 Power supply device

Publications (1)

Publication Number Publication Date
JPS58144234A true JPS58144234A (en) 1983-08-27

Family

ID=12200106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2668082A Pending JPS58144234A (en) 1982-02-20 1982-02-20 Power supply device

Country Status (1)

Country Link
JP (1) JPS58144234A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086737A (en) * 2004-09-15 2006-03-30 Sumitomo Electric Ind Ltd Bias control circuit
US7423471B2 (en) 2005-12-09 2008-09-09 Ricoh Company, Ltd. Backflow preventing circuit capable of preventing reverse current efficiently
US9087714B2 (en) 2010-09-01 2015-07-21 Ricoh Electronic Devices Co., Ltd. Semiconductor integrated circuit and semiconductor integrated circuit apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086737A (en) * 2004-09-15 2006-03-30 Sumitomo Electric Ind Ltd Bias control circuit
JP4501612B2 (en) * 2004-09-15 2010-07-14 住友電気工業株式会社 Bias control circuit
US7423471B2 (en) 2005-12-09 2008-09-09 Ricoh Company, Ltd. Backflow preventing circuit capable of preventing reverse current efficiently
US7705657B2 (en) 2005-12-09 2010-04-27 Ricoh Company, Ltd. Backflow preventing circuit capable of preventing reverse current efficiently
US9087714B2 (en) 2010-09-01 2015-07-21 Ricoh Electronic Devices Co., Ltd. Semiconductor integrated circuit and semiconductor integrated circuit apparatus

Similar Documents

Publication Publication Date Title
US4894520A (en) Circuit for controlling power dissipated by an electrical resistance
US3480852A (en) Ambient and component temperature compensated voltage current regulator
JPH04229019A (en) Rectifier for limiting current and current sensing circuit
JPS58144234A (en) Power supply device
JPH0727421B2 (en) DC power supply circuit
JPH01122367A (en) Switching power source circuit
US3102221A (en) Regulation of the charging of secondary cells using a temperature sensitive element in heat exchange relationship with a catalytic device
JP2523924B2 (en) Overcurrent detection device
JPS6122755A (en) Load current detecting method of switching regulator
JP3013597B2 (en) Switching power supply
JP3391201B2 (en) DC-DC converter
JP2870189B2 (en) DC power supply
JPS5932212Y2 (en) switching regulator
RU2115155C1 (en) Control unit of temperature controller
JP2567440B2 (en) Overcurrent detection device
JP3189458B2 (en) Phase control circuit of electric water heater
JP2001209440A (en) Power supply with overcurrent protective device
JP2567439B2 (en) Overcurrent detection device
KR930005140Y1 (en) Temperature control device
SU796811A1 (en) Temperature regulator
JP3484625B2 (en) Switching regulator with variable dead time
JPS5848114A (en) Temperature controller
JPH07281772A (en) Semiconductor switch circuit
US3666923A (en) Control apparatus having full current pulse load conduction
JP2003059623A (en) Current control method, and current control device for practicing current control method